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Individual differences in working memory
and reasoning-remembering relationships
in solving class-inclusion problems

MARK L. HOWE, F. MICHAEL RABINOWITZ, and T. LYNETTE POWELL
Memorial University of Newfoundland, St. John's, Newfoundland, Canada

In the present experiment, we evaluated the effects of individual differences in reading span and
variation in memory demands on class-inclusion performance. One hundred twenty college students
whose reading spans ranged from low to medium to high (as indexed by a computerized version of the
Daneman and Carpenter [1980] reading-span task) solved 48 class-inclusion problems. Half of the sub-
jects had the solution information available when the problems were presented; the other half per-
formed a detection task between solution information and problem presentation. The results from both
standard statistical analyses and from a mathematical model indicated that differences in reading span
and memory load had predictable, similar effects. Specifically, the sophistication of reasoning strate-
gies declined when memory demands increased or when reading spans decreased. Surprisingly, these
effects were primarily additive. The results were interpreted in terms of global resource models and

findings from the developmental literature.

In a recent series of experiments, we have used class-
inclusion tasks to study reasoning—-remembering trade-
offs in the development of human problem solving across
the lifespan (Howe & Rabinowitz, 1996; Rabinowitz,
Howe, & Lawrence, 1989). In general, the class-inclusion
task involves the presentation of two subclasses: a major
subclass (e.g., there are six robins) and a minor subclass
(e.g., there are four swallows). Following this, subjects are
asked an inclusion question involving the superordinate
class (birds) and the major subclass (4re there more robins
or more birds?). Additional questions can be asked involv-
ing the subclasses (Are there more robins or more swal-
lows?) or the superordinate class and the minor subclass
(Are there more swallows or more birds?).

When solving class-inclusion problems, subjects can
use a variety of strategies. The most appropriate reason-
ing strategy reflects an understanding that the numerosity
of the superordinate class has to be greater than or equal
to the numerosity of the subclasses. This is known as class-
inclusion reasoning. Alternatively, subjects can use an in-
appropriate strategy in which they treat the superordinate
class as the subclass that is not specified in the problem.
To illustrate, if the problem is a class-inclusion one of the
form “Are there more robins or more birds?” and the sub-
ject treats “birds™ as “swallows” (and remembers the rela-
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tive numerosities), then the subject will answer the ques-
tion incorrectly by responding “more robins.” This is known
as a subclass—subclass strategy and is the prevalent strat-
egy in younger subjects (Howe & Rabinowitz, 1996). In-
terestingly, when task difficulty is increased, by increasing
either memory or information demands, young adults in
our studies also show subclass—subclass reasoning. That
is, college students revert to a simpler form of reasoning,
one that characterizes younger problem solvers.

In the present experiment, we were interested in whether
we would obtain similar patterns as a function of individ-
ual differences in young adults’ working memory. Specif-
ically, we used Daneman and Carpenter’s (1980) reading-
span task as an index of working memory and predicted
that adults with smaller reading spans would use more
primitive solution strategies than would adults with larger
reading spans. That is, because class-inclusion tasks can
involve a tradeoff between remembering the premise (so-
lution) information and implementing a reasoning strategy
to solve the inclusion problem, subjects with fewer avail-
able resources tend to rely on simpler solution strategies
that have fewer resource requirements.

We selected Daneman and Carpenter’s (1980) measure
because of the central role that it plays in the Just and Car-
penter (1992) activation-based language comprehension
model; because it satisfies many important criteria for
measures of working memory (Howe & Rabinowitz, 1990);
and because their conceptualization of working memory
is similar to our earlier proposal (Rabinowitz et al., 1989).
Specifically, this measure has been used successfully to
predict individual differences in single-sentence com-
prehension tasks (see review by Just & Carpenter, 1992),
including the resolution of syntactic ambiguity (Perl-
mutter & MacDonald, 1995), and it has been suggested
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as potentially relevant to more general problem-solving
tasks (Cantor & Engle, 1993; Just & Carpenter, 1992; Wa-
ters & Caplan, 1996). Although this measure appears not
to be systematically related to tasks that are predominantly
automatic, such as obligatory language processing oper-
ations, it has been speculated that it is related to more
consciously controlled processes, ones that occur in both
language and, more generally, problem solving (Conway
& Engle, 1994, Waters & Caplan, 1996). Indeed, the gen-
eral importance of separating automatic and controlled
aspects of performance in relation to resources has been
emphasized for some time (see, e.g., Norman & Shal-
lice, 1986).

We were also curious about whether reading span and
manipulated memory load (e.g., solution information
available simultaneously [no load] or not simultaneously
[foad] with the problem) would produce independent ef-
fects. Most resource theorists, especially those who as-
sume a common pool of resources, would predict an inter-
action between working memory capacity, regardless of
how it is defined, and task demands (see, e.g., for reviews,
Howe & Rabinowitz, 1989, 1990; Just & Carpenter, 1992).
That is, as task demands increase, deterioration of perfor-
mance should be more evident in low than in high reading-
span subjects. However, there do exist conditions under
which independence would be obtained. To see one pos-
sible way in which additive effects could emerge, con-
sider the following example. Suppose that the solution
to a given problem involves the expenditure of resources
on both remembering and reasoning. Assume that low
reading-span subjects possess 20 resource (working mem-
ory) units and high reading-span subjects possess 40
units. Assume further that remembering (which precedes
reasoning) costs 2 resource units in the no load conditions
and 10 units in the load conditions. Finally, it must also
be assumed that the probability that a sophisticated rea-
soning strategy can be used is linearly related to the num-
ber of remaining, unused resource units. Even with these
assumptions, floor and ceiling effects would produce inter-
actions. That is, reading-span scores below a low thresh-
old would constrain subjects to the use of a primitive
strategy, whereas scores above a high threshold would
result in the use of a sophisticated strategy. However, in
the class-inclusion task used here, it might be possible to
observe additive effects, because we have not found floor
or ceiling effects with college students (Howe & Rabi-
nowitz, 1996; Rabinowitz et al., 1989). If additive effects
were observed, then a number of functional constraints
could be imposed on future modeling endeavors.

Our Class-Inclusion Problems

Our paradigm involves presenting a statement followed
by a problem with three possible solutions. Each state-
ment consisted of numerical information, color infor-
mation, or both about items in two subclasses. The form
of the statements when both types of information were
presented was as follows; “There are nl c1 x1s and n2 ¢c2
x2s.” The ns refer to number, the ¢s to color, and the xs to
item type. An example of one of the statements is “There

are 6 red robins and 4 brown swallows.” One of 11 types
of problems representing the combination of relevant di-
mension (number or color), number of items in the two
subclasses (same or different; the color associated with
each subclass was always different), and type of compar-
ison (subclass—subclass, minor-subclass vs. class, class
inclusion) followed each statement. It was impossible to
present the 12th and missing minor-subclass versus class
number-equal problem because there is no minor subclass
unless the numbers of items in each subclass are different.
When the numbers of items in the subclasses were the
same, equivalence problems were used for both number
and color dimensions; otherwise, superlative judgments
were required. The form of the number-different prob-
lems was: “Are there more x1s or more x25?” (e.g., “Are
there more swallows or more birds?”). The form of the
number-same problems was: “Are there the same num-
ber of x1s as x2s?” (e.g., “Are there the same number of
robins as swallows?”). The form of the color-different
problems was the following: “Is the c-est x1 c-er than the
c-est x2?7” (e.g., “Is the reddest swallow redder than the
reddest bird?”). The form of the color-same problems was
as follows: “Is the c-est x1 the same color as the c-est
x2?” (e.g., “Is the reddest robin the same color as the red-
dest swallow?”).

