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Several widely used analysis of variance computer programs
are now available for testing general linear hypotheses (Dixon,
1973; Woodward & Overall, 1974; Cramer, Note 1; Finn,
Note 2). Each of these programs has limitations. REGM, a
multivariate general linear hypothesis program, has been
designed for applications unsuited to these other programs.

Applications. REGM has been written to allow maximum
control by the user of his analysis. The source code is clear
enough for modifications by a programmer and short enough
to be compiled inexpensively. Input conventions closely follow
the pattern of BMDllV (Dixon, 1973), which requires
knowledge of the general linear model and coding of dummy
variables if analysis of variance is needed. Applications should
therefore be reserved for problems that cannot be solved by
other programs. Specifically, REGM will handle designs beyond
the size limitations of other programs because of its economy
of storage and the stability of numerical routines. This can be
especially important for multifactorial and repeated measures
designs, which require a large design matrix for a least squares
solution. Second, REGM has missing data options for dependent
and independent variables. For large multiple regressions on
survey data that are missing some values on independent and
dependent variables, this can be useful.

Computational Procedures. The model to be analyzed in
most cases is Y = XB + E, where Y is an n X p matrix of n
observations on p dependent variables, X is an n X q matrix of
q design or independent variables, B is a q X P matrix of co
efficients, and E is an n X p matrix of errors, with covariance
matrix 0

2 I. The least squares estimate of B can be obtained
directly from the system of simultaneous equations XB = Y by
orthogonalizing the X matrix and solving the system (Golub &
Styan, 1973; Lawson & Hanson, 1974). This method is most
accurate computationally and is used in the MANOVA program
(Cramer, Note 1). Alternatively, the normal equations
X'XB = X'Y may be formed, permitting ordinary solutions to
the nonhomogeneous system. While this is less accurate than the
orthogonal procedure, accuracy can be maintained by perform
ing all calculations in double precision arithmetic. The normal
equations are solved by a Cholesky decomposition of the X'X
matrix (Wilkinson & Reinsch, 1971). This is faster and more
stable numerically than other pivoting or inversion methods
involving the cross-product or covariance matrix of independent
variables. In addition, it is faster than the orthogonalization
procedure. REGM should solve least squares problems as fast as
or faster than any current program.

Tests of hypotheses are made by relevant hypothesis and
error matrices. Each takes the form ABC' = D, where A is
r X q, C is s X p, and D is r X p (Morrison, 1967). For the usual
null hypothesis, D is a null matrix. The error matrix for each
hypothesis is symmetric positive definite, and the hypothesis
matrix is symmetric positive semidefinite. Each hypothesis is
therefore tested by solving the eigenproblem Hx = AGX, where
Hand G are the hypothesis and error matrices, respectively.
Cholesky decomposition reduces the problem to symmetric
form, and a Householder transformation with QL shifts is used
to derive the latent roots and vectors. While the roots of the
symmetric matrix produced via the decomposition are the same

as those of G-' H, the vectors for the original problem must
be transformed from the symmetric solution and renormalized
(Wilkinson & Reinsch, 1971). These vectors are standardized by
the conditional dependent variable standard deviations for anal
ysis of dispersion problems. Instead of a factoring of G-1 H, the
hypothesis or error matrix may be factored separately in the
form of a cross product, covariance, or correlation matrix. For
the single group case, in which the dependent variables are
regressed on a single unit vector to remove the means, factoring
the error matrix is equivalent to a principal components analysis.
Normalized varimax rotations may be performed on any factor
solution, including that for G-1 H.

Program Structure. The program is written in ANS
FORTRAN IV with two exceptions: IMPLICIT REAL*8 speci
fications are used at the beginning of main and all subroutines,
and the IBM library function DLGAMA is called. There are 16
subroutines:

(1) INPUT handles missing value options and computes
cross-product matrices casewise.

(2) CONTR computes hypothesis and error matrices for each
contrast ABC' =D.

(3) FACTI factors the linear hypothesis G-' H.
(4) PACT2 factors a symmetric matrix (G or H).
(5) SYMDET computes a Cholesky decomposition of a

symmetric positive definite matrix.
(6) SYMSOL solves a system of real linear equations given

the lower triangular coefficients matrix from SYMDET.
(7) REDUC reduces the cigenproblem Ax = ABx (A positive

semidefinite, B positive definite) to symmetric form via
Cholesky decomposition.

