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At the outset, subjects learned to associate a label with each element in a set of perceptual magni-
tudes (visual extents), using traditional paired-associate learning methods. Subsequently, on some tri-
als, subjects indicated which pair of two pairs of labels corresponded to the more similar perceptual
referents, and, on other trials, they selected the more dissimilar pair. It is shown that these similarity
comparisons satisfy the axioms (transitivity and intradimensional subtractivity) necessary to conclude
that they are based on computation of the difference of the differences of analogue-based interval scale
representations.The findings also permitted refutation of the idea that memory for elementary percepts
arises from their reperception. Notably, the memory exponent was 0.697, but the perception exponent
was 0.546, and the reperception idea requires that the memory exponent be the square of the percep-
tion exponent (0.5462 = (0.298). Symbolic distance effects and enhanced response time-based seman-
tic congruity effects, typically found with binary comparisons, extend the range of commonalties found

between perceptual and memory psychophysics.

Memory psychophysics extends Fechner’s (1860/1966)
outer psychophysics to a determination of the quantita-
tive relationship between the physical magnitude of a
stimulus and its subjective magnitude—not as it is per-
ceived but, rather, as it is remembered. In this article, we
explore the properties of the representation of long-term
memory for elementary visual percepts and the repre-
sentation of the percept itself, and we examine their in-
terrelationships in detail. We begin with a brief review of
the principal findings based on the application of classical
psychophysical techniques to remembered stimuli, and we
discuss some of the limitations of that work. We then ad-
dress the fundamental question of whether a memorial
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representation of a basic element of sensory experience
can be maintained in memory at the level of an interval
scale, by extending the axiomatic approach of fundamen-
tal measurement (Krantz, Luce, Suppes, & Tversky, 1971)
to the domain of memory psychophysics by requiring
comparative judgments of similarity/dissimilarity. Specif-
ically, the subjects were presented with two pairs of pairs
(quads) and were required, on some trials, to indicate
which pair was more similar and, on other trials, which was
more dissimilar. Because binary comparisons were re-
quired with two pairs of pairs, as distinguished from but
a single pair, these judgments are referred to as quater-
nary relational judgments. In order to obtain quaternary re-
lational judgments and thereby determine whether interval
scale representations (i.e., analogue representations)
could be obtained in memory, the subjects first learned
to associate labels with horizontal lines varying in extent,
and subsequently they were required to indicate in which
of the two pairs the labels representing the referent line
lengths were more similar/dissimilar. Finally, we com-
plement the fundamental measurement approach with an
analysis of response times (RTs) in an attempt to charac-
terize the nature of the decision process for quaternary
relational judgments with perceived and remembered
magnitudes.

Copyright 1998 Psychonomic Society, Inc.
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MEMORY PSYCHOPHYSICS:
ISSUES AND TECHNIQUES

The principal aim of the program of memory psycho-
physics is to provide a quantitative characterization of
memories of perceptual experiences. Although this ob-
jective has been addressed in various ways (see Algom,
1992; Baranski & Petrusic, 1992), the main foci of con-
temporary research in (unidimensional) memory psycho-
physics have been to determine (1) the quantitative rela-
tion between subjective estimates of perceived and those
of remembered magnitudes, and (2) the metric properties
(i.e., scale type) of the representation of remembered
magnitudes—namely, is the scale at an ordinal or an in-
terval level of measurement? We consider these in turn.

The Psychophysical Function for Memory

Ratio scaling. Using direct ratio-scaling methods (see
Stevens, 1975), Bjorkman, Lundberg, and Tarnblom
(1960) made the first attempt to determine the properties
of the psychophysical function for remembered magni-
tudes and its relationship to the psychophysical function
obtained when stimuli are perceived. In the first phase of
the Bjorkman et al. experiments, observers studied a set
of circles varying in area in one experiment and cylin-
ders varying in weight in another and, through paired-
associate training, learned to associate labels with each
stimulus. In one experiment, subjects judged the ratio
between the magnitude of a remembered stimulus and
the magnitude of a perceptually available stimulus. In
other experiments, subjects directly estimated the magni-
tude of both perceived and remembered stimuli. Their
findings demonstrated that the relation between the per-
ceived and remembered subjective magnitudes was re-
lated to the underlying physical magnitudes by a power
function. However, the results were rendered somewhat
equivocal by the fact that judgments were required of the
perceived and remembered magnitudes at the same time.

Magnitude estimation: Memory for elementary
sensory magnitudes as reperception. Extending Bj6rk-
man et al.’s (1960) methodology, Moyer, Bradley, Soren-
sen, Whiting, and Mansfield (1978) and Kerst and Howard
(1978) demonstrated that numerical magnitude estimates
of the perceived and remembered sizes of objects were
well described by power functions of their physical sizes.
Noting that the value of the exponent of the power func-
tion for memory was approximately equal to the value of
the perception exponent squared, they formulated the
reperception hypothesis. According to this view, the re-
membered representation arises upon applying a power
transformation to the perceived magnitude, which in turn
arises as a power function of the physical magnitude.
Formally, the psychophysical function for perception is
given by yp(x) = apxBr, where ap and B, respectively,
denote the unit of measurement and the exponent, and
Yp(x) denotes the perceptual magnitude of a stimulus with
physical magnitude x. Because the input to memory is a

power function of the perceptual magnitude, it follows
that y,,(x) = oy p(x)A, where f denotes the exponent for
the transformation from perception to memory, and y,,(x)
denotes the subjective magnitude in memory.
According to the reperception hypothesis, as it has
been invariably expressed (e.g., Kerst & Howard, 1978;
Moyer et al., 1978; and see Algom, 1992, for a review),
B = Bp. Consequently, the memory psychophysical func-
tion is given by y,,(x) = oy, xPu, with oy, = aop and ),

P

Hence, because the exponent for the memory psy-
chophysical function is the square of the exponent of the
perceptual psychophysical function, if the perceptual ex-
ponent is compressive (i.e., <1), the memorial exponent
should be more compressive. Conversely, if the perceptual
exponent is expansive (i.e., >1), the memorial exponent
should be more expansive. Alternatively, and slightly
more generally, the reperception hypothesis asserts that
if Bp > 1, then B,, > Bp, and if Bp < 1, then By, < Bp.