The same three alternative solutions, randomly ordered,
followed each number-relevant problem: more y1s, more
y2s, and same number. A different set of three alterna-
tives, randomly ordered, followed each color-relevant
problem: yls c-er, y2s c-er, and same color. The ys stand
for either the subclasses or the relevant superordinate class,
and the c-ers stand for a superlative color label (e.g., red-
der). Thus, following the statement about robins and swal-
lows, the number-relevant class-inclusion choices would
have been more robins, more birds, and same number. The
color-relevant subclass—subclass choices would have been
robins redder, swallows redder, and same color. The de-
pendent variable of interest was the number of correct
choices.

We have acknowledged in our previous articles (Howe
& Rabinowitz, 1996; Rabinowitz et al., 1989) that color
problems represent a variant on the traditional class-
inclusion problems, one that increases both syntactic and
semantic complexity. However, the advantage of using
such problems is that it allows the study of class-inclusion
reasoning in a domain that necessitates memory. Whereas
number-based class-inclusion problems can be answered
on purely logical grounds, color-based problems demand
that subjects remember the premises. Our previous re-
search has shown that this advantage outweighs the
changes in complexity associated with color problems
and that the latter changes do not represent a fundamen-
tal alteration of the classic class-inclusion problem.

Understanding Reasoning—Remembering
Relationships in Class-Inclusion Tasks

We have developed a simple model that characterizes
the manner in which groups of subjects represent the infor-
mation in the statements and interpret the problems when
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choosing among the three possible solutions to each prob-
lem. The model contains five parameters: two that are
related to memory (e and d ) and three, to reasoning (i, s,
and u). The two memory-related parameters in the model
are estimates of the manner in which information is en-
coded at retrieval (i.e., when problems are solved). Here
e gives the probability of correctly encoding the values
on the relevant dimension as same or different on the test,
while 1 — e represents the wrong encoding of the rele-
vant dimension as same or different. The parameter d,
which is irrelevant to the number-same problems, repre-
sents the conditional probability of remembering the cue
values associated with each subclass when the cues are
correctly encoded as different. The conditional proba-
bility of associating each of the two cue values with the
wrong subclass is 1 — d. Although these estimates are in-
fluenced by the way in which information is stored when
the statements are presented and by the loss between ini-
tial presentation and the presentation of the problem, they
do not reflect these processes directly. Three parameters
are used to estimate the way problems involving the super-
ordinate class and either subclass are interpreted (i =
idiosyncratic, s = subclass—subclass, # = understanding;
see also Hodkin, 1987; Howe & Rabinowitz, 1996; Ra-
binowitz et al., 1989). Since these interpretations are
treated as mutually exclusive and exhaustive in the model,
only two degrees of freedom are lost in their estimation:

l=i+s+u (1)

Thus, in the present study, four free parameters were es-
timated for the number-different and color problems, but
only three free parameters were estimated for the number-
same problems. The parameters and associated defini-
tions are summarized in Table | and are operationalized
in the equations that appear in Appendix B.

Different sets of equations (see the following sections
and Appendix B) were constructed for the number-same
and number-different problems, but one set of equations
was sufficient for the color-relevant problems because

Table 1
Theoretical Definitions of the Choice Model’s Parameters

Parameter Theoretical Definition
Memory

e Probability of correct encoding of dimensional cues as
same or different.

d Probability of correctly associating the cue with each of
the two subclasses given that the relevant dimension is
accurately encoded as different.

Reasoning
u Probability of understanding and accurately interpreting

questions involving comparison of the superordinate
class and subclass.

s Probability of subclass-subclass interpretations of ques-
tions involving comparisons of the superordinate class
and a subclass.

i Probability of idiosyncratic interpretations of questions
involving the superordinate class and a subclass.
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different colors were always associated with each of the
two subclasses appearing in a statement. Note that abbre-
viations follow the equation numbers in order to specify
the appropriate reference(s) for each equation: number dif-
ferent (nd), number same (ns), and color (¢). It was as-
sumed that subjects always interpreted subclass—subclass
problems correctly.

Specific Predictions

In using this task with college-aged subjects, we have
consistently found that they switch from class-inclusion
reasoning to subclass—subclass reasoning when memory
load increases. We expected to replicate this finding. Sim-
ilarly, if the reading span measure would generalize to a
broader problem-solving context so that resource differ-
ences would be reflected in individual differences in read-
ing span, then we should see a similar switch from inclu-
sion reasoning 1o subclass—subclass reasoning as reading
span decreased. Finally, it was of interest to determine
whether reading span and memory load effects might be
additive. The memory parameters estimated in our prior
research suggested that college students were not oper-
ating at ceiling in the no load conditions or at floor in the
load conditions (Howe & Rabinowitz, 1996; Rabinowitz
etal., 1989). If the use of reasoning strategies is actually
linearly related to resource availability, additive effects
would occur.

METHOD

Subjects
The 60 males and 60 females were university students who were
paid for their participation.

Apparatus and Materials

Two different computer programs were developed for this exper-
iment, one for the reading-span task and one for the class-inclusion
task. The reading-span task was programmed in Quick Basic and
the class-inclusion task was programmed in Turbo Basic. Stimuli
were presented ona 22.5 X 27 cm monitor, and the subjects entered
their responses on a 101-key enhanced keyboard.

The reading-span test was constructed from 110 English sen-
tences ranging from 10 to 20 words in length. The sentences were
taken from books of general knowledge. Half of the sentences were
true and half of them were false. They were arranged in sets con-
taining different numbers of sentences (2, 3, 4, 5, or 6). There were
five sets of each type (e.g., five sets containing 2 sentences, five
sets containing 3 sentences). For each subject, the sentences were
randomly assigned to sets. After each sentence was presented, the
subject was required to verify whether it was true or false, and, fol-
lowing presentation of all the sentences in a set, to free recall the
final word appearing in each sentence.

In the class-inclusion task (see Rabinowitz et al., 1989, Experi-
ment 2), the computer was used to control presentation of verbal
materials and to record choices. The subjects responded by pressing
the numerals 1, 2, and 3 on the number pad. The material was arranged
in blocks of 48 units (see Appendix A), with each unit comprising
a statement {e.g., “There are 6 red robins and 4 brown swallows™),
a problem (e.g., “Are there more robins or more birds?”), and three
alternatives to choose from (e.g., more robins, more birds, same num-
ber). As in the examples, each statement consisted of two numbers
(ny and n, ), two colors (¢, and ¢, ), and two nouns. The values of the
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numbers ranged from 4 to 9, where », = r, for the equivalence
problems and »; # n, for the nonequivalence problems.

Each of the 11 possible problem types determined by question,
numerosity, and dimension, plus an additional number-different
minor-subclass versus class problem, appeared once in successive
blocks of 12 problems. The additional number-different minor-
subclass versus class problems were substituted for the impossible-
to-construct number-same minor-subclass versus class problems.
For each individual, the numbers were randomly assigned to each
problem and the problems were quasi-randomly assigned, subject to
the blocking constraint.

