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An Apple II/FIRST system has been developed to control classical conditioning experiments,
collect analog data, and to extract dependent variable measures of conditioning. With our
selection of the Apple II microprocessor and an added hardware floating-point processor, we
have been able to establish independent computer systems for each of our three conditioning
laboratories at a fraction of the cost of our DEC PDP-8/e (which was interfaced to only one
of our laboratories). Moreover, our software system, FIRST, an interactive, high-level, dictionary-
based language, is a programming and control system whose flexibility and ease of programming
far exceeds that experienced with our DEC PDP-8/e system (Millenson, Kehoe, Tait, &
Gormezano, 1973; Tait & Gormezano, 1974). In our judgment, the Apple II/FIRST system
is of unprecedented efficiency and versatility for the control, data acquisition, and data analysis
of analog responses in classical conditioning experiments.

The application of computer technology to classical
conditioning preparations from the Iowa laboratory has
required: control software that will repeatedly generate
discrete stimulus events, analog-to-digital (A/D) capabil-
ities for recording analog data from uniphasic and
multiphasic response systems, and the ability to extract
a number of dependent variable measures from the digi-
tized response topography. Briefly, classical conditioning
experiments involve the manipulation of the intertrial
interval and observation interval. The intertrial interval
is generally long and variable in duration, and the
stimulus conditions are relatively constant. On the other
hand, the observation interval is generally shorter and
fixed in duration, and nested within the interval is a
pattern of stimulation involving an unconditioned
stimulus (UCS), which reliably produces an uncon-
ditioned response (UCR), and a conditioned stimulus
(CS) that has been shown by test not initially to produce
a response resembling the UCR. The CS and UCS are
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then presented to the organism in a specified order and
temporal spacing, and the experimenter examines
responding during a specified observation interval. In
CS-CR paradigms involving the direct measurement of
conditioned responses (CRs) (see Gormezano & Kehoe,
1975), a response similar to the UCR develops to the
CS that is called the CR, while CS-IR paradigms involve
the indirect measurement of purported CRs through the
effects of CSs on instrumental response (IR) baselines.
Moreover, for CS-CR paradigms the definition of a CR
is restricted to the selection of a target response from
among those effector systems elicited as UCRs by the
UCS. Generally, in CS-CR paradigms the experimenter
examines analog signals from uniphasic or multiphasic
response systems in which the extraction of dependent
variable measures requires fine-grained measurement of
response topography over a relatively brief period of
time, as, for example, from those analog signals repro-
duced in Figures 1 and 2 from permanent (ink-written)
oscillograph records.

The response depicted in Figure 1 is the rabbit’s uni-
phasic nictitating membrane response (see Gormezano,
1966; Gormezano, Schneiderman, Deaux, & Fuentes,
1962), taken from an oscillograph record for a single
conditioning trial. The upward and downward deflection
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Figure 1. An oscillograph record of CS and US occurrence
and the topography of a nictitating membrane CR taken at a
paper speed of 200 mm/sec.

of the top line represents the duration of a tone CS, and
the bottom line the duration of a shock UCS. Although
the middle curve represents the analog record of the
nictitating membrane response for only a single rabbit, we
routinely obtain such analog records for six rabbits
simultaneously on every trial. Similarly, Figure 2
depicts the rabbit’s multiphasic (sinusoidal) jaw move-
ment response (see Gormezano, 1972; Smith, DiLollo, &
Gormezano, 1966) on a single conditioning trial for four
rabbits simultaneously receiving an auditory CS paired
with the intraoral delivery of a water UCS (through a
fistula in each rabbit’s cheek).

From the “raw” analog oscillograph data presented in
Figures 1 and 2, the following information is abstracted
on every conditioning trial: (1) the presence or absence
of a CR,identified by an upward deflection in the analog
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signal of more than 1 mm from baseline (representing
.5 mm of membrane extension) initiated in the interval
between CS and UCS onset; and (2) the latency of CRs
through the measurement of the distance between onset
of the CS and the tangent point at which the upward
deflection appears to begin and, subsequently, conver-
sion of such ruler measurements to time (latency) by the
appropriate transform based upon the paper speed of the
oscillograph (e.g., 200 mm/sec). While changes in CR
frequency and CR latency are routinely obtained and
recorded on data sheets, the hand-scored measurement
of other dependent variable measures extracted from the
analog record becomes an exceedingly laborious, error-
filled, and time-consuming task. However, our increas-
ingly sophisticated understanding of classical conditioning
has led us to be more and more concerned with being
able to specify precisely the changes in CR topography
that we observe over training and with the manipulation
of a wide variety of independent variables. Specifically,
among such additional dependent variable measures (see
Figure 1) are: (1) CR peak latency, (2) CR peak ampli-
tude, (3) latency of maximum amplitude, (4) area of the
response (CR) in the CS-UCS interval (A + B), and
(5) area of the response (CR + UCR) in the interval from
CS onset to the end of the observation interval. More-
over, with regard to the jaw movement responses (por-
trayed in Figure 2), all of the preceding dependent
variable measures apply, and, in addition, a determi-
nation is made of the number of sinusoidal jaw move-
ments in the: (1) CS-UCS interval, and (2) interval from
CS onset to the end of the observation interval.
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Figure 2. An oscillograph record of CS and US occurrence and the topography of jaw movement responses of four rabbits

