
Behavior Research Methods & Instrumentation
1975, Vol. 7 (6),557-562

Computer translation with paired grammars

T. R. G. GREEN
MRC Social and Applied Psychology Unit, Sheffield University, Sheffield SIO, 2TN. England

In certain types of experiment, the subject controls an on-line computer by giving commands in a
simple source language-possibly a subset of English or of a high level computer language. The com
mands must then be decoded before they can be obeved. One method is to write an ad hoc program for
the specific purpose. An alternative is to write a general purpose translator to decode the source lang
uage into a more primitive target language. A suitable translator is described, driven principally by
"paired" context-free grammars of the source and target languages but also able to accommodate con
text-sensitive rules. Using the translator has several advantages. It is obviously much easier to write an
ad hoc recognizer for a very primitive language than for a subset of English. Also, for small languages
it is very easy to write and check grammars; minor modifications are a trivial job, and the finished
product is unlikely to contain hidden bugs. An example of the method is given.

This paper describes the construction of a syntax
oriented translator and its use in on-line computer con
trolled experiments. A syntax oriented translator is a
computer program capable of accepting sentences in one
phrase-structure language and translating them into
another, and it has the distinguishing feature that it is
general purpose: the grammars of the two languages
are supplied to it as data before starting to translate.
Such translators are not by any means new, but they
have been little used in experimental psychology; partly
because experiments to which they would be appropri
ate have not been performed until recently, partly be
cause published descriptions (e .g., Ingerman, 1966;
Foster, 1970; Gries, 1971) have described techniques
more appropriate to computer science in terms also
more appropriate to computer science.

The technique described here has properties which
make it particularly suitable for applications in experi
mental psychology. It is simple in conception and easy
to implement; it is compact enough to fit into labora
tory computers; the grammars are presented to it in a
form which is both familiar and easy to work with; and
it is powerful enough to allow context-sensitive features
to be included in the languages. These advantages are
obtained by accepting compensating disadvantages.
Relative to methods used in computer science, this
technique is slow in operation; and it is not universal
the target language, into which it translates, must re
semble the source language in certain ways. Although
these would be crippling disadvantages for, say, a com
piler for programming languages, they are not serious in
psychological applications, and the techniques have been
used with success in a number of studies.

The function of such a program in the laboratory is
to set up quickly on-line experiments in which the sub

ject controls the computer by giving commands in some

language. One such situation is where the experimenter
wishes to study strategies in problem solving; the compu
ter displays the current state of of the problem environ
ment and the subject tells it what move to make next.
If the environment is at all complex, it is easiest for the
subject to give instructions in a language based on Enz
lish. These can then be translated into a language with
much less syntactic structure-possibly a pseudomachine
code. The program controlling the experiment still must
to able to comprehend the target language, but it is
much easier to write a program to comprehend a very
simple language in an ad hoc way than one to compre
hend a language with considerable syntactic structure.
The translator described has been used for this purpose
in the study of job-shop scheduling (Fitter, 1974). An
alternative situation is one in which the experimenter
wishes to compare two artificial languages. If each
source language is translated into the same target lan
guage, only one ad hoc program need be constructed,
a considerable saving. The translator was originally de
vised for comparisons of different types of programming
language (Sime, Green, & Guest, 1973, 1974).

In brief, instead of controlling an experiment by a
program containing an ad hoc recognizer to comprehend
a fairly complex language, which is difficult to write,
it can be controlled by a program containing an ad hoc
recognizer for a very simple language. Messages are fed
to it by the translator as it decodes the subject's inputs.
As the translator can be relied upon to spot faulty in
puts by the subject, the ad hoc recognizer is further sim
plified because it does not have to detect errors. It is,
therefore, much easier both to set up a new experiment
and to modify a detail. At the same time, because it is
easier to check out a grammar than a complicated pro
gram, reliability is increased, and there is less chance of
an unsuspected bug ruining an experimental run.

557

558 GREEN

Note that the input to the translator need not be
typed words. Experience suggests that it is best to
avoid teleprinter input since typing skills vary rather
widely. We have instead reinvented lexigraphy, and use a
system in which the subject touches a contact by the
side of each word (Fitter & Daly, 1975).