Design

A 3 (working memory: low vs. medium vs. high reading span) X
2 (processing load: no load vs. detect) X 2 (gender) factorial de-
sign was used for testing. All subjects were first tested for working
memory capacity by using the reading-span test (also see Daneman
& Carpenter, 1980; Daneman & Green, 1986; Just & Carpenter,
1992). On the basis of their scores, the subjects were divided into
low, medium, and high reading-span groups. The subjects were
grouped by reading span and gender. Group members were then ran-
domly assigned to one of two processing load conditions—namely,
the no load and detect conditions.

Procedure

All subjects were tested individually. For the reading-span task,
instructions appeared on the monitor and any questions were an-
swered by the experimenter. This was followed by a pretest, which
served to familiarize the subjects with the procedure and was dis-
continued when an individual correctly recalled the final words in
one two-sentence set or when a total of five two-sentence sets had
been shown. The subjects were then presented sets of sentences,
with the number of sentences per set increasing across trials. A trial
consisted of five sets of sentences, with each set comprising a fixed
number of sentences. All subjects began with the two-sentence test.
They were informed how many sentences to expect, and each sen-
tence in a set would then appear on the screen individually for 8 sec.
After presentation of a sentence, the subjects had 5 sec to verify
whether the statement was true or false by pressing “t” or “f” on the
keyboard. Note that the “true” and “false” responses were used as
a control to ensure that the subjects read and processed each entire
sentence rather than simply memorized the last word in each sen-
tence. Following verification, the next sentence in the set was pre-
sented. At the end of each set, the subject was asked to recall by typ-
ing, in any order, the final word from each of the sentences in that set.
Recall was self-paced, and the subjects indicated unrecallable words
by hitting the carriage return. Only the first three letters of the words
that the subjects entered were evaluated by the computer. This was
done in order to reduce the typing and spelling demands on the sub-
jects. This process was repeated for five sets of n sentences, where
n ranged from two to six. If subjects successfully recalled the words
in three of five sets, they would proceed to the next level, in which
the number of sentences was increased by one. Three seconds elapsed
between the end of a recall task and the beginning of the next sen-
tence set.

Reading-span scores could range from 1 to 6. If subjects were
successful in only two of the five sets, a reading span was assigned
that was midway between that particular set number and the previ-
ous set number. For example, if a subject was successful in only two
sets in the three-sentence group, a reading-span score of 2.5 would
be assigned. If a subject’s recall score was less than two for a set,
that subject would be assigned a reading-span score corresponding
to that for the previous set (e.g., 2 in the preceding, three-sentence
example). Upon completion of the reading-span task, the subjects
were divided into three groups on the basis of their assigned reading-
span scores. A score of 4.0 or higher was considered high span, a

score of 3.0 to 3.5 was considered medium span, and a score of less
than 3.0 was considered Jow span.

Following a delay equivalent to the time that it took to load the
software, each subject was next tested in the class-inclusion phase
of the experiment. The instructions appeared on the monitor and
contained the following information: There would be 48 problems,
each problem would be preceded by a statement containing the in-
formation needed to solve the problem, and the problems should be
solved by pushing the correct button on the number pad of the key-
board. Any questions were answered by the experimenter, and the
subject then pressed any key to start the experiment.

In the no load condition, a trial consisted of the presentation of a
statement that remained on the monitor until the end of the trial.
After reading the statement, the subject pressed any key to initiate
the presentation of a problem and related choices that also remained
on the screen until a response was made. There was a 1-sec delay
between the end of one trial and the beginning of the next.!

The instructions also appeared on the screen for the detect con-
dition. Here, a trial consisted of the presentation of a statement, fol-
lowed by a letter-detection task, followed by a problem. In the de-
tection task, subjects were to press “1” if a “y” appeared on the left
side of the screen, “2” if a “y” appeared on the right side of the
screen, or a “3” if a “y” appeared on both the left and right sides of
the screen. Consistent with the values of up to five random vari-
ables, the “y” could appear anywhere on the left, right, or both sides
of the screen. The timing of events for the detect condition was as
follows. First, a statement was presented, and it remained on the
screen until a key was pressed by the subject. Then a blank screen
appeared for 1 sec, followed by a READY signal, which appeared for
100 msec in the center of the monitor with the letters arranged ver-
tically to bisect the screen into left and right halves. The screen then
went blank for 500 msec and a “y” then appeared on the screen for
20 msec, followed immediately by “1 = left,” “2 = right,” and “3 =
both.” If there was no response within 2 sec, then “You took more
than 2 seconds. Please try to respond within two seconds.” appeared
on the screen for 2 sec. Following either a legitimate response or the
offset of the respond within 2 sec reminder, the screen went blank
for 1 sec before the problem, and alternatives appeared. After the
subject had solved the problem, the screen went blank for 1 sec be-
fore the next statement appeared. Thus, for subjects in the detect
condition, the time between the offset of the statement and the onset
of the problem varied between 2.62 (plus detection-response la-
tency) and 6.62 sec. Note that the no load and detect conditions dif-
fered not only in the presence of a secondary task, but also in the
availability of statement information when questions were answered
and in the delay between statement and question presentation.

RESULTS

Because the descriptions generated with the mathe-
matical models were of primary interest, analysis of vari-
ance (ANOVA) of the choice data will be described se-
lectively. Furthermore, the statistical tests associated with
the ANOVA were powerful; the 120 subjects each gener-
ated 48 data points. A .01 significance level was adopted
for the between-subjects effects and a .001 significance
level was adopted for the within-subjects effects in order
to reduce the probability of Type I errors in the ANOVA.
The analyses that bear directly on the mathematical mod-
els will be reported at the .05 level, because these tests in-
volved fewer degrees of freedom and often could be used
to reject the model when effects were significant. In the
ANOVA, reading level (low, medium, or high), gender
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(female or male), and memory load (no load or detect)
were the between-subjects variables. The within-subjects
variables were 4 blocks of 12 trials (Trials 1-12, 13-24,
25-36, and 37-48), numerosity in the statements (dif-
ferent or same), dimension (number or color), and prob-
lem type (subclass—subclass, minor subclass—class, class
inclusion).

Before we present the outcome of this ANOVA, we
will report some findings concerning our individual dif-
ference index of working memory—namely, reading span.
In a series of regression analyses in which gender and
reading span were the predictor variables, a significant pro-
portion of the variance was accounted for in the percent-
age correct on the true—false questions [F(2,118) = 5.10,
p <.008, R? = .08], latencies for answering the true— false
questions [F(2,118) = 9.98, p < .0001, R2 = .14], and
recall latency [F(2,118) = 14.59, p <.00001, R2 = .20].
The partial correlational analyses revealed that only
reading span was a significant predictor for each of these
variables. The simple correlations between reading span
and the dependent measures were .28, —.36, and —.43,
respectively. As we will report subsequently, the reading-
span measure was reliable in the ANOVA and had dra-
matic consequences on the parameters of our mathemat-
ical choice model.