Of course, alternative expressions of the reperception
idea are possible. For example, the memory transforma-
tion could be uniformly expansive—that is,  >1. Con-
sequently, the memory exponent would be always greater
than the perceptual exponent. However, the available
data permit clear rejection of this case, because memory
exponents are very frequently less than their perceptual
counterparts (see Algom, 1992). Similarly, the memory
transformation exponent, f3, could always be less than
one—that is, uniformly compressive.! In this case, the
memory exponent always would be less than the percep-
tion exponent. However, the available findings also per-
mit the rejection of the notion that memory is uniformly
compressive, because there are instances in which expo-
nents in memory are larger than those in perception (e.g.,
roughness; Moyer, Sklarew, & Whiting, 1982). Thus, the
reperception idea has come to be identified with the spe-
cial case of B=f3p.

To date, a number of studies have provided clear sup-
port for the reperception hypothesis with = B, (see,
e.g., Bradley & Vido, 1984; Chew & Richardson, 1980;
Kerst & Howard, 1978; Moyer et al., 1978), whereas other
studies have not (see Algom, 1992). As an example of the
latter, Moyer et al. (1982) showed that, when 8, > 1 (e.g.,
heaviness and sweetness), the memory exponent is less
than the perceptual exponent, although it should be larger
thau it.

Unfortunately, when direct magnitude estimation
methods are used, it is not clear whether the violations of
the reperception idea arise from its basic failure or because
of inherent difficulties with the provision of numerical
estimates that purportedly preserve ratios of sensation
magnitudes (see Krueger, 1989, concerning the repre-
sentation of number and its role in determining the ex-
ponent in the power function). Consequently, we propose
that it would be desirable to reexamine the reperception
idea when the problems arising from direct numerical es-
timation are circumvented.



The Memory Metric:
Response Times for Binary Comparisons

The chronometric approach to contemporary memory
psychophysics began with Moyer’s (1973) landmark ex-
periment requiring subjects to compare the sizes of ani-
mals from memory. Soon after, Moyer and Bayer (1976)
addressed the fundamental question of the memory met-
ric. In the first phase of their experiment, subjects learned
to associate nonsense syllables (CVCs) with each of four
circles varying in size. For one group of subjects, the cir-
cles spanned a wide range, and, for another group, the
range was narrow (although both groups could readily
learn to associate the labels with each stimulus). Moyer
and Bayer found that, as expected, RTs for comparing
perceptual stimuli (i.e., circle—circle) were slower for the
narrow range group. More importantly, they found that
RTs for the remembered comparisons (i.e., CVC-CVC)
also were slower for the narrow range group. They con-
cluded that this result could arise only if interval scale in-
formation was preserved in memory. In fact, as will be-
come evident in the sequel, their finding did not serve to
establish unequivocaily an interval scale for remembered
magnitudes; rather, it was merely sufficient to deny that
the representation was exclusively ordinal, as predicted on
the basis of the currently popular propositionally based dis-
crete semantic-coding theories (e.g., Banks, 1977; Banks,
Mermelstein, & Yu, 1982; Cech & Shoben, 1985; Cech,
Shoben, & Love, 1990). Indeed, the Moyer and Bayer
range effect suggests that the representation is at least at
the level of an ordered-metric scale. Ordered-metric scales
arise when in addition to an ordering of the stimuli, an
ordering of differences is obtained. Although these scales
are “not quite interval scales” (see Krantz, Luce, Suppes, &
Tversky, 1971, pp. 430—431) nonmetric scaling (Kruskal,
1964; Shepard, 1966) applied to the ordering of intervals
permits recovery of a representation.

Although the Moyer and Bayer (1976) range effect was
sufficient to implicate a memory representation more
tightly constrained than a mere ordinal scaling, its em-
pirical status to date remains equivocal. On the one hand,
two attempts to replicate the range effect have proved un-
successful (Banks et al., 1982; Henderson & Well, 1985).
On the other hand, the Banks et al. study also failed to ob-
tain evidence of a perceptual range effect, which is a nec-
essary condition for its occurrence in memory; Henderson
and Well did not determine whether the perceptual range
effect was evident in their experiment. More recently,
Petrusic, Baranski, and Aubin (1995) found marginally
reliable range effects for both perception and memory,
and they discuss a number of methodological and statis-
tical constraints on observing the RT range effect.

In sum, a clear interpretation of some of the critical is-
sues in unidimensional memory psychophysics research
has been complicated by methodological problems with
magnitude estimation techniques and equivocal results
in chronometric analyses attempting to determine the
metric scale of remembered magnitudes. In the present
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paper, we examine simultaneously the metric of remem-
bered magnitudes and the status of the memorial psy-
chophysical function, while overcoming the aforemen-
tioned methodological difficulties. In doing so, we hope
to fill a void in contemporary memory psychophysics re-
search that was first noted some 15 years ago by Nelson
and Chaiklin (1980).

What is required is an empirical test of a set of axioms that
has been proven to yield an interval scale in the style of
measurement theory (see Krantz, Luce, Suppes, & Tver-
sky, 1971). However, since an empirical test of such a set
of axioms has not yet occurred, there is no compelling ev-
idence for an interval scale of the psychological concep-
tion of space. (p. 530)

FUNDAMENTAL MEASUREMENT
AND MEMORY PSYCHOPHYSICS

Similarity/dissimilarity scaling methods, developed
for the direct comparison of intervals, provide an alterna-
tive and largely unexplored set of psychophysical methods
with which to determine the metric properties of mem-
ory representations. The landmark use of similarity com-
parison data and multidimensional scaling (MDS) algo-
rithms led Shepard and Chipman (1970) to propose the
concept of second-order isomorphism through their analy-
ses of rankings of perceived and remembered shapes of
15 American states. However, although their analyses es-
tablished that the two-dimensional representations of the
shapes of the states were quite similar for memory and
perception, it remains unclear whether in fact the condi-
tions necessary for such a representation were well satis-
fied. For example, one such condition—requiring that
subjects are able to order the pairs of states in terms of
shape—requires examination of the transitivity axiom.
Because Shepard and Chipman’s task required a rank or-
dering of the pairs, transitivity was not tested (quite rea-
sonably; with 105 pairs of states, 5,460 pairs of pairs
[105 X 104/2] would have to be compared to test transi-
tivity); rather, it was imposed. In the experiment to be
reported, transitivity was not imposed; it was explicitly
tested, along with the other testable axioms for a positive
difference structure.