OVERVIEW

The technique described could be called paired-gram
mar translation. It is based on an ordinary context-free
phrase-structure parsing system, and we have found it
simplest to work with a top-down left-to-right parser,
because that is very easy to program and does not un
duly constrain the grammar. The notation used for the
grammars is Backus-Naur form, in which every rule is
a set of alternative ways in which a nonterminal symbol
can be rewritten into other nonterminals or into termi
nal symbols. The essence of top-down parsing is as fol
lows. Consider the first alternative of the rule defining
a sentence: if it mentions, as its first symbol, another
nonterminal, consider the first alternative way of defin
ing that, and so on down to a rule whose first alternative
starts with a nonterminal symbol. If that matches the
first input symbol, go on, otherwise back up. A precise
account is given below.

The parser does nothing more than discover the struc
ture of sentences in the input, or "source," language
(except to report when a string is not grammatical).
To translate into an output, or "target" language it is
necessary, if full universality is wanted, to use a tech
nique in which the translation depends not only on the
wording of the input sentence but also on its structure.
That is possible but elaborate. Instead, a much simpler
technique is proposed, in which the target grammar is
paired with the source grammar in such a way that every
nonterminal symbol in the source grammar is associated
with the same nonterminal symbol in the target which,
by defmition, is its translation.

Informally, this is equivalent to translating, e.g., from
English to French, by assuming that if an English sen
tence consists of a noun phrase and a verb phrase, then
its translation consists of the translation of the noun
phrase plus the translation of the verb phrase (possibly
not in the same order, and possibly with a few extra ter
minal symbols thrown in). For natural language, that as
sumption is obviously wrong. For example, if "I go" is
to become "je vais" while "you go" becomes "vous al
lez," we have to pass on a message about the subject of
the verb in order to translate the verb correctly. In other
words, the translation of "go" is context-sensitive.
However, this translator is not being put forward as a
method for translating English into French, but from, at
very best, restricted English to a machine language.
and in these conditions experience to date suggests that
such problems are few. When they do arise, a device is
included to allow context-sensitive rules to be expressed.

Simplicity being the keynote of this method, con
text-sensitivity is handled not by elegant notations and

powerful mechanisms but by special-purpose subrou
tines written as needed. Although this may sound a little
unsatisfactory at first, it works out well when the lan
guages are not heavily context-sensitive. A standard in
dication or "trigger symbol" is inserted into the output
string at the point where a given subroutine should be
applied. These symbols actually form part of the target
grammar. All that need then be done is to sweep the out
put string and call the indicated subroutines. In anyone
group of applications, it is likely that such subroutines
will rarely need altering from one study to the next, so
they do not interfere with the stated aim of versatility.
Examples of their use are provided below.

Finally, with the programming medium I shall as
sume that the language used has facilities for list process
ing, recursion, and the representation of strings. It is
not difficult to provide such a language (Green & Guest,
1974), but if one is not available FORTRAN would be
adequate.

REPRESENTATION OF CONTEXT-FREE
GRAMMARS

Each rule of the grammar specifies all the ways in
which one nonterrninal symbol can be rewritten. Here is
part of a grammar in a commonly used notation: non
terminal symbols are in capitals, alternatives are separa
ted by a solidus, and the meta-symbol NONE stands for
the empty string, meaning that that symbol may be o
mitted. For a while translation from English to French
will be used for the sake of familiarity, but the tech
nique is not intened to cope with large subsets of natu
rallanguage.

S-+NPVP
NP -+ the ADJ N

ADJ -+black/white/NONE
N -+cat/dog

VP -+etc.

The grammar must then be stored in the computer in
some form. A convenient way to do so, though by no
means the only way, is to put each rule into one element
of a one-dimensional array and to dispense with the left
sides of the rules. Nonterminal symbols can then be re
placed by the index number, in the array, of the rule
that defines the symbol, e.g., all references to the subject
can be replaced by 1, all references to NP by 2, etc.
However, if the index is stored in its raw form we shall
deprive ourselves of the possibility of using integers in
the language, so it is stored as a negative number and
made positive when needed. To distinguish between al
ternatives, the rule is stored as a list of sublists, each
sublist being one alternative. The previous rules are,
therefore, represented as follows, using parentheses to
show list structure:

COMPUTER TRANSLATION WITH PAIRED GRAMMARS 559

I: «-2 -5))
2: «the~3 -4))
3: «black) (white) (NONE))
4: «cat) (dog))
5: etc.