Analysis of Variance of the Choice Data

For the ANOVA, each correct response was scored “2,”
errors consistent with appropriate same—different en-
coding of the dimension relevant to the problem (£, er-
rors) were scored “1,” and the remaining errors (£, errors)
were scored “0.”2 For example, the E; error associated
with the number-different class-inclusion problem involv-
ing robins and birds would be “more robins,” whereas
the E, error would be “same number.” The E| errors as-
sociated with the number-different minor subclass—class
and subclass—subclass problems would be “more swal-
lows”; the E, errors would be “same number.” The E,
error associated with the color-different class-inclusion
problem involving robins and birds would be “robins
redder”; the E, error would be “birds redder.” It should
be emphasized that the E, class-inclusion color error is
different from all the other types of E, errors because it
cannot follow same—different encoding errors (i.e., same
color encoding) unless the encoding error is associated
with idiosyncratic interpretation. The E| error associated
with the color-different minor subclass—class and subclass—
subclass problems would be “swallows redder”; the E,
error would be “same color.”

To begin, performance varied linearly as a function of
working memory [F(2,109) = 5.27], although differences
were only statistically reliable between the high (M =
1.70) and low (M = 1.53) reading-span subjects, with
medium reading-span subjects falling somewhere in be-
tween (M = 1.61). Because the more sensitive mathemat-
ical model analyses showed reliable differences among
all three groups, data for the medium reading-span group
were retained rather than eliminated, as in previous stud-
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ies (for a review, see Just & Carpenter, 1992). There was
a small improvement in performance across blocks [Ms =
1.53, 1.61, 1.64, 1.67; F(3,327) = 15.85]. Because the
remaining significant effects were lower order to the
three-way interactions of memory load X numerosity X
problem type [F(2,218) = 7.31] (see Figure 1) and di-
mension X problem type X numerosity [F(2,218) =
14.08] (see Figure 2), they replicated our previous findings
(Howe & Rabinowitz, 1996; Rabinowitz et al., 1989), and
none involved the variable of primary interest in this ar-
ticle, reading span, they will be discussed only in sum-
mary form. As can be seen in Figure 1, when there was
no memory load, subclass—subclass problems were an-
swered best, class-inclusion problems next, and smaller
subclass—class problems poorest, regardless of numeros-
ity. However, in the presence of an additional memory
load, both subclass— subclass and smaller subclass—class
problems were answered better than class-inclusion prob-
lems, with no difference between the former two when
numerosity differed. This figure also shows that the main
effect of memory load is interpretable. That is, subjects
were correct more often when there was no memory load
(M = 1.71) than when there was [M = 1.52; F(1,109) =
19.72]. As can be seen in Figure 2, number problems were
answered better than color problems with subclass—sub-
class and smaller subclass—class questions, but not with
class-inclusion questions, particularly when numerosity
was the same. Analyses based on the mathematical model
reveal that class-inclusion performance was facilitated
on the color problems because subjects tended to make
more encoding errors on color than on number problems.
A consequence of erroneously encoding the colors as same
is that color subclass—subclass and smaller subclass—
class questions are answered incorrectly while class-
inclusion questions are answered correctly when either
class-inclusion or subclass—subclass reasoning strategies
are used.

Modeling Class-Inclusion Choice Data

Before we can use the mathematical model to inter-
pret reading-span differences in reasoning and remem-
bering, the parameters must be estimated and the degree
of fit of the model to the choice data evaluated statisti-
cally. In order to see how this process works, we will begin
with how we define the data space. For each reading span,
dimension (color or number), numerosity of the sub-
classes (same or different), and memory load (no load or
detect), three data types were defined for each question
type (subclass—subclass, minor subclass vs. class, class
inclusion): S = success, £, = error associated with cor-
rectly encoding the values on each subclass as same or
different, and F, = remaining error usually associated
with incorrectly encoding the values on each subclass as
same or different. Different equations were developed
for the subclass—subclass (ss), minor-subclass versus
class (msc), and major-subclass versus class or class-
inclusion (ci) questions. These equations and the associ-
ated likelihood functions appear in Appendix B.
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Because
1 =P(S) + P(E)) + P(E,), (2, nd, c, ns)

two degrees of freedom are associated with the data for
each question type. Thus, when three question types are
available to test the model, as in the color problems, a
total of six degrees of freedom exist in the data. Two de-
grees of freedom are necessary to estimate the memory
parameters (e and d) and two more are needed to esti-
mate the reasoning parameters (see Equation 1). This
leaves two degrees of freedom for assessing the good-
ness of fit of the model for the color problems. Similarly,
because there were no minor-subclass versus class num-
ber-same problems, the three number-same parameters
were estimated using a data set containing four degrees
of freedom. Finally, because number-different minor-
subclass versus class problems were used in lieu of the im-
possible minor-subclass versus class number-same prob-
lems, the four number-different parameters were estimated
using a data set containing eight degrees of freedom (the
two sets of minor-subclass vs. class problems were treated
independently).

Two different maximum-likelihood parameter estima-
tion procedures were used. The first was a stochastic al-
gorithm (Rabinowitz, 1995), and the second involved a
simplex method (Siddal & Bonham, 1974). These pro-
cedures yielded identical parameter estimates (one strong

o o o o

Nload

Nload Same

Memory Load

!-ss

indication that there was good agreement between the
model and the data).

The model, the data space, and the estimation proce-
dure having been defined, only two steps remain: direct
assessment of goodness of fit and hypothesis testing. Con-
cerning goodness of fit, two tests are conducted, a ne-
cessity and a sufficiency test. The necessity test exam-
ines whether a model with fewer parameters provides a
statistically adequate account of the data. This involves
comparisons of the likelihood of the data given three-
(number-same questions) or four-parameter models with
the likelihood of the data given a simpler two-parameter
model, one in which memory is assumed to be perfect
(i.e., 1 = e = d). Specifically, the necessity test evalu-
ates the null hypothesis that a model with fewer param-
eters fits the data as well as a model with more param-
eters. Rejection of this null hypothesis means, in this case,
that the model with three (number-same problems) or four
parameters is necessary to account for this data and that
memory encoding was not perfect. Thus, this test has a
dual purpose. First, it serves to evaluate the necessity of
having more (three or four) rather than less (two) param-
eters in the model, and second, it serves to confirm the
necessity of positing memory processes to account for
class-inclusion reasoning. The necessity tests for each
reading span (by condition and question) can be found in
Table 2. As can be seen, in the majority of cases the null

Dtect Different

Dtect Same

and Numerosity

Figure 1. Means for the memory load X numerosity X problem type interaction. Nload = no load; Dtect = detect;

SS = subclass—subclass; SC = minor subclass—class; CI =

class inclusion.
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Color Same Color Different

Dimension and Numerosity

| ¢

Figure 2. Means for the dimension X numerosity X problem type interaction. SS = subclass—subclass; SC =

minor subclass—class; CI = class inclusion.

hypothesis can be soundly rejected. Exceptions occurred
for (1) all number problems in the no load condition and
(2) the number-same problems for the medium and high
reading-span groups in the detect condition. In “easy”
conditions, in which memory demands were low, or in
groups with higher reading-span scores, memory was at
ceiling. This former result has been obtained previously
(e.g., Rabinowitz et al., 1989).

The sufficiency test, which examines whether a more
complex model is required to account for the data, in-
volves comparing the likelihood of the data given the
three- (number-same problems) or four-parameter mod-
els with the likelihood of the data itself (i.e., when all the
empirical probabilities are free to vary, thus exhausting
all of the information in the data). What this means is that
the theoretical model (which reduces the number of pa-
rameters estimated) is compared with a data-based model
(which does not limit the number of parameters estimated).
Specifically, the sufficiency test, like the necessity tests,
evaluates the null hypothesis that a model with fewer pa-
rameters fit the data as well as a model with more param-
eters. Failure to reject the null hypothesis means, in this
case, that the model with three (number-same questions)
or four parameters is sufficient to account for the data.
The sufficiency tests for each reading span by condition
combination can also be found in Table 2. As can be
seen, in the majority of cases the null hypothesis could
not be rejected. Exceptions occurred for (1) color-same

problems in the no load condition for high reading-span
subjects (significant at p < .01, but not at .001) and
(2) number-different problems in the detect condition for
the low and medium reading-span subjects (neither of the
x 2 tests were significant at p <.001).