taken at a paper speed of 200 mm/sec.
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Previously, the above dependent variable measures
were laboriously determined by ruler measurements,
transcribed by hand to data sheets, and subsequently
keypunched on cards for statistical treatment by the
University of Towa Computer Center batch processor
(e.g., Coleman & Gormezano, 1971). However, the
volume of data involved and the need for more flexible
and sophisticated manipulations of stimulus parameters
led us to acquire a DEC PDP-8/e, and to develop a soft-
ware system designed to collect a large amount of
analog data (Millenson, Kehoe, Tait, & Gormezano,
1973; Tait & Gormezano, 1974). Subsequently, this
minicomputer system was engaged in the control,
collection of analog data, and extraction of primary
dependent variable measures routinely used in the
analysis of classical nictitating conditioning experiments
from one of the three independent facilities comprising
the Iowa Conditioning Laboratories (e.g., Millenson,
Kehoe, & Gormezano, 1977). The ultimate hardware
configuration of the DEC PDP-8/e system (which inter-
faced to six sound-attenuated experimental chambers for
rabbit nictitating membrane conditioning) had a purchase
and construction cost in excess of $50,000. Neverthe-
less, the system was limited in memory capacity and
lacked the mass storage facilities needed for an operating
system that would support convenient program develop-
ment in a higher level language. Even after one sub-
stantial reprogramming effort (Tait & Gormezano, 1974)
that expanded the capabilities of the control and anal-
ysis program, we were left with the formidable and
time-consuming task of rewriting assembly language
programs whenever we implemented new experimental
protocols. Although some increased flexibility in our
minicomputer system could have been achieved through
additional (and relatively expensive) investments in hard-
ware, we opted for the development of a microprocessor-
based system (Kehoe, Frei, Tait, & Gormezano, 1975).
We were drawn to this conclusion by our desire to
implement computer technology to the other two
conditioning laboratories constituting our facilities
and by the restriction (substantiated by considerable
experience) that each of the three laboratories remain
completely independent of one another. Accordingly,
cost considerations alone initially served to draw out
attention to microprocessor-based computer systems
as appearing to offer a relatively inexpensive means for
applying computer technology to each of our labora-
tories. In brief, we are happy to report that with our
selection of the Apple II microprocessor, we have been
able to establish independent microprocessor-based
computer systems for each of our three laboratories at a
cost of under $3,000 each. Furthermore, we have
established an Apple II microprocessor-based stand-alone
system with a high-speed line printer for data processing
and analysis for an additional cost of approximately
$5,000. Above and beyond the considerations of the
cost of a hardware system that would meet our initial

needs, our selection of the Apple II microprocessor-
based system was based upon the following criteria:
ease and low cost of hardware expansion to implement
new experimental protocols, availability of software
support, ease of software programming, and the capabil-
ity for real-time operation.

HARDWARE CONFIGURATION

The microprocessor-based computer system for each
of the three conditioning laboratories consists of an
Apple II with 48K of memory, an AM9511 floating-
point processor, an Apple II disk drive, a Sanyo 9-in.
video monitor, two 8255 programmable peripheral
interface (PPI) chips, each providing a 24-bit digital
input/output (I/0) buffer, and 8253 programmable
counter/timer configurated to provide a real-time clock,
and a 16-channel 8-bit A/D converter (ADC0816CCN)
calibrated to yield, for each subject, 16 A/D counts for
each millimeter of nictitating membrane extension (or
jaw movement). The digital outputs to the stimulus
devices in each experimental chamber are controlled by
5-V relays driven by dual positive NAND drivers (75462)
connected to the PPI chips (see Grisham & Frei, 1977).
In the present systems, connections from the digital
outputs to the stimulus devices can be enabled or dis-
abled by a bank of control switches.