Positive-Difference Structures

Elegant and highly developed quantitative theories
exist, in the form of a set of axioms, that permit a math-
ematical proof of the existence of a representation that
preserves the observable properties of the empirical re-
lation on which the representation is based. In the present
case, the empirical relation, denoted S, arises from a direct
comparison of two pairs of stimuli, ab and cd, for exam-
ple; whenever the subject judges the pair ab as more sim-
ilar than the pair cd, we say the pairs ab and cd are in the
(quaternary) relation § and we denote this by abScd.?
The fundamental measurement approach imposes con-
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straints, in the form of axioms, on the relation S (i.e., on
the similarity comparisons) such that, if these constraints
are satisfied, it is possible to obtain an interval scale rep-
resentation of the stimuli from the similarity-based or-
dering of the stimulus pairs. The word positive in the ex-
pression positive-difference structure arises from the fact
that the representation of sensory or memory differences
is in terms of positive intervals. Positivity is readily en-
sured through the use of a set of stimuli, such as extent, for
which subjects are easily able to order the underlying ele-
ments—that is, the extents that will be employed in the
direct comparisons of pairs of pairs for similarity can be
clearly distinguished in terms of their lengths.

The representation for a positive-difference structure
is given by

abScd iff s(a) — s(b) = s(c) — s(d), (1)

where s(a) denotes the representation of stimulus g—
that is, the pair ab is judged as more similar than the pair
cd whenever the difference in the representations of stim-
uli @ and 4 is less than the difference in the representations
of stimuli ¢ and 4, and conversely.

The critical, testable axioms for a positive-difference
structure (see Krantz et al., 1971, for the formal treatment
of difference measurement, and Beals, Krantz, & Tversky,
1968, and Block & Marschak, 1960, for axiomatizations
of closely related systems) can be stated as follows.

Weak ordering requires (1) comparability (i.e., the sub-
ject can render a judgment) and (2) transitivity, which is
defined as, for all triples of pairs ab, cd, ef,

if abScd and cdSef, then abSef.

Positivity requires that, if ab, bc, and ac are in the set of
pairs to be compared, then abSac and bcSac. In the pre-
sent unidimensional context, with clearly distinguishable
stimuli, this axiom will be satisfied perfectly and is an-
other way of saying that the stimuli can be ordered, with
a > b > ¢, on the underlying sensory (memorial) con-
tinuum.3

Weak monotonicity, also known as the sextuple condi-
tion, is a necessary axiom and is the axiom typically tested.
Weak monotonicity, which ensures homogeneous concate-
nation of intervals throughout the underlying attribute, re-
quires that for all elements g, b, ¢, a’, b’, and ¢’ in the stim-
ulus set,

if abSa’b” and beSb'c’, then acSa’c’.

Given that these axioms and the technical (i.e., non-
testable*) axioms are satisfied, a positive-difference rep-
resentation, as specified in (1) above, is guaranteed. Fur-
thermore, this representation is unique up to a linear
transformation, thus ensuring an interval scale represen-
tation—that is, if s'(x) and s(x) are any two representations
satisfying the axioms, then s’(x) = as(x) + b, where a > 0
and b are constants, reflecting changes in the unit of mea-
surement and the origin of the scale, respectively.

In alternative axiomatizations of difference systems
{(Block & Marschak, 1960; Suppes & Winet, 1955; Sup-
pes & Zinnes, 1963), the quadruple condition, which we
refer to as intradimensional subtractivity (IDS), is used in
place of the monotonicity axiom. IDS is defined as: for
all subsets of stimulia, b, ¢, and d, witha > b >c¢ > d,

abSed iff acShd.

Fuller appreciation of the IDS axiom is evident on not-
ing that, given the representation exists, then acSbd iff
s(a)y —s(c)=s{a) —s(b)+s(b) —s(c) < s(b) —s(d)=
s(b) — s(c) +s(c) — s(d), but on canceling the common
distance, s(b) — s(c), the inequality reduces to s(a) —
s(b) <s(c) ~ s(d), which is equivalent to abScd. Thus,
comparisons with quads of the form (ac, bd) can be re-
duced to comparisons of quads of the form (ab, cd)
through the cancellation of the common distance s(b) —
s(c). We thus say that the IDS axiom is necessary—that is,
it follows on assuming the existence of the representation.5

Metric Representability and
Implications for Memory Psychophysics

If the representations in memory preserve only the
strict ordinal relations among the underlying perceptual
referents, as suggested by some propositionally based ac-
counts of symbolic comparisons, it is unlikely that simi-
larity comparisons with symbolic comparisons could be
rendered, except for those based on differences in ordinal
magnitudes. On the other hand, if the memory represen-
tations activated are invariant up to at least a linear trans-
formation (i.e., an interval scale), then, of course, the com-
parison of two intervals is possible, and the similarity
comparison could be rendered. Thus, satisfaction of the
major testable axioms (transitivity, monotonicity, and IDS)
and consequently obtaining a metric representation of re-
membered magnitudes would tightly constrain semantic-
coding—based theories (see, e.g., Banks, 1977; Banks
et al., 1982; Cech & Shoben, 1985) and force the devel-
opment of more highly articulated propositional systems
capable of the generation of relations among intervals.

Structural Models for Similarity
Comparison: Response Time Analyses

Although comparisons of pairs of pairs for similarity/
dissimilarity have been obtained only rarely (see, e.g.,
Petrusic & Jamieson, 1989; Schneider, Parker, & Stein,
1974), studies of the decision processes involved with such
comparisons are even more infrequent. Dember (1957),
extending Coombs’ (1952, 1964) theory of data to an
analysis of RTs, required subjects to decide, in one exper-
iment, which of two pairs of brightness patches was more
similar and, in another experiment that called for memory-
based information, which of two pairs of adjectives was
more similar. Dember, in preliminary examination of RTs
in this more complex task domain, showed a dependence
of RT on the differences of the differences to be com-



pared. However, Dember’s landmark examination ex-
cluded quads of the form (ac, bd ), where the elements are
ordered @ > b > ¢ > d on the underlying continuum.
Consequently, it was not possible to determine whether
the IDS axiom was satisfied.

