
Behavior Research Methods& Instrumentation
1980, Vol. 12 (2), 96-102

SESSION III
PRESIDENTIAL ADDRESS

N. JOHN CASTELLAN, JR., Indiana University, Presider

"Basic black" renascent: A new wardrobe

DANIEL E. BAILEY
University ofArizona Computer Center, Tucson, Arizona 85721

In the dozen years since publication of Uttal's fundamental paper, "'Basic Black' in Com­
puter Interfaces for Psychological Research," many changes have taken place in on-line
real-time computing. A look at the basic wardrobe today reveals some striking changes and
certain fundamental constants. Most of the interface elements in the wardrobe specified by
Uttal are still commonplace in the fashion catalogs of real-time computing. However, they
are offered now as fully integrated circuits, chips, or subsystems that are added by inserting
a chip into a socket or a printed circuit board into a chassis. Missing in Uttal's specification
are the essential software tools for using the hardware of that wardrobe. The current real-time
computing laboratory psychologist will find that the most significant elements in a really
adaptable wardrobe are software tools.

One of the earliest uses of computers by psychologists
was to control psychological experiments and collect
research data on-line in real-time. In the time since this
enterprise began, a decade and a half or more, a great
transition has taken place in the fundamental wardrobe
of on-line computing in the psychology laboratory. In
order to set the tone of my retrospective look at on-line
real-time computing, I have selected a paper that appeared
in the first volume of the journal that prints the pro­
ceedings of the National Conference for the Use of
On-Line Computers in Psychology. The paper is by
William R. Uttal, who is perhaps the dean of on-line
and real-time computing in psychology; he is certainly
my nominee for that imaginary position. Uttal's (l968b)
book Real-Time Computers: Technique andApplications
in the Psychological Sciences was the first systematic
description of scientific applications of computers
for instrument control and data acquisition in psychol­
ogy. In the same year, he published a paper from which
the title of this paper derives: '''Basic Black' in Com­
puter Interfaces for Psychological Research" (Uttal,
1968a). Although that paper deals with interfaces only,
it marks the place, the technology, and the concerns
of a psychologist/computer scientist of the late 1960s.

Before going on, let me introduce younger readers to
a great fashion idea that was prevalent at the time
Uttal (l968a) wrote his paper: Any woman with a dress
of simple design, black, generally free of adornment and
decoration, along with a collection of various accessories,
such as belts, scarves, jewelry, shoes, bags, and so on,
was able to dress with style for virtually any occasion,

formal or informal. The dress and accessories made up
the "basic black" outfit.

To take a simple computer and to make it do all the
things that a psychologist in a laboratory wishes to do,
without resorting to resources that psychologists often
do not have, required a "basic black" approach to the
computer and the interfaces to the psychological labora­
tory. In this paper I examine the status of the wardrobe
today in the historical perspective of "basic black"
of the middle and late 1960s. We are entering the
1980s, and a look back before an examination of the
present seems to me appropriate.

"UlTAL BASIC BLACK"

Uttal's (l968a) paper begins with a definition of a
set of logical symbols taken from electrical engineering:
flip flops, inverters, "or" gates, and "and" gates. The
logical character of interfaces and devices is the topic of
this paper. However, Uttal warns of "other complica­
tions," such as voltage levels, rise time, polarity, and so
on, lying in wait of the unsuspecting psychologist.

Figure 1 is taken from Uttal's (1968a) paper: basic
symbols used in describing basic interfaces.

The view of computing interfaces at the level of
inverters, flip flops, "or" gates, and "and" gates is an
abstraction. The electrical and electronic specifics of
implementing the basic logical design is not presented,
although physical meaning of certain interfaces could be
developed in terms of the symbols involved. Certain
concepts sneak into Uttal's (1968a) paper to reveal the

Copyright 1980 Psychonomic Society, Inc. 96 0005-7878/80/020096-07$00.95/0

A. B. c.

BASIC BLACK RENASCENT 97

D.

input output

••t "0"
input output

FF
r•••t "I"

input output

., ·1

input output
input output

-2 -2
input input

The Inverter The FIip Flop The 1I0rll Gate The IIAnd" Gate

Figure 1. Symbols for the four basic components used in computer logical design. (Reprinted, with permission of the Psychonomic
Society, from Uttal, 1968a.)