Despite these exceptions in both the necessity and suf-
ficiency tests, the three- (number-same questions) and
four-parameter models were found to be, on the average,
both necessary (i.e., more than two parameters were
needed to account for much of the data) and sufficient
(i.e., generally no more than three or four parameters were
needed to account for the data). Note that when the latter
conclusion did not hold at p < .01 (but did at p < .001),
the magnitude of the corresponding necessity tests was
substantially greater than that of the sufficiency tests,
suggesting that the model was accounting for a consider-
able proportion of the variance in the data (even though it
was not as adequate as the data itself). Thus, although in
some cases the data may have been somewhat more com-
plicated than our models depicted, it can be reasonably
concluded that, within the bounds of statistical tolerance,
the three- (number-same problem) and four-parameter
models provided an adequate and parsimonious fit to the
data from this experiment.

Next, we can turn our attention to the main business of
hypothesis testing. Because the parameter estimates from
the fitted models are identifiable, they can be used di-
rectly in testing hypotheses about the theoretical rela-
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Table 2
Goodness-of-Fit Tests
Condition Necessity Test Sufficiency Test
No Load
Low Reading Span
Number different X%(2) =555 x2(4) = 10.48
Number same x3(1) = 0.01 x2(1) = 1.80
Color different x2(2) = 17350  x2(2) =398
Color same 22(2) = 216.02*  x2(2) = 8.48
Medium Reading Span
Number different x2(2)=13.82 xYH(4) =594
Number same x2(1) =122 x3(1) =139
Color different x2(2) = 10042  x2(2)=5.14
Color same x2(2) = 14434% x2(2)=1299
High Reading Span
Number different x%(2) = 3.10 x3(4) = 12.56
Number same xX(1)=173 x3(1) =0.00
Color different X2(2) =13.71* x2(2) =8.43
Color same x%(2) = 38.24* x2(2) = 11.50*
Detect
Low Reading Span
Number different 22(2) = 170.79* x2(4) = 17.51*
Number same x2(1) = 17.99* x2(1) =133
Color different X2(2) = 23426  x2(2) =5.75
Color same 22(2) = 235.49* x2(2) = 0.09
Medium Reading Span

Number different

22(2) = 232.16*

23(4) = 17.00*

Number same x2(1)=0.14 X1y =139
Color different x3(2) = 9245 12(2) =297
Color same X2(2) = 20533*  x2(2) = 4.09
High Reading Span
Number different ¥2(2) = 208.65*  x2(4) = 8.07
Number same 22(1) =042 x2(1) =0.11
Color different 222y = 117.70*  x2(2) =322
Color same X2(2) =107.72*  x2(2) =5.51
*p < .01

tionships between reasoning and remembering and indi-
vidual differences in reading span. The models’ param-
eters are identifiable because (1) there were more data
points than parameters, (2) both fit procedures gave the
same parameter estimates, and (3) the parameter estimates
generated using the maximum likelihood procedure were
independent of the initial starting values. The numerical
values of these parameters are given in Table 3.

The three-phase hypothesis-testing sequence begins
with an experimentwise test that, like an omnibus F test,
evaluates the null hypothesis that, on the average, the nu-
merical estimates of the model’s parameters did not vary
statistically across reading spans and conditions (mem-
ory load). In each case, the null hypothesis was rejected,
with the numerical values as follows: ¥2(20) = 222.93,
p <.001 (number-different problem); ¥2(15) = 102.41,
P <.001 {(number-same problem); ¥2(20) = 111.95,p <
.001 (color-different problem); ¥2(20) = 111.86, p <.001
(color-same problem).

The next phase involves conditionwise tests which,
like ¢ tests, evaluate the null hypothesis that the numeri-
cal estimates of the model’s parameters do not vary sta-
tistically between pairs of conditions. Because in the pres-
ent experiment there was a total of 36 conditionwise tests,

the numerical results are given in Table 4. Concerning
memory-load effects, it can be seen from Table 4 that the
no load versus detect manipulation affected all reading-
span groups (except the medium span group for the color-
different problem), but to varying degrees. Concerning
individual differences, 7 of the 12 comparisons were sig-
nificant within the no load condition, and 9 of the 12 com-
parisons were significant within the detect condition.

Finally, parameterwise tests are conducted to deter-
mine the locus (reasoning and/or remembering) of these
differences. Here, for the pairs of conditions that differed
significantly, a series of y2(1) tests were conducted to de-
termine which of the parameters differed reliably between
the conditions. Because these tests are both tedious and
space consuming to report, they are typically described
in summary form. Consistent with this tradition, we pre-
sent only the parameterwise differences that were statis-
tically reliable (p < .05).

Memory-load effects. The effects of manipulating
memory load on the model’s parameters tended not to
depend on either dimension or numerosity (i.e., number
different, color different, color same) or on the reading-
span level of the subject. That is, the memory-load manip-

Table 3
Estimated Parameter Values for the Choice Model
Parameter
Condition e d i s u
No Load
Low Reading Span
Number different 1.00 1.00 .18 26 55
Number same 91 .00 46 54
Color different 74 .99 .07 37 .56
Color same 72 .97 .03 34 63
Medium Reading Span
Number different 97 97 26 .06 .68
Number same 99 04 29 68
Color different 78 .96 .07 24 .69
Color same 72 95 .08 20 73
High Reading Span
Number different 1.00 97 .14 08 78
Number same 1.00 .04 15 .81
Color different 93 98 15 18 67
Color same .88 .99 .08 18 74
Detect
Low Reading Span
Number different .92 73 15 69 16
Number same 92 31 54 A5
Color different 75 81 .20 72 .08
Color same 12 .82 23 57 20
Medium Reading Span
Number different 96 72 .00 78 22
Number same 99 12 53 35
Color different 84 92 .06 41 .53
Color same .81 .83 .00 .39 .61
High Reading Span
Number different .88 .68 .06 40 .54
Number same .89 .29 48 .49
Color different .84 .90 .07 44 49
Color same 82 90 20 .29 52
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Table 4
Conditionwise Tests
Number Different  Number Same  Color Different  Color Same
Hypothesis x4 23 G @
Memory Load (No Load vs. Detect)
Low reading span 73.38% 30.90% 53.50% 45.631
Medium reading span 59.12% 12.20% 595 12.99*
High reading span 53.79% 30.36% 16.36F 23.32%
Individual Differences (Low vs. Medium vs. High Reading spans)
Within No Load
Low vs. medium 14.24% 5.47 3.20 3.08
Medium vs. high 9.25 5.19 10.43* 14.80F
Low vs. high 14.98% 19.60% 18.38% 14.50
Within Detect

Low vs. medium 8.89 8.77* 26.61% 12.62*
Medium vs. high 19.69% 8.56* 0.90 297
Low vs. high 23.68% 13.99% 21.87% 13.71%
*p<.05. Tp<.0l. 1p<.00l.

ulation uniformly affected the memory parameter d (in
all but the number-same conditions, of course) by de-
creasing its value in the detect as compared with the no
load condition. What this indicates is that low, medium,
and high reading-span subjects were more likely in the
detect than in the no load conditions to associate the
wrong cue value (e.g., thought robins were brown in-
stead of red) with a dimension (e.g., color), which is con-
sistent with the assumption that specific information is
more difficult to remember under high than under low
memory-load conditions. Not only were these qualitative
patterns relatively constant across reading span, so too
were the quantitative patterns. That is, the average nu-
merical differences in the parameter d favoring the no
load over the detect conditions were relatively similar
across low (.20), medium (.13), and high (.12) reading-
span subjects. The parameter e was also affected in a
similar manner, but only for the high reading-span sub-
jects on the number-same and color-different problems.
What this suggests is that although the effects of mem-
ory load and individual differences in reading span on
the parameter d were additive, such was not the case with
the parameter e.