With a view toward characterizing the decision process
involved in similarity/dissimilarity comparisons, we com-
plement the fundamental measurement analyses with an
examination of RTs with both perceived and remembered
magnitudes. First, we examined the generality of Dember’s
(1957) conclusion that RTs were consistent with a differ-
ence of differences decision rule. According to this rule,
RTs with the quad (ab, cd) are a monotonic decreasing
function, F, of the difference in the distances between
the stimuli in each pair—that is,

RT(ab,cd) = F(d(a,b) — d(c,d)),

where d(a,b) = s(a) — s(b) denotes the distance between
the representations of stimuli ¢ and b on the underlying
continuum. Second, we sought to determine whether se-
mantic congruity effects, to date only evident with binary
comparisons, would occur with quaternary relational
judgments. Semantic congruity effects would be demon-
strated by RT (abScd ) < RT (abDcd ) if the pairs ab and
cd are similar but by RT (abScd) > RT(abDcd) if the
pairs ab and cd are dissimilar.

In summary, the objective of the present research was to
extend the axiomatic approach of fundamental measure-
ment to the domain of unidimensional memory psycho-
physics. Three major findings will be reported. First, we
will demonstrate that quaternary relational judgments with
remembered magnitudes satisfy the axioms for a positive-
difference structure—that is, we confirm an interval scale
for remembered magnitudes and then obtain a power-
function—based representation for each subject separately
for perception and for memory by applying a multidi-
mensional scaling routine (ALSCAL) to the obtained rank
orderings of distances. Second, we will provide a critical
test of the reperception hypothesis of the memorial psy-
chophysical function, while circumventing the problems
associated with magnitude estimation techniques. Finally,
our RT analyses will demonstrate that formally equivalent
decision processes are involved in resolving perceptual
and memorially based similarity/dissimilarity judgments.

METHOD

Subjects

Eleven psychology graduate students served as paid volunteers
for one 2-h session. An additional subject was unable to perform
some of the remembered comparisons, and his data were excluded
from the analyses.

Apparatus

Stimuli were presented on an Amdek-310A video monitor with
720 pixels horizontally and 640 vertically. Graphics production,
presentation of instructions and stimuli, event sequencing and tim-
ing, and the recording of responses and RTs were controlled by an
IBM-PC/XT clone computer. Responses were made by using the
buttons on an IBM-PC mouse.
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Stimuli

The stimuli were six horizontal line segments: 33, 100, 200, 333,
466, and 633 pixels (10.54, 31.95, 63.90, 106.39, 148.88, and
202.27 mm). The lines appeared amber on a black background,
were presented at eye level, and were viewed at a distance of ap-
proximately 50 cm in a dimly lit room. The shortest line subtended
a visual angle of approximately 1°, and the longest, 23°.

Procedure

The experiment had two parts: a learning phase and a similar-
ity/dissimilarity judgment phase. Each subject was highly familiar
with the set of remembered magnitudes; the subjects had served in
two previous 2-h sessions in which they made binary comparisons
with six remembered magnitudes (Kennedy, 1990), and each of
these sessions was preceded by an acquisition phase that involved
extensive overlearning.

Learning phase. The present experiment began by ensuring that
the subjects retained the stimulus—CVC label associations acquired
in the two sessions preceding the similarity/dissimilarity compari-
son session. In order to keep the similarity comparison task man-
ageable, we used five of the original six line lengths. Half the sub-
jects worked with the stimulus set 10.54, 31.95, 63.9, 106.39, and
148.88 mm; the other half worked with the set 10.54, 31.95, 63.9,
148.88, and 202.27 mm.

The set of CVCs (e.g., CED, GOZ, JIB, NAD, and WUM) was
counterbalanced over subjects and lines. On each learning trial, one
of the five lines was presented in the middle of the screen. All five
CVCs appeared below the line in individual boxes (in a random
order on each trial). By moving the mouse from side to side, the
subjects could illuminate any one of the boxes containing the
CVCs. The subjects depressed the middle key on the mouse when
they assumed the illuminated CVC to correspond to the line pre-
sented on the screen. If they were correct, the CVC remained illu-
minated for 2 sec. If they were incorrect, the correct CVC was illu-
minated for 2 sec. Subjects had 5 sec to perform the association. If
this time was exceeded, Too Slow appeared, and, again, the correct
CVC was illuminated for 2 sec. The subjects performed learning
trials until a criterion of 15 correct matches in a row were obtained
(i.e., 3 with each line). This was followed by an additional 15 over-
learning trials (3 with each line).

Similarity/dissimilarity comparison phase. The two pairs
of lines in each quad were centered horizontally and vertically
above one another; 20 mm separated the bottom stimulus of the top
pair from the top stimulus of the bottom pair. On perceptual trials, the
lines in each pair were separated by 5 mm. On memory trials, the
CVCs in each quad appeared in the same vertical locations as the
lines.

With five stimuli there are 10 pairs and 55 pairs of pairs. To keep
the task manageable, we excluded quads in which no metric infor-
mation was gained (i.e., quads in which the judgment could be ren-
dered on the basis of merely knowing the ordinal relations among
the stimuli). For example, the enveloping quads [e.g., (ad,bc)] and
the unilateral quads [e.g., (ab,ac)), in which the stimuli are ordered
a > b > ¢ > d, were removed (i.¢e.. it was assumed that the positiv-
ity axiom would be perfectly satisfied). Upon removal of these
quads, 20 quads remained. After counterbalancing for position (i.e.,
each pair in each quad and each line {CVC] in each pair appeared
equally often on the top and the bottom), a total of 80 combinations
of quads was defined. These were each presented twice, once with
each instruction (Which is more similar/dissimilar?). resulting in a
total of 160 trials per session. Each trial began with the presentation
of an instruction (Which is more similar/dissimilar?). The quad ap-
peared 1 sec later. Both the instruction and the quad remained on
the screen until the subject responded.

The subjects performed two sessions of similarity/dissimilarity
judgments, the first with the remembered stimuli (CVCs) and the
second with the perceptual stimuli. Instructions for the similar-
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Table 1
Frequency Distribution of the Number of Violations
of Weak Stochastic Transitivity in Memory and in Perception

No. Intransitivities

No. Subjects
Displaying Intransitivities

(Out of 120 Tests) Memory Perception
0 7 7
1 1 3
2 2 0
3 1 0
4 0 0
5 0 0
6 0 1

Total no. intransitivities
across all subjects

8 out of 1,320 tests

9 out of 1,320 tests

ity/dissimilarity comparison task emphasized accurate responding
for both the remembered and the perceptual stimuli.