The algorithm has to be provided with grammars of
both the source and the target language. These grammars
must be properly paired off so that the same nontermi
nal symbols are defmed in the same order, and within
each rule corresponding alternatives are given in the
same order. If the grammar above is the source, the tar
get might include these rules:

S--*NPVP
NP--*le N ADJ

ADJ --* noir/blanc/NONE
N --* chat/chien

VP --* etc.

Notice that definitions in the target grammar may
change the order of constructs (e.g., to put adjectives af
ter their noun) but may not mention a nonterminal sym
bol unless it is mentioned in the corresponding alterna
tive in the source grammar. It is sensible to write an in
put routine to accept grammars in the ~uman notation
and turn them into internal representation, at the same
time checking that they are properly paired.

CONTEXT-FREE PARSING AND TRANSLATION

The message input by the subject is parsed against
the grammar of the source language. While doing so,
a translation is prepared, using the grammar of the
target language. This section presents a semiformal
specification of the algorithm preceded by a verbal
account.

Although the parsing algorithm is well known, it
has been described first to make it clear how the
translation is performed. In what follows, identifiers and
step numbers refer to the specification below. It is as
sumed that when the process is recursively reentered,
current values of all identifiers are preserved on a stack
to be restored when the recursion is complete.

The input string is held in String, and is initially
matched against the first alternative of some rule,
whichever is specified by Ruleno. The rule is held in
Arule (Step I), and the current alternative is held in
Aoption. If the match against the first alternative fails,
the second is tried, and so on (Step 2). The members of
Aoption are matched one by one, with the current
member to be matched held in Asymb (Step 3). The
next word of the input is indicated by Stringpointer,
which points to somewhere in String. Each time a new

alternative is tried, Stringpointer is reset to the start of
String (Step 2). Performance of the actual match de
pends on the value of Asymb. If it is a terminal symbol,
it is compared with the next word of the input; if they
are identical, Stringpointer is advanced (Step 6). If
Asymb is a negative number, then it is a nonterminal
symbol by convention. For that to match, we have to
get a match for the rule it points to (i.e., if it refers
to a noun phrase the input must actually be a noun
phrase). The process is re-entered recursively to perform
a match against the rule whose number is in Asymb
(Step 7). That rule will use up a variable amount of the
input string, so one of the results of the recursion gives
the value to which Stringpointer should be reset (also
Step 7). The last possibility for Asymb is the symbol
NONE, which is always taken as a match, without using
up any input (Step 4). If the end of an alternative is
reached successfully, then the whole rule matches (Step
3), and the process completes with one result indicating
a success and another result giving the final value of
Stringpointer (Step 9).

An alternative fails when a symbol fails to match
in Step 6 or 7) or when the input runs out while the
alternative still contains symbols other than "NONE"
(in Step 5). If all alternatives fail, the whole rule fails
(Step 10). The whole parsing attempt is taken to have
failed if no match is found against the first rule, which
defines the forms of possible sentences, or if there is
some input left over~ as though the subject had put
in "The cat sat on the mat mat mat." The algorithm
does not, as specified, perform the fmal check that no
input is left over, and the user therefore has to check
that it terminated with results indicating not only a
success but also that the unused portion of the input
string is zeTO.

Given the parser, the translator needs little extra
mechanism. While considering an alternative Aoption
from the source grammar, the corresponding alternative
from the target grammar is located and held in Boption
(Steps I and 2). If Aoption is entirely composed of ter
inal symbols, then Boption is the translation required,
without further ado, and if the match is successful,
then Boption is supplied as the translation result (Step
9). If Aoption contains nonterminal symbols, e.g., for a
noun phrase, then the translation must depend on the
particular noun phrase in the input. So the same nonter
minal symbol is put into the target grammar, and is re
written during parsing. The nonterminal symbol causes
a recursion, which by definition completes with the
translation as one result. and that translation is then
inserted into Boption. In the algorithm, Asymb is the
nonterminal symbol, and its translation is put into
Bsymb (Step 7). Every occurrence of the nonterminal
Asymb in the target string Boption is then replaced
with Bsymb (Step 8). The replacement of every occur
rence is the simplest technique, but not necessarily the
best. It can be clumsy. as the final example shows.

560 GREEN

ALGORITHM FOR
CONTEXT·FREE TRANSLATION

The data required for this algorithm are the arrays
Sourcegrammar and Targetgrammar, which are never
altered, plus an input string held in String which is to
be parsed with respect to the rule whose index number is
held (negated) in Ruleno. The first call will attempt to
parse the entire input with respect to the first rule; re
cursive entries may then occur.