The memory-load manipulation not only affected mem-
ory but, consistent with our previous work (Howe & Ra-
binowitz, 1996; Rabinowitz et al., 1989), also affected
reasoning. In particular, regardless of problem type and
reading-span level, the parameter 4 was smaller (all com-
parisons) and the parameters s (all comparisons except
low and high reading-span subjects on the number-same
problem) and i (all comparisons except low reading-span
subjects on the number-different problem; medium
reading-span subjects on both color problems and the
number-same problems; and high reading-span subjects
on the color-different problems) were larger in the detect
than in the no load conditions. What this indicates is that
subjects were less likely to use class-inclusion reasoning
and more likely to use subclass—subclass reasoning or
idiosyncratic responding and guessing in the detect than

in the no load conditions. Thus, as in our other research,
changes in memory load affected both memory and rea-
soning parameters, suggesting that a common resource
was used in solving class-inclusion probiems.3

Not only were these qualitative patterns relatively con-
stant across reading span, so too were the quantitative
patterns for the number problems. Specifically, regard-
less of whether subjects were in the low, medium, or high
reading-span groups, the average numerical difference
in the parameter u favoring the no load over the detect
conditions (.39, .40, and .28, respectively) and the pa-
rameter s favoring the detect over the no load condition
(.26, .48, and .33, respectively) were relatively constant
in the number problems, although the difference in the s
parameter was somewhat larger in the medium reading-
span group. It would seem, therefore, that consistent with
the ANOVA, the effects of memory load and individual
differences in reading span were independent for number
problems. However, the effects of memory load were
more pronounced in the low than in the medium or high
reading-span groups for the color problems. Specifically,
the average numerical difference in the parameter u favor-
ing the no load over the detect conditions was larger in the
low (.44) than in the medium (.14) or high (.20) reading-
span groups. Similarly, the average numerical value of the
parameter s favoring the detect over the no load condition
was larger in the low (.29) than in the medium (.18) or
high (.19) reading-span groups. Thus, although the direc-
tion of the effects of memory load and individual differ-
ences in reading span on reasoning were the same for both
number and color problems, the magnitudes of these ef-
fects did differ on color problems.

Individual differences. The trends here are also rather
straightforward. In conditions where memory demands
were low (the no load conditions), differences on number
problems were confined to reasoning parameters. That is,
for number problems, the higher a subject’s reading span,
the more likely they were to use class-inclusion reason-
ing and the less likely they were to use subclass—subclass
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reasoning. In particular, the parameter 4 was higher and
the parameter s lower in medium than in low reading-span
groups and in high than in medium reading-span groups.
The same pattern held for color problems, but there was
an additional memory effect. Specifically, the parameter e
tended to be larger in medium than in low and in high
than in medium reading-span groups. This indicates that
for the more difficult color problems, subjects with higher
reading spans not only tended to use class-inclusion rea-
soning but also were better able to encode whether the cues
were the same or different. Finally, when memory demands
were increased (the detect conditions) these patterns con-
tinued. That is, # increased and s decreased with increas-
ing levels of reading span. In addition, the parameter i
tended to be higher in lower reading-span groups, and the
memory parameters ¢ and d tended to be smaller.

Interestingly, an examination of the quantitative pat-
terns associated with the average numerical difference in
the reasoning parameters across the different reading
spans showed that larger differences existed between the
medium- and low-span subjects than between the high-
and medium-span subjects. Specifically, the average dif-
ference in u favoring the higher levels of reading span
were greater between the low- and medium-span subjects
(.13 in the no load condition and .28 in the detect condi-
tion) than between the medium- and high-span subjects
(.06 in the no load condition and .08 in the detect condi-
tion). The average numerical difference in s favoring
lower levels of reading span were in the same direction for
the no load condition (low vs. medium = .10; medium vs.
high = .05). The direction was reversed in the detect con-
dition (low vs. medium = .10; medium vs. high = .13).

What these results indicate is that the higher the sub-
ject’s reading span, the better the subject’s memory and
reasoning was in solving class-inclusion problems. Fur-
thermore, reading-span effects were observed in both the
memory and the reasoning parameters. It would seem,
therefore, that this reading-span measure gives a good
index of a common resource, one that can be deployed to
support memory and reasoning functions in problem-
solving tasks (see note 3).

DISCUSSION

The results of this study are straightforward and in
line with our predictions. First, the main effect of ma-
nipulating memory load was on reasoning parameters.
Consistent with our previous research, we found that col-
lege students reverted to subclass—subclass reasoning as
memory load increased. Interestingly, we also found some
small but reliable changes in the memory parameters fa-
voring the no load condition. In a previous study (Rabi-
nowitz et al., 1989) in which we used the same no load and
detect conditions, we found a similar pattern with the
memory parameters, but only two of seven comparisons
were significant. We suspect that grouping subjects by

reading-span levels reduced the variability of the param-
eter estimates in the present study, yielding more sensitive
statistical tests. In general, the pattern of findings obtained
here with the memory load manipulation is compatible
with models in which reasoning and remembering trade
off in the service of problem solving.

Second, as predicted, individual differences in read-
ing span were consistently related to reasoning strategy
selection for both the no load and the detect conditions.
Furthermore, differences were obtained across each of the
three reading-span levels (low, medium, and high), em-
phasizing the combined sensitivities of the model and the
individual difference measure. In addition, in the detect
condition, reading span affected the memory parameters,
whereas in the no load condition, memory effects were
obtained only for the more difficult color problems. In
general, then, the effects of the individual difference ma-
nipulation and the memory-load manipulation were sim-
ilar and are consistent with a single, global resource model
(e.g., Norman & Shallice, 1986).

These findings confirm a number of suggestions that
the reading span measure would be related to perfor-
mance on problem-solving tasks (Cantor & Engle, 1993;
Just & Carpenter, 1992; Waters & Caplan, 1996). Inter-
estingly, reliable differences were obtained both between
each of the reading-span levels and within each reading-
span level as a function of memory load. This indicates
that at least in this context, it is important to consider the
entire reading-span scale and not just subjects repre-
senting the extremes of the scale. Recall that in the lan-
guage comprehension studies in which this measure has
been used most frequently, reported differences have
been confined to comparisons involving low- versus high-
span subjects (Just & Carpenter, 1992). Whether the in-
creased sensitivity observed here is due to the use of a
mathematical model, the extension of the reading span
measure to problem-solving situations, or both remains
an empirical question.