Control pu/M 'rom computer
-Load- data

Figure 2. Multiple power-level output interface device.
(Reprinted, with permission of the Psychonomic Society, from
Vttal, 1968a.)

Controt pulH from computer
·CIIOI' BY",,· __--' VAl· Volt. amplif,ino in_n.

RO-Rttoy drl".

Outputs
I.

perlphtfol

equipment

difficult part of putting together a basic black element­
that is, providing the connector on the computer chassis
or on the cable to the outside environment.

Indeed, the designer may have many options to
choose as standard modules (chips or boards to plug
into the system): voltage level outputs to interface with
a variety of noncomputer equipment, high-voltage solid
state relays, many types of analog-to-digital and digital­
to-analog converters, digital inputs and outputs, relays,
and so on, in single-line and many-line combinations.

New kinds of elements might be added to the basic
black in computer interfaces, but the instrument control
and data acquisition functions specified by Uttal (1968a)
are still fundamental and basic. In addition to the basic

detailed level of electronic implementation just below
the surface of Uttal's presentation of logic. For example,
he describes a couple of devices that are not presented
simply at the logical level, such as the multielement
power output interface (relay drive). Figure 2 is Uttal's
representation of the driver, introducing several new
symbols and a differentiation in inverters not needed
elsewhere in the paper.

The elements listed in the wardrobe specified by
Uttal (1968a), past the component level and past the
logical level of flip flops and gates, are still in the latest
wardrobe. The list shown in Table I is as modern as
1980, and it is safe to say that it will probably not
grow old because the functions are so elemental and
basic.

What has changed is the manner in which the present­
day psychologist setting up a real-time computer labora­
tory will implement these elements in his computer
system. Now, instead of building the devices, the lab­
oratory computer system builder will insert a single
integrated-circuit (IC) chip into a socket provided by the
computer manufacturer, or at most, insert a single
printed circuit board into the chassis of the computer
system. Attaching the external cable is perhaps the most

Table 1
"Basic Black" Computer Interfaces

STIMULATOR TRIGGERS TO PROVIDE CONTROL OF EXTERNAL

STIMULUS EQUIPMENT,

RESPONSE SWITCHES TO DETECT SWITCH CLOSURES,

KEYPRESSES, ETC, IN THE EXTERNAL RESPONSE

EQUIPMENT.

MILLISECOND REAL-TIME CLOCK TO MEASURE LATENCIES

BETWEEN EVENTS, AND TO CONTROL DURATION OF

EVENTS.

DIGITAL TO ANALOG CONVERTERS TO PROVIDE FOR

TRANSLATION INTO ANALOG FORM DIGITAL DATA

FOR USE AS STIMULUS CONTROL AND INSTRUMENT

CONTROL,

ANALOG TO DIGITAL CONvERTER TO CONVERT CONTINUOUS

VARIABLE SIGNALS TO DIGITAL FORM FOR DATA

ACQUISITION PURPOSES.

MULTIPLE POWER LEvEL BIT CODED DISPLAY CONTROLLERS

TO PROVIDE MULTIPLE DISCRETE PATTERNED OUTPUTS

FOR STIMULAE OR CONTROL OF INSTRUMENTS,

98 BAILEY

functions listed by Uttal, we might incorporate many
higher order functions that are achievable by "plugging
in" devices that, from the designer's point of view, are
simple, elementary units. For example, we have single­
chip or board-level devices for voice synthesis, music
generation, graphics control of videoscreens, character
generation for CRT terminals, telecommunications,
and so on.