(l) Set Ruleno = -Ruleno [the index numbers were
made negative for convenience]; set Arule = Source
grammar (Ruleno); set Brule =Targetgrammar (Ruleno).

(2) [Try a new alternative.] If all the alternatives of
Arule have been tried go to Step 10. Otherwise, set
Aoption = next alternative of Arule, set Boption =
next alternative of Brule, and set Stringpointer to
start of String.

(3) If Aoption has no members left unmatched, then
go to Step 9 [the match is now complete.] Otherwise set
Asymb = next member of Aoption.

(4) If Asymb ="NONE" then go to Step 3.
(5) If Stringpointer has reached the end of String, go

to Step 2. [The input string has run out before the end
of the match; another alternative must be tried.] Other.
wise look at Asymb. If Asymb is a negative number go
to Step 7, and if it is not, go to Step 6.

(6)[Asymb is not a negative number, and is therefore
a terminal symbol.] If Asymb is identical with the next
input symbol, to which Stringpointer points, then ad
vance Stringpointer and go to Step 3. Otherwise go to
Step 2. [Match failed.]

(7) [Asymb is a negative number, and therefore a rule
index.] Recursively re-enter the algorithm to parse a
gainst the rule Asymb points to. Ifthe result is false [no
match was found], go to Step 2. Otherwisde set String
pointer =the unused portion of String; set Bsymb =the
translation of Asymb and go to Step 8.

(8) [Rewrite Boption.] Examine every member of
Boption and replace with Bsymb all those that are the
same as Asymb. Go to Step 3.

(9) [Success.] Exit with three results: true, to indi
cate success; the fmal value of Stringpointer; and Bopt
tion, the translation. [If context-sensitive elements are
to be used, Boption should first be swept. This proce
dure returns a result. If false, the match has failed so go
to Step 2].

(10) [The whole rule fails.] Exit with the result false.

Illustration
Suppose that the input string "The black dog ..." is

to be parsed and translated, using the English-to-French
fragments given above. The key point is the successive
values of Aoption and Boption, and to illustrate these I
have used indenting to indicate recursion.

Aoption =NP VP Boption =NP VP
Aoption = the ADJ N Boption = Ie N ADJ
"the" matches

Aoption = black Boption = noir
"black" matches

"ADJ" matches, rewrite Boption Boption = Ie N noir
Aoption = cat Boption = chat
"cat" fails
Aoption = dog Boption = chien
"dog" matches

"N" matches, rewrite Boption Boption =Ie chien noir
"NP" matches, rewrite Boption Boption = le chien noir VP

CONTEXT-SENSITIVE ELEMENTS

The need for context-sensitive rules has been men
tioned in the OVERVIEW. One way to handle them
would be to include a notation to state that certain rules
of grammar could only be used in certain contexts,
but that is not so easy to implement. Instead "trigger
symbols" are recommended. These are symbols included
in the target grammar, each of which points to a partie
war subroutine and says, in effect, when it occurs in the
translation string, "apply that subroutine at this point."
Whenever a constituent has been successively parsed and
translated (Step 9 in the algorithm) the translation string
is swept, searching for triggers, and the appropriate sub
routines are called.

The subroutines and their triggers are defined by the
user, as additions to the context-free system already des
cribed. The subroutines need to have access to the trans
lation string and to any private registers that may be
necessary, and in principle their power is unlimited.
In practice it is useful to adopt a standard interface in
which the translation string is supplied as an input
parameter, and two results are returned: the transla
tion string again, because it may have been modified;
and a Boolean value, so that if a routine wants to reo
ject a parsing it can do so by giving the result false.
The test in Step 9 treats such failures as syntactic
failures which cause a new alternative to be sought.