The stand-alone microprocessor-based computer
system for data processing and analysis consists of an
Apple II with the same hardware configuration described
above. In addition, however, the system contains a
second Apple II disk drive, a Centronics 702 line printer,
and an Apple II communications interface card to
provide interactive capabilities with the University
of Iowa Computing Center through a COMDATA
(Model 302A2-13) acoustical telephone modem.

SYSTEM CAPABILITIES

Our software system, FIRST, is an adaptation of
FORTH (Moore, 1974), an interactive, high-level lan-
guage originally developed to make effective use of a
small minicomputer with severely limited memory size
(i.e., 8K words). FIRST is a programming and control
system designed for simple, flexible, and effective
experimental control, data acquisition, graphical data
display, and data analysis. The basic system, resident in
13,800 bytes in an AppleIl computer, contains a
monitor, disk operating system, an efficient compiler,
macro assembler, and text editor. The system also
contains high-resolution graphical plotting capabilities,
keyboard input and video output facilities for numerical
and character string data, and line printer support for a
Centronics 702 printer, as well as hard-copy graphics
routines for printing graphical displays on an Axiom 820
microplotter.

FIRST provides computational capabilities for hard-
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Table 1
Integer BASIC FIRST
10 FOR J =1 to 10000 INT X

20 X = 2%3*4*5
30 NEXTJ
Time: 49.9 sec

Applesoft BASIC

10 Y=13.1416

20 FOR J =1 to 10000
30 Z = SQR(Y)

40 NEXTJ

Time: 492 sec

: TEST 110000 FOR 234 5 * ** X ! NEXT ;
Time: 4.6 sec

FIRST
VARY
PIYF!
: TEST2 1 10000 FOR Y F@ SQRT Z F! NEXT ;
Time: 6.9 sec

VAR Z

ware add, subtract, multiply, and divide operations on
16-bit integers, 32-bit integers, and 32-bit floating-point
numbers. The system also provides hard-wired floating-
point evaluation of the usual transcendental functions:
direct trigonometric, inverse trigonometric, log, expo-
nent, and square root. It also performs hard-wired
general floating-point exponentiation and data stack
manipulations. FIRST is not simply an improved dialect
of FORTH, adapted for any 6502 microprocessor.
Rather, it is a similarly expandable dictionary-based
language tailored for most efficient laboratory use of a
48K-byte Apple II system having, in addition to the usual
memory-mapped text and graphic video display, an
attached AM9511 floating-point processor chip with
internal numerical stack. The system makes extensive
use of firmware facilities present in the read-only
memory (ROM) of the Apple, such as keyboard input,
screen display, audible alarm, and disassembler.

Because FIRST is designed for flexibility and very
high processing speed, it completely supercedes the
functions usually provided by the Applesoft BASIC
language processor. FIRST is typically 10 times faster
than Apple integer BASIC for 16-bit arithmetic and
12-70 times faster than Applesoft floating-point BASIC.
Some specific execution time comparisons are listed in
Table 1.

FIRST LANGUAGE STRUCTURE

To the experimenter using FIRST, the system
responds interactively to words entered on the display
screen. The set of available words present in the system
is stored in a dictionary resident in memory. The vocab-
ulary of available words is like the functional keyboard
of a calculator; each word, when entered and executed,
performs a processing control or display function. For
example, the word contained within the slash marks
[CLS/ clears the display screen, /BELL/ rings the alarm
bell, and /D/ displays all the words currently in the
dictionary. When an explicit numerical value is entered,
the implied operation is: push the value on the arithmetic
push-down stack. The arithmetic operator words do not
have general source or destination memory addresses

associated with them as in conventional computer
instructions. Instead, the arithmetic operator words are
like the arithmetic operations in certain calculators of
the reverse Polish variety: They always operate on what-
ever pair of numbers is on the top of the arithmetic
stack (called the A-stack). Thus, an expression in BASIC
or FORTRAN such as 2+3 would be carried out in
FIRST as 2 3 + (push 2, then push 3, then add, leaving
the result as new top of stack). The word /1./ pops off
and prints the top of the A-stack.