It is just this proliferation and simplification of
device controller, special device, and special function
implementation, using the new large-scale integration
technology, that prompts me to argue that the basic
black has changed. No longer are the elements in the
wardrobe hardware elements. The basic fabric is now
changed.

"BAILEYBASIC BLACK"

In my renascent basic black, the interface hardware
is presumed. The hardware interface to clocks, triggers,
analog sources, discrete output lines, and so on, are
"off-the-shelf' devices that plug into a chassis slot or
an IC socket.

In my renascent basic black, we have an entirely
new wardrobe to deal with: the user interface. While
Uttal (1968a) was correct in focusing on the hardware
interface to laboratory equipment, the 1980 focus
should be on another variety of interface: the interface
between the user and the computer system. The key
element is a carefully selected set of software tools.

A number of years ago in the early days of the
microelectronic revolution, there was a lot being said
in the engineering literature about having to learn new
technology, new methods. Many people were said to be
in need of dramatic, extensive retraining to bring them
into the modern era. At first I was puzzled by this
clamor over the need to retrain technical people. The
technology appeared to be straightforward computer
technology based on a dramatic simplification of hard­
ware. The physics and electronic implementation were
different, but vastly simpler. Why then was it common
to hear calls for retraining?

The microcomputer was being advanced as a replace­
ment for hard-wired electronics with discrete com­
ponents. The engineerwasbeing told that he had to stop
dealing mainly with electrical circuits and to begin
dealing with logical circuits and programming. And the
contents of the early papers and books on applying
microprocessors were devoted mostly to programming.
The engineer had to be trained in the old technology of
programming. The puzzlement I felt when I could see
nothing new was based on the fact that I began in
1955 where the engineer was supposed to be going in
1975-machine language programming.

The realization that microprocessors were forcing
reinstitution of programming practices of "ancient"
times was startling and dismaying. Few who went

through the early days of machine language program­
ming as a forced way of life would choose to repeat it.
However, the point is clear-The major advancement
has been in hardware technology, and little advance­
ment has been made in programming technology. The
low cost of microprocessors and microcomputers has
lured countless individuals into the thicket that caught
up some of us 2S years ago. It is painful to see valued
friends and colleagues suffering the same rites of
passage that should have been endured only by the early
pioneers.

The computing profession has not made the funda­
mental advances that will be required before the Bailey
Basic Black can be fully discerned in shape and texture.
We have not learned how to program computers very
well. And, when we learn to program these devices, we
will find that the components in the basicblack formula
will have changed, in all probability.

An Overview
Figure 3 presents a simplified block diagram of the

elements in the Bailey Basic Black. Some of the blocks
are shaped like "cans" or "pots" to imply that the way
these elements are made available is of significant
importance. These structures are elements in the ward­
robe, but they willnot appear in eachand everycostume.
Rather, they are stored and available for use by the
real-time programmer and computer user. The image
implies some rotating mechanism like a disk, but that is
only an epiphenomenon of current technology. The
important aspect is that the wardrobe have these large
storage devices to contain, in a dynamically retrievable
manner, all sorts of things to use in piecing together the
desiredeffect.

The rectangles generally represent processes instead
of objects, although the results of runningthese processes
may be objects. One of the rectangles has special signifi­
cance: the rectangle with the radiating arrows, labeled
"control command structure." This box represents the
high-level capability of the user of a computer system to
govern the behavior of the entire system. It is the
primary user interface, within which lie the major
determinants of success, failure, and quality of work.
The quality of the elements in this primary user inter­
face determines, to a major extent, the quality of
satisfaction of the user's needs.