(8) TRFD2 produces a Householder decomposition for a
real symmetric matrix.

(9) IMTQL2 computes latent roots and vectors for a tridi
azonalized symmetric matrix.
~ (10) REBAK transforms the vectors from the symmetric

eigenproblcm into ones for the original one, Ax = ABx.
(11) PROD performs matrix products.
(12) FCDF is a complement cumulative distribution func

tion for the P statistic.
(13) CBICDE is a cumulative distribution function for the

chi-square statistic.
(14) VARMAX performs normalized varimax rotations.
(J 5) SORT sorts rotated factor loadings to highlight factor

structure.
(16) OUTPUT writes rectangular and symmetric matrices.
Subroutines SYMDET, SYMSOL, REDUC, TRED2,

IMTQL2, and REBAK are FORTRAN translations of ALGOL
programs by the same names in Wilkinson and Reinsch (1971).
Dummy dimensions are used in all subroutines, so that program
dimensions can be modified in a single paragraph at the begin
ning of the program.

Input. Two cards contain program parameters. The first card
defines the problem: (1) Number of independent variables.
(2) Number of dependent variables. (3) Number of observations.
(4) Number of hypotheses. (5) Input file number (blank if data
are in stream). (6) Number of format cards for data. (7) Input
option code (order for reading in variables, including or exclud
ing column for constant). (8) Input label code (for including
variable labels). (9) Missing data option (no missing values, list
wise deletion, pairwise deletion.) All combinations of missing
data processing options are possible. for independent and de
pendent variables.

Variable format cards and variable label cards, if used,
follow the problem card. The second parameter card specifies
a hypothesis. Several options for specifying the A, C, and D
matrices arc available, ranging from default values created by the
program to input as additional data. Options for selecting the
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matrix to be factored and number of rotations to be performed
are included on this card. Any number of hypotheses may be
tested for a single problem, and problems may be stacked
in a single job step.

Output. Output from REGM depends on problem
parameters. When missing data options are selected, number of
observations after deletions are printed. For regressions and
analyses of variance, the determinant of the X'X 'matrix,
dependent variable means, regression coefficients, residual
cross-product matrix, conditional correlations among the de
pendent variables, and multiple correlations are printed. For hy
potheses involving single dependent variables, the following are
printed: contrasts, hypotheses, and error sums of squares and F
tests. For multivariate hypotheses, the following are printed:
contrasts, hypothesis, and error matrices; Wilks' Lambda; Rao's
approximate F statistic, largest root (theta) statistic; canonical
correlations; chi-square tests of residual roots; standardized
canonical coefficients for the dependent variables, and correla
tions (loadings) between the dependent variables and the
dependent canonical factors. If rotations are requested, rotated
canonical coefficients, loadings, and canonical correlations are
printed.

Limitations. Because the program is designed to be custom
dimensioned for particular applications, limits on problem size
are determined only by available memory and error bounds.
Data are processed casewise, so array storage depends on the
number of dependent and independent variables. If NX repre
sents the number of independent variables, and NY the number
of dependent variables, then array storage in bytes for a 32-bit
word-length machine can be computed with the following
expression: 8(NX[NX+3NY+3j +NY[5NY+4j). Program
size for code from the IBM FORTRAN Gl compiler is less
than 80K bytes. The program contains approximately 1,600
statements, so compilation for specific applications is reasonable.
On an IBM 370/158, computing time for 435 observations on
three dependent variables and 125 independent variables (a
5 x 5 x 5 fixed-factor multivariate analysis of variance) with
tests of eight hypotheses is under 50 sec. Smaller designs involv
ing under 10 dependent and independent variables run from Y2
to 3 sec.

Finally, computing accuracy is comparable to single-precision
orthogonalization programs such as MANOVA (Cramer, Note 1).
Double-precision computations are required for machines with
less than 60-bit word length.

Availability. The source program may be obtained by sending
a tape to Leland Wilkinson, Department of Psychology, Yale
University, New Haven, Connecticut 06520. The tape will be
returned standard labeled EBCDIC, nine-track, 1,600 bpi
density, block size 800, logical record length 80. Special values
may be requested for any of these parameters. Please enclose
$10 for handling.
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