So far, we have described a calculator that happens to
have 600 “function keys.” The programming flexibility
of FIRST arises from one’s capability to invent new
words as combinations of old words. The basic compile
operation creates a new word as a specified execution
sequence of already existing words and adds the new
word to the dictionary. /:/ means start compile, and
/;/ means end compile. Thus /: NEWWORD CLS BELL;/
expands the dictionary to include a new entry /NEW-
WORD/, which, when entered, clears the screen and
rings the bell. We could read the defining sequence above
as: ‘“‘create/NEWWORD/, which means /CLS/, then
/BELL/, then return.” Thus, /NEWWORDY/ is a newly
compiled subroutine. After a new word has been added
to the dictionary, it can, in turn, become a constituent
part of a still newer word being defined. In fact, the only
possible formal programming error in the FIRST system
is to refer to a word that does not yet exist (the error-
message response to /QWERT/ is QWERT?).

A sizable, complex programming task such as stimu-
lus controland A/D data logging of nictitating membrane
responses is carried out in a hierarchical manner by
starting with the existing vocabulary as a programmer’s
“kit of parts” used to build words tailored to carry out
the individual control actions (tone on, tone off, shock
on, shock off, start A/D sampling, display data, wait for
intertrial interval, etc.). Using these words, still more
comprehensive words are written that describe a condi-
tioning trial, and finally, one last word is created, /RUN/,
which specifies the repetitions of trials for one complete
experimental session. The total number of added words
in the pyramid culminating in /RUN/ is typically 180.

The word definitions comprising a particular program
(control and acquisition, nictitating membrane response



124 SCANDRETT AND GORMEZANO

latency analysis, CR percentage, etc.) can be thought of
as a specialized vocabulary relevant to a particular
problem area. There is no formal distinction between the
operating system, the compiler, and the experimenter’s
program. In effect, one creates for each program the
most suitable new language with which to carry out the
control and computational elements that make up the
program. The word definitions comprising a program are
written on disk-storage screens using a text editor
(/45 EDIT/ means “read in Screen 45 from disk to dis-
play screen and then edit™). The compiler is so fast that
one ordinarily does not bother to+save compiled object
code on disk. The source language typically occupies 25
screens (960 bytes each) on disk and requires 14 sec to
compile (the nucleus of 600 FIRST words bootstrap-
loads from disk in 8 sec).

CONTROL HARDWARE AND SOFTWARE

Stimulus control is carried out by storing or writing
output control bits into PPIs. In general, an interface
built for an Apple computer has a small range of internal
device-port addresses at a base address determined by
the connector slot into which the interface is inserted.
For example, the PPI port whose output bits control
tone and light stimuli is inserted in Slot 5 and has
$COD8 as its hexadecimal address. The words /4 $CODS8
B!/ store zeros in Bits 0,1,3,4,5,6,7,and a 1 in Bit 2,
which gates on the tone generator (the syntax is: “push
value, push address, perform a byte-store operation”).
Here, then, are some useful intermediate word defini-
tions: /: TON 4 $COD8 B! ;/ and /: TOF0$COD8 B! ;/.
We test these new words by executing them directly
from the keyboard to verify that /TON/ makes the tone
come on and that /TOF/ turns if off. Once we have
carefully checked the output bit that performs a specific
function, we are no longer concerned with the “bit
level” of software and interface detail, and we only need
to remember the function associated with the word.
Thus /TON/, /TOF/, /LON/, /LOF/, /SHN/, /[SHF/ are
words that control the onsets and offsets of tone, light,
and shock stimuli.

The next programming level in a stimulus control
program involves the timing of stimuli and the multi-
plexed A/D conversion of nictitating membrane response
signals. The timekeeping function is implemented by a
programmable interval timer (PIT) that contains three
independent 16-bit pulse counters, of which we use two.
The first PIT timer has the Apple 1.02-MHz pulse train as
the input and operates in a “repeating-divide-by-N”
mode to produce a square-wave output whose state can
be examined by reading Bit 2 of a PPI whose address is
$C112. The output of Counter 1, whose pulse period
is typically 4 msec during a trial interval and 10 msec
during the intertrial interval, feeds the input of
Counter 2, which then counts “ticks of the clock.” The
intertrial interval, typically 60 * 10 sec as generated by
our random number generator, is timed by looping and
reading the contents of Counter 2 until the desired

count has elapsed. The timing of stimuli and A/D
samplings requires the use of direct 6502 assembler
language because of critical speed requirements. For
each tick of the sampling clock (2-5 msec), a sequence
of words must be executed that measures six or eight
A/D channels and compares the elapsed time with a
sequence of control-function times, programmed with
logical-IF constructions. Portions of assembly language
can be freely interspersed within a new word definition.
Macrodefinitions, which generate convenient in-line
groups of assembler instructions, are also available.