The control command structure provides for access
to all of the major utilities in the operating system, the
libraries, and certain portions of the operating system.
It is with this command structure that the user orders
up services and activities and makes use of the basic
structure of the computer system. The specific manner
in which this is used depends on the choices made
by the system designers. However, we do not depart
from generality by assuming that the facilities within
the control command structure are part of the "operat­
ing system," that part that is used more or less directly

BASIC BLACK RENASCENT 99

OPERATING
SYSTEM
MONiTOR

REAL-TIME ON-l!NE
EXPERIMENT

LINKING
LOADER

ASSHlBLER

RELOCATABLE

OBJECT CODE

EDIT

COMPILER

EDIT

Figure 3. "Bailey Basic Black" in ensemble.

by the programmer/user of the system. As such, it is
not listed separately in the elements of the Bailey Basic
Black.

The Elements of Bailey Basic Black
The several distinct elements in the Bailey Basic

Black, listed in Table 2, are to a large extent familiar
to anyone who has had contact with modern large-scale
computers or well developed minicomputer systems.

The point of my presenting these concepts here is not
so much to instruct computer users in what they already
know. However, it is to point out and to be explicit
and clear about how much our wardrobe has changed in
the short span of a dozen years.

On the other hand, we are entering an age of deja vu,
where the old hands in the computing game are seeing
again our colleagues struggle with computer systems
without all of the necessary elements. Now, however,

100 BAILEY

Table 2
Elements in the "Bailey Basic Black"

ELEMENTS IN THE BAILEY BASIC BLACK

TEXT EDITOR
FILE EDITOR

ASSEMBLER
COMPILER

LI NKI NG LOADER
OPERATING SYSTEM, MONITOR

YE OLOE TOOL SHOPPE

YE OLOE TOOL SHOPPE

OPERATING SYSTEM MODULE LIBRARY
APPLICATION MODULE LIBRARY

it is not the hardware that is largely lacking-that one
can buy. But software is lacking.

I must qualify my comments and warn that there is
a good chance that the hardware available may not
perform in a way such that software can be written to
make the hardware usable for a given real-time on-line
application. For example, there are floppy disk drives
available on the market that can be attached to a number
of microprocessors. However, on close observation, it
appears that some of these drives do not have basic
interrupt capabilities, so that a microprocessor must
depend on continuous sampling to know when the disk
is ready to deliver or receive data. This is a limitation
that could be sorely felt in a number of real-time appli­
cations. While the software of the microprocessor is
trying to assess disk readiness, events in the outside
world may be missed, or when events in the outside
world are being observed, the disk processes can be
missed.

Newcomers to the world of on-line real-time com­
puting are starting with primitive software and operating
systems. Microprocessor software systems are at the
stage of development that minicomputers went through
a decade ago or more. One may be able to purchase a
microprocessor system for a small number of today's
dollars, but the real cost is in terms of yesterday's
pains and agonies when one attempts to make use of
the computer and device interfaces through the software
that is available. Largely, the hardware threads are all
there, or they can be with only a small amount of
perceptive caution. It is the software that needs careful
evaluation.

Table 2 contains a list of all of the basic elements in
computing software. However, the integration of the
elements and the flow of control from element to
element is not evident from the list. Figure 3 is a graph­
ical attempt to illustrate the flow of control and infor­
mation in the Bailey Basic Black, and hence its inte­
gration.

Text editor. This component, generally supplied
as a utility in the general operating system package
provided with a computer system, permits the user to
compose program code, messages, and other text-like
objects and to manipulate these objects. The general
intent is to work on a limited range of material, but with
powerful operations available to manipulate that
material. There possibly are as many text editors as there
are computer programmers with more than 1 full year of
experience, reflecting the inadequacy of all of the
editors that have been invented. Minimal sets of opera­
tions in text editing are simple to specify and are small
in size. They include operations such as insert, delete,
locate, reset line pointer, replace, input, output, and so
on. The way that the operations are referenced and
parameters of the operations are specified are perhaps
as important as the operations provided.