Trigger symbols have a variety of uses that might be
classified as follows according to the complexity of the
context-sensitive behavior. First, there are counter
symbols that are simply replaced by a unique number or
symbol throughout anyone constituent. A typical use of
counter symbols is illustrated in the final example.
Secondly, triggers are useful when the source language
includes commands like "goto label"; trigger symbols
inserted with the goto commands and with the labels
allow them to be linked up properly, and do the book
keeping necessary to ensure that all labels are set.
Private registers are used for this purpose, to maintain
lists of labels that have been mentioned. Finally,
triggers may result in the replacement of quite large
amounts of the translation string in some cases.
The author has, for example, set up an experimental

COMPUTER TRANSLATION WITH PAIRED GRAMMARS 561

version of the data base used by Anderson and Bower
(197 3), using the translator to accept sentences in a
very limited subject of English and to translate them
into web structures used in the data base. In this case,
the data base contains assertions about objects, so it
becomes possible to refer to objects either directly by
name or else by a sufficient description. In other words,
provided the data base contains the assertion that Shake
speare is the author of Hamlet, the sentences "Shake
speare slept here" and "The author of Hamlet slept
here" should produce the same translation. To have
them do so, the target grammar was arranged so that any
constituent of the input parsed as a noun phrase headed
by "the" produced a translation containing a trigger;
the trigger called a subroutine to search the data base for
an object whose properties matched those asserted by
the noun phrase; and, if a suitable object was found, its
name was substituted for the noun phrase's translation~

while if no such object was found, the sentence was
failed.

AN EXAMPLE

To give a moderately realistic example (unlike the
translation of English to French), consider the problem
of translating a string of commands, some of them cond
itional, out of a language using nested conditionals and
into a language using jumps to labels. That is to say, we
want to go from something like this:

if juicy then boil;
fry;
if tall then chop else peel; (etc.)

to a language looking something like this:

test juicy; jump-on-false Ll; boil;
LI: fry;

test tall; jump-on-false L2; chop; jump U;
L2: peel;
L3: (etc.)

The latter type of language is easily interpreted by a pro
gram to control a piece of experimental equipment, the
more so as it can be guaranteed that any text in the tar
get language is grammatically correct, since any errors in
the source will have been detected by the translator. In a
practical application, the target language has another
useful feature, i.e., jumps are always forward and never
backwards.

Before much can be done, it is necessary to observe
that every conditional in the source language generates
at least one label in the target, and all these labels will
have to be distinct. To get distinct labels, it is necessary
to use counter symbols. We, therefore, introduce a sym
bol, e.g., (0'1 and a register COUNT. The symbol caJl is

put into the list of trigger symbols and is arranged to
point to a subroutine which, when triggered, will replace
every occurrence of (a'} in the translation string by the
symbol Ln -where n is the current value of the register
COUNT. which is then incremented. We shall also need a
second symbol e.g., (a'2, pointing to a routine to do just
the same but replacing @2, not @l.

With the help of the counter symbols, we can trans
late the simple conditional "if juicy then boil" in two
stages. The context-free translation obtained from the
target grammar is "test juicy; iump-on-false @}; boil;
@1 :," and then the counter symbols are replaced by
LI (or L2, or L3, etc., depending upon how many labels
have been used before). The if then-else construction
needs two labels.

This example has been chosen because it illustrates,
besides the use of counter symbols, most of the tacti
cal niceties that can arise. In the section on the repre
sentation of grammars, mention has been made of the
possibility of using the grammar-reading routine to per
form a mechanical check on the grammars, to ensure
that the target grammar mentions no nonterminals that
are not mentioned by the source grammar in the
corresponding alternative. Of course, several other
checks are useful. Here, then, is an appropriate pair of
grammars, followed by remarks on their construction.

Source

PROGRAM ... STATEMENT; MORETEXT
MORETEXT -+ STATEMENT; MORETEXT / NONE
5T ATEMENT -+ if PRED then STATEMENT else STATEMENT2

/
if PRED then STATEMENT
/
ACT

STATEMENT 2 ... STATEMENT
PRED -+ short / tall/juicy t : ••
ACT -+ boil I fry / chop / peel/ •••

Target

PROGRAM -+ STATEMENT; MORETEXT
MORETEXT -+ STATEMENT; MORETEXT / NONE
STATEMENT -+ test PRED;jump-on·false @l; STATEMENT;

jump@2;@I: STATEMENT2;@2:
/
test PRED;jump-on-false @!; STATEMENT;@I:
/
ACT

STATEMENT 2 -+ STATEMENT
PRED -+ short / tall/juicy / •••
ACT -+ boil/ fry / chop / peel/ •• 0

Remarks
The first pair of rules says that a program consists of

one statement plus any number more, including zero. It
would also be possible to express the second rule with.
out using NONE, as

MORETEXT -+ STATEMENT: MORETEXT/STATEMENT;

562 GREEN

but that form would be lessefficient-the last statement
would be parsed twice, once as the beginning of the
first alternative, which fails because there is no more
text, and then againas the second alternative.