RESULTS

The three University of Iowa conditioning labora-
tories are now controlled by individual Apple-FIRST
control computers, and the analog response data for all
experiments are routinely logged on floppy disks for
later signal processing on a stand-alone Apple-FIRST
system having a line printer and hard-copy graphic
facilities. Most experiments are run under a generalized
classical conditioning program that has provisions for the
presentation of CSs and UCSs, with onset and offset
times specified as variables. The program records all
sampled A/D values for all subjects and displays the
digitized nictitating membrane response for each subject,
successively, during the intertrial interval of the experi-
ment, along with nictitating membrane response topog-
raphy measures extracted by the analysis program.
Next, the salient response measures are stored in a
memory buffer until filled, at which point the data are
moved to disk files reserved for data storage. Currently,
the signal analysis program extracts the following
measures from the digitized nictitating membrane
response topographies: (1)a RMS estimate of the
quality of the baseline signal prior to CS onset, (2) CR
and UCR latency, (3) CR and UCR amplitude, (4) peak
CR and UCR latency, and (5) total area under the CR
and UCR topographies.

The panels of Figure 3 depict the video display for
one subject’s nictitating membrane response topography
during the course of training. The vertical line at the
bottom of each panel specifies the program’s determi-
nation of CR or UCR latency, and the second horizontal
line from the bottom of each panel defines the response
baseline. While the nictitating membrane response was
digitized by a 4-msec A/D sampling rate, the topog-
raphies displayed on the video monitor are the result
of plotting every other data point (i.e., every 8 msec).
Examination of the panels in Figure 3 reveals the signal
analysis program’s determination of response latency.
The program first determines if the peak amplitude of
the nictitating membrane response is greater than the
(.5-mm) criterion. If the amplitude of the nictitating
membrane response fails to attain criterion, a —1 is
stored and a beeper alarm is sounded to appraise the
experimenter of the subject’s failure to make a CR
or UCR on that trial. Second, the program averages
200 msec of sampled baseline preceding the CS and
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Figure 3. Panel A reveals the digitized topography of the
nictitating membrane UCR and Panel B that of the CR, as it is
displayed on the video monitor for a single subject. In each
panel the vertical lines to the extreme left and right mark the
observation interval, while the second vertical line from the left
indicates CS onset and the second vertical line from the right
denotes UCS onset. The second horizontal line from the bottom
specifies the baseline (which is rescaled for each subject by a
subroutine), while the small vertical line crossing the baseline
indicates the program’s determination of response latency.

calculates the RMS, which is used to normalize the
graphical display of the nictitating membrane response
and also serves as a measure of baseline quality for the
latency-finding algorithm. Thus, if some remnant of a
baseline nictitating membrane response is present during
the 200-msec baseline sample, the RMS will be many
times greater than the typical value of .2 counts (16
counts corresponds to 1-mm membrane deflection).
Accordingly, if the RMS is greater than a criterion level,
indicating that the rabbit was responding prior to CS
onset, a —3 is stored and, again, a beeper alarm is acti-
vated to alert the investigator. The detection of nicti-
tating membrane response latency (CR or UCR) is deter-
mined by searching the digitized response to the right,
from CS and/or UCS onset, until a displacement from
baseline exceeds .5 mm, then sampling to the left until
the displacement (found by successive averaging of a
specific data point with the values of the neighboring
point on either side) is reduced to 1/16 mm, which is
approximately 5 standard deviations above the baseline
noise level. Algorithms also exist for extracting the other
dependent variable measures.

In practice, subsequent to an experimental run, the
digitized nictitating membrane responses are copied
from the disk file onto a sequential library disk, which
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holds all the data for a sequence of runs. This library
disk then serves as the input to programs that classify
each individual subject’s response as a UCR or CR, and
they (rarely) exclude trials because of unacceptable base-
line quality. These CR percentages are then suitably
formatted for transmission via the telephone modem to
a timesharing system on which ANOVAs and other
statistical package programs are run. Other final analysis
programs plot and display histograms of time distri-
butions of latencies.

In conclusion, we now have affordable, independent
control and data acquisition systems on which each
experimenter can write and test his own program for
each new set of conditioning parameters under investi-
gation. The ease and flexibility of writing analysis pro-
grams in FIRST also allows each experimenter to write
the specialized counting, classifying, and plotting pro-
grams with which to acquire and display final results.
In our judgment, these systems are of unprecedented
efficiency and versatility for the control, data acquisition,
and data analysis of classical conditioning experiments.
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