Third, and arguably surprising, the effects of memory
load and individual differences in reading span were pri-
marily additive. Although there were some differences in
the magnitude, but not direction, of parameter differences
across color and number problems, the overwhelming ten-
dency was for memory load and individual differences in
reading span to make independent contributions to per-
formance. Apparently the special conditions that produce
additive effects, described earlier, hold at least in part for
college students. That is, subjects’ reasoning performance
was above floor and below ceiling with all combinations
of memory load and reading span studied. It is very un-
likely that these results would be obtained with younger
or older subjects, because they typically use the more
primitive subclass—-subclass reasoning strategy under all
conditions that we have examined (see Howe & Rabino-
witz, 1996). Moreover, the present findings are consis-
tent with the assumption that a quasi-linear relationship
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exists between resources and strategy selection, at least in
the restricted resource range sampled here. What this im-
plies is that mathematical functions relating individual
differences in working memory and resource-dependent
performance are likely to be monotonic.

Because of the clear and compelling nature of our find-
ings, it would seem worthwhile to extend Just and Car-
penter’s (1992) computer simulation to domains other
than language comprehension. Indeed, consistent with a
number of suggestions, reading-span measures are pre-
dictive of performance in problem-solving situations (e.g.,
Cantor & Engle, 1993; Howe & Rabinowitz, 1996; Wa-
ters & Caplan, 1996). The present findings also add to the
growing database favoring the existence of a single, com-
mon resource. Because our class-inclusion problems were
presented linguistically, our data do not rule out the possi-
bility that we are dealing with a single language-based re-
source. However, our results are in close agreement with
Swanson’s (1996) recent work, in which a different series
of problems and individual difference measures of work-
ing memory was used. As appealing as the common re-
source notion is—and we too adopted this idea in our ear-
lier work (Rabinowitz et al., 1989)—we must sound a note
of caution. Specifically, common resource models often
falter when developmental contrasts are conducted. That
is, lifespan changes in reasoning— remembering tradeoffs
in the solving of class-inclusion problems have resisted
the more parsimonious single-resource interpretation (see
Howe & Rabinowitz, 1996). Because models of cognitive
performance, including resource models, can be critically
evaluated in a developmental context (also see Karmiloff-
Smith, 1992), it may be helpful to extend the Just and Car-
penter (1992) simulation so that it incorporates dynamic
growth parameters (see, e.g., Howe & Rabinowitz, 1994).
This would be an important advance, because, as we have
just seen, studies of a single age group, like the present
one, may not provide data representative of the range of
the cognitive process under scrutiny or the functioning of
the system over the lifespan (Karmiloff-Smith, 1992).
Such an extension may help us understand the complexi-
ties of resource management in problem-solving tasks
such as these as well as the developmental pattern of rea-
soning— remembering relationships.
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NOTES

1. As already mentioned, despite the fact that the problem informa-
tion remained on the screen while subjects answered the questions, ceil-
ing effects have not been obtained in the no load condition (Howe &
Rabinowitz, 1996; Rabinowitz et al., 1989). As it turns out, ceiling ef-
fects were not present in this experiment either. We believe that the rea-
son for this is that subjects are unable to read the problem information
and reason at the same time. That is, all information must be in work-
ing memory for subjects to generate answers.

2. Technically, the 0 and 1 scores represent a qualitative difference in
error type. Although this scoring scheme is arbitrary for the purposes
of the ANOVA, it represents a meaningful distinction in the context of
the mathematical model. A more traditional analysis in which all errors
are scored as 0 and correct responses as 1 revealed a similar pattern of
findings for the ANOVA.

3. Although we believe that the common resource is domain general, we
cannot rule out the possibility that the resource is specific to language-
based tasks.

APPENDIX A
The Materials Used in Each of the 48 Units

. dogs, cats, animals, brown, and white

. diamonds, squares, shapes, blue, and silver

. stoves, toasters, appliances, beige, and green

. colts, mares, horses, white, and brown

. violins, guitars, instruments, black, and red

. soup bowls, salad bowls, bowls, white, and blue
. pliers, wrenches, tools, grey, and green

~NON N AN —
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8. diamonds, rubies, jewels, white, and red

9. jets, gliders, planes, silver, and orange
10. gum drops, marshmallows, candy, pink, and white
11. peas, beans, vegetables, green, and yellow
12. pears, strawberries, fruit, green, and red
13. novels, dictionaries, books, blue, and black
14. jumbo jets, fighters, planes, pink, and silver
15. circles, triangles, shapes, pink, and purple
16. battleships, submarines, ships, grey, and black
17. peppermints, jelly beans, candy, pink, and green
18. silk pieces, linen pieces, cloth pieces, green, and blue
19. mixers, blenders, appliances, green, and pink
20. pianos, harps, instruments, black, and gold
21. pencils, pens, things to write with, yellow, and pink
22. cucumbers, pumpkins, vegetables, green, and orange
23. Buicks, Fords, cars, silver, and red
24. footballs, golf balls, balls, brown, and white
25. submarines, canoes, boats, yellow, and red
26. markers, crayons, things to write with, green, and purple
27. velvet pieces, denim pieces, cloth pieces, purple, and orange
28. ladybugs, wasps, insects, orange, and yellow
29. rings, bracelets, jewelry, gold, and silver
30. textbooks, comic books, books, green, and red
31. skyscrapers, castles, buildings, blue, and grey
32. tables, chairs, pieces of furniture, white, and brown
33. roses, lilies, flowers, red, and orange
34. robins, swallows, birds, red, and brown
35. Toyotas, Hondas, cars, grey, and blue
36. jays, crows, birds, blue, and black
37. teapots, coffee pots, pots, orange, and beige
38. marbles, blocks, toys, purple, and blue
39. sofas, chairs, pieces of furniture, red, and purple
40. saws, hammers, tools, brown, and silver
41. beetles, butterflies, insects, black, and yellow
42. pigs, cows, animals, pink, and brown
43. sapphires, emeralds, jewels, blue, and green
44. lilacs, primroses, flowers, white, and yellow
45. stallions, mares, horses, black, and brown
46. schools, jails, buildings, red, and black
47. lemons, apples, pieces of fruit, yellow, and green
48. watches, chains, jewelry, silver, and gold

APPENDIX B

The Choice Model Equations

Subclass—subclass problems. The probability of correctly
answering a subclass—subclass problem, if the cues associated
with each subclass were different, is equal to the probability of
correctly encoding the cue values as different, multiplied by the
conditional probability of correctly associating cue values and
subclasses,

P(S.,,) = [ed]. (B1, nd, c)

An E subclass—subclass error would accurately reflect labeling
the cues as different, but reversing the association of cues and
subclasses,

P(E) =[e(l —d)].

An E, subclass—subclass error would reflect labelling the cues as
same rather than different,

P(Ey) = [(1 = e)].