File editor. The object of a text editor is to work on
a single entity, which eventually becomes a file, regard­
less of the computer medium that is used to store the
file. A file editor is a utility that operates on collections
of files, perhaps modifying individual files in the process.
The functions incorporated vary over a wide range. The
minimum set of file editor functions needed for such
operations includes defining new files, deleting files,
concatenating files, inserting one file into another,
copying contents of a file into another file, and so on.
Again, the user interface, how the function is referenced
and how parameters are specified, is as important as the
functions provided.

Assembler. In the modern world, one might wish for
an assembler-free computer system, but such a wish is
without practical justification, even in 1980-and will
probably still be so even in the fabled 1984. However,
in some of the most modern microprocessor systems,
the most advanced and adequate software available is
an unsophisticated assembler. In some systems, the only
software provided is an interpreter of one sort or
another, with little or no way to provide elements in a
user-developed tool shop (see below). Consequently,
the user with such a system is limited to situations
covered by the wisdom and forethought of the system
designer and builder. As soon as an application falls
outside of those bounds, the user needs to have tools
to deal with circumstances and functions not antici­
pated by the original system designer. Perhaps an assem­
bler is not the most desirable systems programming tool,
but it may be the only tool that is appropriate to the
task of dealing with the unanticipated demand. In non­
research application areas, such demands are not likely

to be encountered. However, it is exactly in the domain
of research where one does not have the luxury of
doing everything the way that someone else imagined it
was going to be done. And, so, the user of even the most
modern computer technology must anticipate the need
on occasion to resort to the arcane black arts, approach­
ing the machine language of the computer, perhaps as
far down as the assembly language level.

Perhaps when the appropriate high-level tools for
systems programming are available in adequate quality,
problem solving with assembly language will be unneces­
sary. The tools will probably come in the form of a
compiler.

Compiler. Perhaps the most important single ele­
ment in the Bailey Basic Black is a high-level compiler.
The language is important. Of course, fads in computer
science come and go, as in any other field. However,
currently the PASCAL appears to be the emotional
favorite for a higher level language. In the real-time
on-line area, there is no language that supports the
basic elements of the Uttal Basic Black hardware for
real-time functions. However, the ease with which the
language can be "bent" to the desires of the user and the
applications can be used as a criterion of acceptability
and quality of the language in the context of the applica­
tion. The ability to define functions and procedures for
hierarchical, structured development of a set of software
tools is very much an asset, if not a necessary property
of the language. The ability to support concurrent
processes with the high-level language is also a very
valuable asset, and a necessity if multiuser or multi­
process applications are to be implemented.

A critical feature that is easily overlooked is the
ability to develop systems-level software in the compiler
language. If the supplier of the system has not com­
pletely anticipated the needs of the research laboratory
computer system, then the user is forced to supplement
and augment the tools that are provided. In the previous
paragraph, the availability of an assembler, and its use,
were justified on the grounds that such systems-level
work was likely to be necessary in research environ­
ments. It is much better if the compiler can support such
work instead of requiring the use of an assembler. The
same reasoning applies even more to user-developed
software tools that play such an important role in
productive and efficient use of computer systems in the
laboratory.

Linking loader. A somewhat inappropriate term is
used in the heading of this paragraph to refer to a num­
ber of software functions that prepare a program for
execution in the context of specific features of the
computer at the time of execution. Whether or not this
function takes the shape of a linking loader, an operating
system function that manages virtual memory, or an
interpretative system is not really material. What is
important is that the specific applications program
written by the scientist in the laboratory be reasonably

BASIC BLACK RENASCENT 101

free from constraints of absolute computer structures,
such as specific memory addresses and memory limita­
tions. Also, an efficient system for referencing and using
tools from the systems and applications libraries is
vital for the completion of the programming efforts
of the user.