RESULTS AND DISCUSSION

Tests of the Axioms for
a Positive-Difference Structure

Weak stochastic transitivity (WST). WST, the weak-
est probabilistic version of the axiom asserting that sub-
jects can order the intervals, requires that

if Pr(abScd) > 0.50 and Pr(cdSef) > 0.50,
then Pr(abSef) > 0.50,

where Pr(abScd) > 0.50 denotes that more than half the
time the pair ab was judged more similar than the pair cd.
For each subject, for each quad, there were four replica-
tions with each of the two instructions. Consequently, an
estimate of Pr(abScd) was obtained by assuming that
Pr(abScd) = Pr(cdDab), where Pr(cdDab) denotes the
probability that stimulus pair cd is more dissimilar than
pair ab, and then averaging the estimates with the two in-
structions. Because there were four replications with each
instruction, ties could arise. Over all 11 subjects and the
20 quads for each type (perception vs. memory) of com-
parison, there were seven ties in perception and seven in
memory and they were resolved by a coin toss. It was also

assumed that judgments with the enveloping and unilateral
quads (i.e., those in which the judgment could be rendered
by knowing the ordering of the stimuli) would have been
made errorlessly.

With five stimuli, there are 10 pairs and 120 triples.
Table 1 provides the frequency distribution of the num-
ber of triples failing to satisfy WST. Bearing in mind that
the expected number of intransitivities for a subject re-
sponding by chance is 30 (SD = 4.74), it is clear that the
obtained orderings are several standard deviations below
chance. Hence, it can be concluded that these subjects
are, indeed, capable of ordering intervals, both when the
stimuli are perceptually available and when they must be
activated in memory.

Intradimensional subtractivity. There were five tests
of IDS for each subject. Table 2 provides the frequency dis-
tribution of the number of times IDS was satisfied for mem-
ory and perception. As Table 2 shows, violations of IDS
were rare; they occurred with approximately the same rel-
ative frequency in memory as in perception. Violations
never occurred when the subjects were perfectly consis-
tent in their choices over the eight replications with either
the overlapping or the disjoint quads in both the percep-
tion and the memory conditions, suggesting that unreli-
ability in establishing the order relations in each quad
was a factor contributing to observing violations of IDS.

Table 2
Frequency Distribution of the Number of Times Intradimensional
Subtractivity (IDS) Was Satisfied for Memory and for Perception

No. Times IDS Was

No. Subjects Satisfying IDS

Satisfied (Out of Five Tests) Memory Perception
0 0 0
1 0 0
2 0 4]
3 1 1
4 6 7
5 4 3

Total no. times IDS
was satisfied across all subjects

47 out of 55 tests

46 out of 55 tests
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Figure 1. Individual-subject plots of subjective length (ALSCAL scale values) as a function of physical length for

perception (filled circles) and memory (unfilled circles).

Hence, there is good support for IDS, and, consequently,
metric representations for visual extent can be deter-
mined.

Psychophysical Functions
for Individual Subjects

Because intransitivities occurred for some subjects
and because the MDS routines require an ordering of in-
tervals, the vote count method was used to resolve in-
transitivities (see Petrusic & Jamieson, 1979, 1989, for
use of the vote count index in testing axioms for a dif-
ference structure). The vote count for stimulus pair ab,
denoted ¥V'C(ab), was obtained by computing VC(ab) =
2. Pr (abSxy), where the summation is over all pairs xy
excluding ab. ALSCAL-Multidimensional Scaling (SPSS
Inc., 1988; Takane, Young, & de Leeuw, 1977) based
representations, in one- and in two-dimensional Euclid-
ean space, were obtained for each subject for perception
and for memory, using the rank ordering of distances ob-
tained with the vote count index. The stress values with
the one-dimensional solutions are acceptably low, in ac-
cord with satisfying the axioms for a positive difference
structure, ranging from 0.0001 to 0.034 (M=0.014,SD =
0.012) in perception and from 0.0001 to 0.030 in memory
(M=0.011, SD = 0.009), and they were not appreciably

lower for a two-dimensional solution. Figure 1 provides
plots of the ALSCAL scale values against the physical
extents, separately for perception and for memory. For
each subject, the perceptual and memorial functions bear
a close resemblance to one another. A more precise ex-
amination of this correspondence and its implications
for the reperception hypothesis is presented in the next
section.

Properties of the Psychophysical Functions

In order to examine the form of the psychophysical
function obtained with the ALSCAL scale values, we as-
sume that the ALSCAL scale value for a stimulus with
physical magnitude x, S(x), is linearly related to the repre-
sentations, Y (x), in perception and in memory—that is,
Y(x)=aS(x)+ b, where a and b are multiplicative and ad-
ditive constants, respectively. Generally, we assume y(x) =
aS(x) + b = oxhB with o¢ > 0, referred to variously as the
multiplicative constant and the measure constant, and 8 >
0, the exponent in the power function. Upon dividing
through by « and taking logarithms, log(S(x) + b/a) =
log(a/a) + Blog(x). The value of y= b/a maximizing the
correlation between log(S(x) + ¥) and log(x) was then se-
lected, using an iterative computer routine. Given the value
of ¥ the exponent, 8, was then obtained by conventional
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plicative constant (panel b), and additive constant (panel c). Each point denotes the relation for an individual subject.
Solid lines denote the regression line, and dotted lines the main diagonal.

least squares. The procedure used here to fit the power
function to ALSCAL scale values parallels that used by
Petrusic and Jamieson (1979) and Schneider et al. (1974).

The left panel in Figure 2 provides a plot of the mem-
ory exponent as a function of the perception exponent,
with each of the 11 subjects contributing a point to the
plot. For perception, the mean exponent in the power
function is 0.546 (SD =0.274, range = 0.066—-1.076). For
memory, the mean exponent in the power function is 0.697
(SD=0.376, range = 0.137-1.283). As is evident, there is
a strong positive relation between the individual-subject
exponents for memory and perception [r2=.677, F(1,9)=
18.655, p < .002]; subjects who show extreme compres-
sion in the psychophysical function for perception also
show such compression with the memory psychophysical
function, and subjects with the larger exponents in percep-
tion are those who exhibit the larger exponents in mem-
ory. In addition, a highly positive relation is also evident
with the multiplicative constant [r2 = 937, F(1,9) =
135.48, p < .0001] and with the additive constant [r2 =
.870, F(1,9)=76.91, p < .0001]. Thus, this close corre-
spondence between memory- and perception-based psy-
chophysical function parameters provides a replication and
extension of the second order isomorphism idea estab-
lished in Shepard and Chipman (1970).