(B2, nd, ¢)

(B3, nd, ¢)

If the same cue was associated with each subclass, the prob-
ability of correctly answering a subclass—subclass problem is e,

P(S,) = [e]. (B4, ns)

In this case, £, and E, errors would be indistinguishable, and both
would result from encoding the cues as different,

P(Elss) = P(EZSS) = [(1 - e)/z] (B3, ns)

Minor-subclass versus class problems. Minor-subclass versus
class number-equal problems cannot be constructed. A
minor-subclass versus class number-different or color problem
can be answered correctly in a number of ways. If the subclasses
are appropriately encoded as different and the cue values are re-
membered, then subclass—subclass and correct interpretations al-
ways result in correct solutions. The logic following either type of
encoding error is different for number-different and color prob-
lems. If a subject understands class inclusion, then, as long as nei-
ther of the subclasses is empty, the relative numerosity of sub-
classes is irrelevant. The superordinate class is always larger than
either subclass and the minor-subclass versus class number-based
problem will always be solved correctly. On the other hand, if cue
values are reversed or treated as the same with the minor-subclass
versus class color-based problem, the subject who understands class
inclusion will always respond “same color” and make an E, error.
For example, if swallows are erroneously encoded as red rather than
brown, the reddest bird is the “same color” as the reddest swallow.

For all problems involving class comparisons with a subclass,
idiosyncratic interpretations generate correct solutions one third
of the time, | errors one third of the time, and E, errors one third
of the time, independently of the way information has been en-
coded. Thus, “i/3” multiplies the probabilities associated with
each of the possible encodings in all of the equations that follow:

P(S,e) = [ed(u+s+i/3)+e(l — d)u + il3) + (1 — e)(u + i/3)],
(B6, nd)

P(S,.) = [ed(u+s+i3)+e(l —d)il3+(1 — e)i3]. (BT, c)

Note that in each of the equations that appear below, as well as
in Equations B6 and B7, the terms are organized so that the
term reflecting correct encoding (ed for the number-different
and color problems, e for the number-same problems) appears
first, whereas the term reflecting reversed same-different en-
coding (1 — e for all problems) appears last.

In the minor-subclass versus class number-different and
color problems, E| errors occur following subclass—subclass in-
terpretations if the cue values associated with each subclass are
reversed,

P(E,...) = [edi/3 +e(1 — d)(s + i/3) + (1 — )i/3].
(B8, nd, c)

In the minor-subclass versus class number-different and color
problems, E, errors (i.e., same-number or same-color choices) oc-
cur following “same” encoding and subclass—subclass interpre-
tations. In addition, as explained earlier, E, errors will occur in
color problems following any encoding error and correct class-
inclusion interpretation,

P(Eye.) = [edil3 +e(1 — d)il3 + (1 — e)s + i/3)], (B9, nd)
P(E,.) = [edi/3+e(1 —d)u +i/3) + (1 —e)(u + s + i/3)].
(B10, ¢)
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Class-inclusion preblems. For all problem types, correct
encoding of the cues followed by the correct interpretation of
the class-inclusion problem results in a correct solution. Be-
cause the number of items is irrelevant, as long as neither sub-
class is empty, in number-based class-inclusion problems, un-
derstanding class inclusion always results in correct responding
in number-different and number-same problems. In number-
different problems, subclass—subclass interpretations of the
class-inclusion problem result in correct answers if the cues are
correctly encoded as different, and associated with the wrong
subclasses. In the number-same problems, subclass—subclass
interpretations of the class-inclusion problem result in correct
solutions half the time if the cues erroneously are encoded as
different, because it is assumed that each of the two cues is
equally likely to be encoded as the more numerous. In the color
problems, either correct or subclass—subclass interpretations of
the class-inclusion problem result in correct solutions (i.e., “same
color”) following encoding of the cues as the same. Therefore,

P(S,) =ed(u + i/3) + e(l —d)Yu+s+i3)+ (1 — e)u+i3)],

(B11, nd)

P(S,;) = [ed(u + i/3) + e(1 — d)i/3 + (1 — e)(u + s + i/3)],
(B12,¢)
P(S,) = [e(u +i/3) + (1 — e)(u + s/2 + i/3)]. (B13, ns)

The equation for £, errors is identical for number-different
and color problems with class inclusion. For all problem types,
if the cues are correctly encoded, errors follow subclass—
subclass interpretations,

P(E\;) = [ed(s + i/3) + e(1 — d)i/3 + (1 — e)i/3],
(Bl4, nd, ¢)
P(E,;) =[e(s +i/3) + (1 — &)i/3]. (B15, ns)

For number-different problems with class inclusion, E, er-
rors (i.e., “same number”) result from encoding the cues as the
same and subclass—subclass interpretations. For color prob-
lems, E, errors (i.e., “class y-er”) follow correct encoding of
the cues as different, reversing the cues associated with the two
subclasses, and either correct or subclass—-subclass interpretations
of the class-inclusion problem. Note that the E, class-inclusion
color error differs from all other types of E, errors in that it can-
not follow same-different encoding errors (i.e., “same” color
encoding, 1 — ) unless the encoding error is associated with idio-
syncratic interpretation (i/3). For number-same problems, E, er-
rors (i.e., “subclass larger”) occur half the time following erro-
neous encoding of the cues as different and subclass—subclass
interpretations. Therefore,

P(E,;) = [edi/3 + e(1 — d)i/3 + (1 — e)(s + i/3)], (B16, nd)
P(Ey) = [edi/3 + e(l — d)u + s +i/3) + (1 — e)i/3],
(B17,¢)
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P(Ey) = [eif3 + (1 — e)(s/2 + i/3)].

The Likelihood Functions

Different likelihood functions were used for the number-same,
number-different, and color problems. This is because different
data and different theoretical equations are relevant to each of
these questions. The likelihood functions are stated according
to the correct responses and errors associated with each ques-
tion type. For each question type, there is an empirical likeli-
hood associated with the data space, one that exhausts all of the
empirical information, and a theoretical likelihood based on the
equations developed in the preceding section of this appendix,
one whose degrees of freedom (i.e., number of parameters es-
timated) are less than that found in the data space.

To begin, consider the empirical likelihood function for the
number same questions,

L4 = P(SSS)NI P(Elss)N2 P(EZSS)N3 P(Sci)M‘ P(Elc:i)N5 P(E2ci)N6’

(B18, ns)

(B19, ns)

where the Ps are observed proportions of either successes or error
types and the Ns are the observed number of times each the events
occurred. The theoretical likelihood function for the number-
same problems is given by the same equation, except that the ob-
served proportions are replaced by the equations describing the
theoretical probabilities for each of the events. For example, e is
substituted for P(S,,); see Equation B4. Similarly [ei/3 +(1 — e)
(s/2 + i/3)] is substituted for P(E,;); see Equation B18. Because
there are only three theoretical parameters involved, the theoret-
ical likelihood function uses three degrees of freedom (L,).

The same process is used for number-different and color prob-
lems. The empirical likelihood function for the number differ-
ent problems is given by

LS = P(SSS)NI P(Elss)Nz P(EZSS)R:; P(Smsc)N4+N4' P(Elmsc)NSﬁVS'
P(E e )NENE P(S V7 P(E,)V8 P(E, )™,  (B20, nd)

where the Ps and N are as before and the primed N terms refer
to the number-different problems substituted for the impossible
number-same minor subclass—class problems. The theoretical
likelihood function for the number-different problems uses four
parameters (L,).

The empirical likelihood function for the color problems is
given by

L6 = P(Sss)N1 P(Elss)N2 P(‘EZSS)N3 P(Sm5c)N4' P(Elmsc)NSI
P(E s )N P(Si)NT P(E V8 P(Epi)™, (B21,¢)

where the theoretical likelihood function for the color problems
also uses four parameters (L,).

(Manuscript received October 28, 1996;
revision accepted for publication July 10, 1997.)