Operating system. The operating system of a useful
computer system will contain a large number of indi­
vidual utilities and provide a large number of services
to the user. Among these services, the first encountered
is of course the control command structures that permit
the user to access other utilities, start and stop processes,
and so on. Other useful functions that might be impor­
tant enough to serve as guides in the evaluation of the
adequacy of this element are functions such as error
logging, memory managemen t, general resource manage­
ment, and so on. Of course, as in all of the other ele­
ments, the user interface to the resources of the operat­
ing system ranks among the most important aspects of
the operating system.

Ye olde tool shoppe. This is the crux of software
issues in the user environment. A set of tools to do
things with the hardware is the ultimate resource
required. To a certain extent, all of the elements in the
Bailey Basic Black are elements in the tool shop. How­
ever, more specifically, the tools that are of critical
importance are the functions, subroutines, and pro­
cedures that act as elements in the programs produced
by the user. The specific tools that are important in a
given context will depend on the characteristics of
that context. The tool shop for a real-time on-line
research laboratory will certainly need tools to drive
devices and hardware elements in a correct and efficient
manner. Elements in the tool shop in this environment
must be able to read real-time clocks, set time-out
alarms, deal with interrupts signalling external events,
collect data from hardware devices, and so on. In other
words, the tool shop must be able to deal with hardware
elements in the Uttal Basic Black and more.

In addition, the tool shop should provide for the
development of new tools. The development of new
software, even at the systems level, should proceed on a
structured and hierarchical level, with each element
simple, well-defined, and functionally clean.

The tool shop might reasonably be broken down into
two components, one supplied by the manufacturer
or vendor of the system, and the other developed within
the specific applications context. In Table 2 these are
referred to as libraries.

Operating system module library. A rich library of
tools to make the computer perform useful things in
general, regardless of the application context, is an
important element in the basic black wardrobe. Such
elements provide for utilization of the fundamental
properties of the computer hardware, input/output
devices, specialized facilities such as clocks, interrupts,
and so on. In order for the elements to be more useful,

102 BAILEY

their access, definition, and parameter structures should
be as general as possible at the lowest level, perhaps
with a hierarchical set of software interfaces to them at
higher levels with more specific references.

Applications module library. The user of a system, or
a collection of users, should be able to develop a rich
library of tools out of the basic set of tools provided by
the manufacturer or vendor of a computer system and
reference those tools in a manner that permits them to
be integral elements in the system. Generally, the user
will develop tools that are oriented to application,
rather than to the general operating system. However,
the distinction is one of convenience, and separation of
the tool shop into operating system library and applica­
tions library is to a large extent arbitrary.

The Ensemble
Putting all of the Bailey Basic Black together graph­

ically yields Figure 3. The programmer or user orches­
trates the assembly of elements from the collections of
utilities, the operating system, the language processors,
the editors, linking loaders, resource management
components of the operating system, the tool shop, and
so on. The consequence is a flowing of information from
one point in the system to another point, and the
processing of that information at selected points in the
system.

Perhaps the most important aspect of the entire
ensemble is represented by an inconspicuous arrow in
Figure 3. The arrow leading downward from the language
processors, the assembler and compiler, to the utility/
editor line leading to the operating system module
library and the application module library, signals the
ability of a system to grow and to modify itself, to
become ever more useful and flexible. This is an impor­
tant differentiation between the Uttal Basic Black and
the Bailey Basic Black. The Uttal (1968a) version
presented a static, hard-wired world for real-time com­
puting. The Bailey version presents a dynamic, self­
modifying, growing, logic-oriented world for real-time
computing.

The present state of the art provides a challenge:
Make good use of the Uttal Basic Black. The challenge
will be met with software, by the Bailey Basic Black,
or some collection of elements similar to those described
in this paper.

REFERENCES

UTIAL, W. R. "Basic Black" in computer interfaces for psycho­
logical research. Behavior Research Methods & Instrumentation,
1968, 1, 35-40. (a)

UTTAL, W. R. Real-time computers: Technique and applications
in the psychological sciences. New York: Harper & Row,
1968. (b)