The reperception hypothesis: A critical test. Given
that the average exponent for perception is 0.564, the
reperception view requires the memory exponents to be
smaller than the perceptual exponents—that is, 0.5642 =
0.318, on average. However, in striking contrast to the
reperception view, the memory exponent is 0.697, which
is in fact significantly larger than its perceptual counter-
part [(10) = 2.31, p < .043, by a two-tailed test]. This
failure of the reperception hypothesis is especially note-
worthy because it cannot be attributed to idiosyncratic
biases in the manner in which subjects use numbers (e.g.,
in magnitude estimation) or to differential compres-
sion—expansion in the internal psychophysics of number
magnitude when memory magnitudes are estimated, as

compared with when perceptual magnitudes are esti-
mated (see Krueger, 1989, p. 256, concerning subjective
number and the exponent in magnitude estimation).

Although the formulation of the reperception idea has
been based exclusively on the exponent of the power func-
tion, it is also of interest to provide a fuller characteriza-
tion of power-function—based memory psychophysics by
examining the properties of the multiplicative and the
additive constants as well. For perception, the mean of
the multiplicative constant is 1.44 (SD = 3.69, range =
0.009-12.531), and for memory the mean is 0.67 (SD =
1.39, range = 0.006—4.625), and these two means do not
differ reliably [#(10) = 1.09, p > .30]. As well, the means
for the additive constant are 3.62 (SD=4.27, range = 1.39-
16.30) and 2.51 (SD = 2.09, range = 1.31-8.00) for per-
ception and memory, respectively, and these means are
not reliably different [£(10) = 1.50, p > .16].

Relations among the parameters of the power func-
tion. Although the primary concern of psychophysicists
has been with the exponent of the power function, the
multiplicative constant (referred to variously as the mea-
sure constant or the coefficient) has also been of both
theoretical and empirical interest, as has the relationship
between these two parameters. Borg and Marks (1983),
while detailing the variety of factors that can influence
the size of the measure constant, have strongly encour-
aged its fuller examination. Of course, Brentano’s (1874)
formulation of the power function provides a clear and
compelling basis for empirical examination of the rela-
tionship between the exponent and the multiplicative con-
stant. According to Brentano (see Krueger, 1989, p. 253),
letting k = A I/] denote the Weber fraction and ¢ = AS/S
constant relative subjective magnitudes, the power law is
expressed as

S = Io-c/k[c/k , (2)
where S and / denote subjective and physical magnitude,
respectively, and the constant, /,,, the absolute threshold.
Denoting the exponent by £ and the multiplicative con-
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stant by M, the relationship between these two param-
eters is given by

E= logM, 3)
logi,

and thus, as is evident, the exponent is inversely related to

the logarithm of the multiplicative constant (M = [ ¢k =

I;E), and the slope of this relationship depends on the

absolute threshold, /.

The left panel of Figure 3 provides plots of the rela-
tionship between the exponent and the logarithm of the
multiplicative constant, and the plots in the right panel
characterize the relationship between the exponent and
the additive constant, on log—log coordinates (i.e., a
power function describes the relationship for these two
parameters), over subjects, separately for perception and
memory.

Regression analyses provide strong support for the
Brentano-based relationship between the exponent and
the multiplicative constant specified in Equation 3; for
perception [r2 = 985, F(1,9) = 604.01, p < .0001] and
for memory [r2=.983, F(1,9)=447.65, p < .0001]. Fur-
thermore, these linear relationships are virtually identical
for perception and memory; the slopes are —0.337 and
—0.388 for perception and memory, respectively, adding
further force to the view that memory and perception
share common properties. However, these analyses of the
relationship between the exponent and the multiplicative
constant must be viewed cautiously, because Rule (1993)
showed that, in the two-parameter power function, the re-
lationship between these two parameters depends on the
units used to measure the physical stimuli. Nevertheless,
the commonality of the relationship between exponent

and multiplicative constant for perception and memory
holds independently of Rule’s sage theoretical analyses.

The plots in the right panel of Figure 3 show that the
value of the exponent is dependent on the value of the
additive constant obtained from the iterative routine, as
outlined above in the procedure used to obtain the best fit-
ting power function. On log—log coordinates, the slopes
for perception and memory are —1.113 and —1.180, re-
spectively, with 2 = 985, F(1,9) = 604.01, p < .0001
for perception, and 2= .980, F(1,9) =447.65, p < .0001,
for memory. Thus, for both perception and memory and
in precisely the same manner for both, as the additive con-
stant increases, the exponent in the power function de-
creases. Indeed, in the limiting case, as the additive con-
stant becomes arbitrarily large, the exponent goes to zero,
which, as Fagot (1963) and Krueger (1989) have noted,
is the case in which the power function converges to the
highly compressive logarithmic function.

Response Time Analyses

Ordinal distance effects. Figure 4 shows that RTs
with the bilateral quads exhibit a clear ordinal distance
effect for both the memorial and the perceptual compar-
isons. In particular, RT (12,23) > RT(12,24) > RT(12,25),
where RT (12,23), for example, denotes the RT, after av-
eraging over the two instructions (i.e., similar/dissimilar),
for comparisons with the quad involving pairs 12 and 23.
Similarly, RT (34,45) > RT(24,45) > RT(14,45). The
plots in Figure 4 were obtained upon averaging RTs with
these two different sets of quads.

An ANOVA was conducted with type of comparison
(memory vs. perception), whether the middle stimulus in
the bilateral quad was Stimulus 2 [with quads of the form
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Figure 4. Response times and standard errors as a function of distance for
bilateral quads for memory (open circles) and perception (circles). Distance
is defined by the difference of the differences in ordinal units. Standard er-
rors are based on the error terms for the distance effect in separate ANOVAs

for perception and for memory.

(12,2x), where x = 3, 4, 5] or Stimulus 4 [with quads of
the form (x4, 45), where x = 1, 2, 3], and the instruction
(more similar vs. more dissimilar) as within-subjects fac-
tors. Throughout, we employ Greenhouse—Geisser ad-
Jjusted degrees of freedom, although the degrees of free-
dom indicated are those defined by the design. The main
effect of type of comparison was highly reliable [F(1,10)=
40.40, p < .0001], reflecting that (average) RTs were
longer with memory-based quads than with perceptually
based quads (6.18 vs. 2.28 sec). In addition, establishing
a clear parallel with binary relational judgments, RTs
with these quaternary relational judgments exhibit a re-
liable ordinal distance effect [F(2,20)=9.02, p < .0098].
No other effects were statistically reliable.