The second rule cannot be expressed in the form

MORETEXT MORETEXT STATEMENT; INONE

which would cause an infinite recursion in the parser.
This can be checked mechanically by the grammar
reading routine; no defmition may start with the symbol
being defmed. (There is always a way around this re
striction.)

In the third rule, the first alternative mentions two
statements. They must be distinguished somehow, say
by calling one STATEMENT2; otherwise they will
automatically be given the same translation. Remember
that every occurrence of a particular nonterminal sym
bol in the translation string is replacedby the first trans
lation found (see section on context-free parsing and
translation.) The grammar-reading routine can give a
warning if the same nonterminal is used twice in one
alternative.

In the third rule, the order of the first two alterna
tives is critical. When one alternative is the same as the
beginning of another, as here, the second corresponds
exactly with the beginning of the first, the longer one
must be tried first. This can be checked mechanically
by the grammar-reading routine.

The grammars have been devised to allow nested
conditionals to be used. Suppose that following the
example input at the start of this section the next
statement was

if short then
ifpink then stew; ...

(Because the aim is just to illustrate a simple nested con
struction, the syntax defmed is too weak for practical
use, in fact it is actually ambiguous in some cases, but
never mind) if the parsing is followed through, it willbe
observed that while parsing the outer conditional, "if
short then ...," a recursive entry is made to parse the
inner conditional. This recursive entry is the first entry
to reach completion and so the translation string is
swept for counter symbols to be replaced, e.g., by lA
at that particular time, giving "test pink, jump-on
false lA, stew, lA:." The parsing of the outer con
ditional is then completed and the counter symbols
are replaced, this time by L5. The entire translation
is, therefore:

test short .jump-on-false L5;
test pink.jump-on-false lA; stew;

lA:
L5: ...

(Indenting for clarity is not part of the translation.)

CONCLUSIONS

The paired-grammar translator is intended for use in
situations where the subject is to conveyinformation to
the computer by using a simple control language. Writing
the program is an investment that willprove worthwhile
if many different languages are eventually to be used,
because it is much easier to write and test new
grammars than to write and test one-off special-pur
pose programs to handle each language, particuarly be
cause with the translator checks can be included to
detect most types of finger trouble in the grammars.
The progamming investment required has been brought
to a minimum by excluding all unnecessary frills from
the algorithm, as described above. The user mayor may
not come to feel, with experience, that bells and whis
tles should be fitted.

The technique is not intended to cope with full
natural language, high-speed compilation, highly con
text-sensitive langages, or cases where the source and
target are structurally dissimilar. The area that it does
cope with, however, is, in our experience, the one that
is desirable in on-line experiments requiring linguistic
control. Within that area, the technique has proved
sufficiently versatile, to take two extremes, to translate
from ALGOL conditionals to a simple interpreter code,
and to translate from a subset of English to the web
structures used by Andersonand Bower(1973).

REFERENCES

Anderson, J. R., & Bower, G. H. Human associative memory.
Washington, D.C.: Winston, 1973.

Fitter, M. J. An extensible system for controlling a scheduling
task. Memo No. 51, MRC Social and Applied Psychology
Unit. University of Sheffield. Sheffield, England, 1974.

Fitter, M. J., & Daly, A. C. An extensible touchboard for on
line experiments. Quarterly Journal of Experimental PSy
chology, 1975, 27, 673-676.

Foster, J. M. Automatic syntacHc analysis. London, MacDonaid/
Elsevier, 1970.

Green, T. R. G., & Guest, D. J. An easily-implemented language
for controlling complex experiments. International Journal
of Man-Machine Studies, 1974, 6, 335-359.

Gries, D. Compiler construction for digital computers. New
York, Wiley, 1971.

Ingerman , P. Z. A syntax oriented translator. London: Academic
Press, 1966.

Sime, M. E., Green, T. R. G .. & Guest, D. J. Psychological ev;Uu
ation of two conditional constructions used in computer lan
guages. International Journal of Man-Machine Studies, 1973,
5.105-113.

Sime, M. E., Green, T. R. G., & Guest, D. J. Scope marking in
in computer conditionals-a psychological evaluation. Memo
No. 48, MRC Social and Applied Psychology Unit, University
of Sheffield, England, 1974.

(Received for publication June 9, 1975;
accepted for publication August 10, 1975.)