In the above analyses, for these stimuli, ordinal distance
and physical distance are perfectly monotonically related;
consequently, the dependence of RTs on differences of
differences on the basis of the metric properties of the
stimuli remains to be established. Nevertheless, the above
analyses are important in establishing, in a preliminary
manner, further parallels between perceptually based and

remembered comparisons, thus extending RT-based mem-
ory psychophysics to similarity comparisons. The analy-
ses to be presented in the next section provide an explicit
test of the metric-based difference of differences rule, sep-
arately for perception and for memory.

Metric-based distance effects. For each subject, for
each quad, we first calculated the difference of the dif-
ference, D(i,},k,1), defined by

DG, j k) =||xf —xB|-|xf - £,

where fdenotes the exponent in the three parameter power
function fit to the ALSCAL-based scale values and x the
physical value (in pixels) of the stimulus. Least squares lin-
ear regression was then used to determine the relation-
ship between RTs and the D(i,j,k,I)s for each subject,
separately for perception and memory, with an inverse
power law function, RT = aD(i,},k,1)®, with b < 0, and
with the simple linear relationship, RT = a D (i, j,k,0) + b,
with a < 0.

For perception, the average value of »2 (over subjects)
for the power function fits was 0.497, with a minimum
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the three-parameter psychophysical function obtained from ALSCAL scale values and
the value of the exponent corresponding to the maximum value of r2 in fitting response
times to the difference of differences (each point represents the relationship for a single
subject) for perception (panel e) and for memory (panel f).

value 0f 0.247 and a maximum of 0.691. For the linear re-
lationship, the mean value of #2 was 0.466, with 2 vary-
ing between 0.221 and 0.671. For memory, the fits were
considerably poorer; for the power function, the mean
value of ¥2 was 0.161, with 2 varying between 0.005 and
0.414; for the linear relationship, 2 varied between 0.007
and 0.563, with a mean value 0f0.219. The fits for 2 sub-
jects, M\M.T. and S.J.M., were extremely poor with both
functions (e.g., 0.006 and 0.016, respectively, for the lin-
ear relationship). RTs for these 2 subjects also failed to

monotonically decrease with increasing ordinal distance.
Thus, these 2 subjects were eliminated from further met-
ric RT analyses. Furthermore, because the fits were as well
characterized by the simple linear relationship as the in-
verse power function, for both perception and memory, the
simple linear function was used in subsequent analyses.

To make RTs comparable across subjects, RTs for
each subject were standardized by subtracting the mean
overall 20 quads and then dividing this difference by the
standard deviation. Because the values of D(i,j,k,[) for
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each quad vary widely, depending on the value of B, the
D(i,j,k,l)s were also standardized. Mean standardized
RTs are plotted against mean standardized D (i, j,k,/)s in
the top left panel of Figure 5 for perception and in the
right for memory.

For the perceptual comparisons, the plot is well char-
acterized by linearity, with a slope of —0.683 (the inter-
cept is necessarily zero) and r2=.724 [t(9) =9.28,p <
.001]. For memory, although the plot is also reliably
characterized by linearity, with a slope of —0.567 and 2=
448 [t(7)=3.211, p < .01], concomitant with the longer
and more variable memory comparisons, deviations from
linearity are more evident. Thus, we can conclude that
there is support for the difference of differences rule for
both perception and memory, in accord with satisfaction
of the axioms for a positive-difference structure.

Response Time-Based Estimates of the
Exponent of the Psychophysical Function

For each subject, the obtained RT fits to the D (i, j,k,[)s
were based on the specific value of the exponent, S, ob-
tained from the fits of the three-parameter power function
to the ALSCAL scale values. Strong support that these
estimates provide an accurate description of individual-
subject psychophysical functions would be obtained if they
converge with an entirely independent estimate of the ex-
ponent, B. RTs fit to the D (i, j,k,I)s provide one such esti-
mate. To determine whether these two estimates do, in-
deed, converge, the exponent, 8, was systematically varied
and, for each value of B, D(i,jk,!l) was calculated. RTs
were then fit as a linear function of the D (i, j.k,[)s, the
plot of the goodness of fit index, 2, as a function of the
exponent was obtained, and the value of the exponent
corresponding to the maximal value of 72 was determined.

The middle panels of Figure 5 provide examples of the
form of these r2 versus fplots for LMK and AMD, these
2 subjects showing the best fits for perception and mem-
ory, respectively. The plots exhibit a well-defined maxi-
mum, and the proximity of this maximum to the ALSCAL-
based estimate of the exponent should be noted. Moreover,
this close correspondence between these two independent
estimates of the exponent is not confined to these 2 sub-
jects, who happen to have the most orderly RT-D(i, j k1)
linear relation, as the plots in the bottom panels in Fig-
ure 5 show. These plots, with each subject providing a
point, of the exponent based on ALSCAL scale values
against that obtained from the RT-D(i,j,k,[) relation
with the maximal value of r2 are well characterized by
linearity for both perception [r2 = .851, £(9) = 18.574,
P <.001] and memory [r2=.762,¢(7)=8.812, p < .001].
In summary, these analyses provide powerful converging
support for both the ALSCAL-based three-parameter
power function, the particular estimate of the exponent,
and simultaneously for the differences of differences
model for RTs in similarity/dissimilarity comparisons.
Such an orderly interlocking of parameters based on the
choice and RT data for both perception and memory pro-
vides further and very detailed evidence of their common-
alties in representations and decisional processing.

Overlapping versus disjoint quads. As indicated
earlier, IDS requires that identical order relations must
hold with the disjoint quads (e.g., abScd, for stimuli or-
dereda > b > ¢ > d) and the corresponding overlapping
quads (acSbd), and strong support was evident for IDS
with both the perceptual and the memorial similarity/
dissimilarity judgments. Given this equivalence of rela-
tions, it is natural to inquire whether equal decision times
are required with the overlapping and the disjoint quads.
Further, the support for the difference of differences
model, especially at the metric level, motivates closer
scrutiny of this model with the disjoint and overlapping
quads.

According to the difference of differences model, RTs
for the overlapping quads are given by the expression
RT (ac, bd) = F(d(a,c) — d(b,d)), where F'is a monot-
one decreasing function and d(a,c) denotes the distance
between the representations of stimuli @ and c. On the
assumption of additivity of distances, as in the earlier
demonstration that the IDS axiom is necessary, d(a,c) =
d(a,b) +d(b,c), and, similarly, d(b,d) =d(b,c) + d(c,d).
Consequently, it follows that RT (ac, bd ) = F(d(a,b) —
d(c,d))=RT (ab,cd). Thus, the difference of differences
model predicts that RTs with the overlapping and the dis-
joint quads will be identical.

Panel a of Figure 6 provides plots of average RTs
with the overlapping and the disjoint quads. An ANOVA
was conducted with comparison condition (memory/
perception), type of quad (overlapping/disjoint), and in-
struction (similar/dissimilar) as within-subjects factors.
Overall, comparisons with the memory quads took longer
than those with the perceptual quads [F(1,10) = 48.32,
p < .0001]. In addition, RTs with the overlapping quads
were 817 and 1,323 msec longer than those with the dis-
joint quads for the perception and memory conditions, re-
spectively [F(1,10) = 29.40, p < .0003], but the inter-
action between comparison condition and type of
comparison did not attain conventional statistical signif-
icance [F(1,10) = 1.90, p > .195]. Thus, these findings
suggest that a model for similarity/dissimilarity compar-
isons that asserts that RT's are strictly a function of the
difference of the differences in representations is not sup-
ported. On the other hand, given that the IDS axiom is
strongly supported on the basis of the choices made and
given the clear dependence of RT on the difference of the
differences, it may well be the case that the RT analyses
are sensitive to factors contributing to decisional pro-
cessing that are not exclusively based on the putative dif-
ference of differences, positive-difference structure-
based representation.

Semantic congruity effects. We assume that pairs in
the disjoint (overlapping) quads are more likely to be
viewed as similar (dissimilar), because, generally, pairs in
overlapping quads span a wider distance on the underly-
ing continuum than do the pairs in the disjoint quads.
Consistent with this view, semantic congruity effects are
evident for both perception and memory in the plots in
panel b of Figure 6 of the congruity index for the disjoint
and the overlapping pairs. The congruity index, obtained
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based on the ANOVA with the congruity index. SEs in each plot are based
on the error term for the effect of type of quad in separate ANOVAs for per-

ception and for memory.

by subtracting RTs with the instruction more similar from
RTs with the instruction more dissimmilar, is positive for
the disjoint pairs, reflecting faster RTs with the instruc-
tion more similar; for the overlapping pairs, the index is
negative, reflecting faster RTs with the instruction more
dissimilar [F(1,10) = 12.96, p < .0048]. In addition, par-
alleling an established body of work with binary compar-
isons (see, e.g., Banks et al., 1982; Petrusic, 1992; Petru-
sic & Baranski, 1989; Petrusic et al., 1995), the semantic
congruity effect is larger with remembered stimuli; the
effect is approximately 165 msec for perception but is

over 400 msec for the memory comparisons. This result
is supported by a three-way interaction involving type of
stimulus, type of quad, and instruction [F(1,10) = 5.05,
p < .05].

GENERAL DISCUSSION

The present findings extend the area of memory psycho-
physics to include quaternary relational judgments with
remembered magnitudes. Given the satisfaction of the ax-
ioms for a positive-difference structure and the low-
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stress—based ALSCAL representations, we conclude that
elementary aspects of sensory experience can be main-
tained in memory at the level of an interval scale. One im-
plication of these findings is that the Moyer and Bayer
(1976) range effect, albeit likely to be very small, should
be evident, provided that the conditions necessary for its
occurrence in perception are ensured. Indeed, Petrusic
etal. (1995) report the occurrence of a range effect in their
reexamination of this effect, thus implicating analogue-
based representations on the basis of binary comparison
times. This is not to say that an ordinal coding for remem-
bered magnitudes is never used. In fact, Petrusic et al. have
also confirmed that the use of an interval metric versus an
ordinal coding is governed by the degree to which the
stimulus set is learned. These results, together with the
present findings, considerably weaken the hypothesis that
remembered magnitudes are exclusively propositionally
based, in the form of discrete semantic codes (see, e.g.,
Banks, 1977; Banks et al., 1982; Cech & Shoben, 1985).

The reperception hypothesis, developed by Moyer et al.
(1978) and Kerst and Howard (1978) in the context of
magnitude estimation, is also contradicted by the present
findings—namely, that power functions obtained from
ALSCAL nonmetric multidimensional representations
resulted in exponents for the memory psychophysical
function that are not squares of the exponent for the per-
ceptual psychophysical functions. Rather, very closely
related structural representations in perception and in
memory are implicated, at least in terms of their three-
parameter power function characterizations, with, on av-
erage, exponents of 0.546 and 0.697 for perception and
memory (i.e., both are highly compressive), respectively,b
and also with multiplicative and additive constants that
are nearly identical.

Our confirmation of an interval scale for remembered
magnitudes is consistent with Shepard and Chipman’s
(1970) view of a second-order isomorphism between per-
ception and memory. In addition, our results complement
recent suggestions of a common representation for per-
ceived and remembered odors by Algom and Cain (1991)
and the findings of Izmailov and Sokolov (1992), who
demonstrated that color memory exhibits the structures
evident in perception only after sufficient paired-associate
training. Although we have found evidence for an interval
scale for remembered magnitudes, its theoretical basis
remains to be established, and we do not speculate about
its nature (e.g., whether imagery is involved or whether the
representation can arise from a highly articulated propo-
sitional network) at this time.

Finally, the present findings revealed substantially faster
comparisons for disjoint than for overlapping quads with
both memorial and perceptual comparisons. As men-
tioned, on the face of it, this result is inconsistent with a
difference of differences decision model of similarity/
dissimilarity comparisons. However, given that the ax-
ioms for a positive-difference structure were satisfied
and the convergence of the ALSCAL-based estimate of
the exponent in the power function with that obtained with
the fits of RTs to the D(i, /,k,[)s, the additional time re-

quired with the overlapping comparisons might not arise
as a failure of the difference of differences rule but, rather,
as a consequence of the time required to cancel out the
common distance, thereby effectively reducing overlap-
ping quads to disjoint ones.

In conclusion, our fundamental measurement analy-
ses of quaternary relational judgments confirmed an in-
terval metric scale for (well-learned) remembered mag-
nitudes. The question of how people perform the complex
quaternary judgment was addressed through RT analy-
ses. The RT analyses established that the various RT re-
lations evident with direct perceptual stimuli were also
evident with remembered magnitudes. However, the full
set of RT relations could not be accounted for by the dif-
ference of differences model, even though this model was
supported through the tests of the axioms for a positive-
difference structure and its fits with the RTs. Clearly,
more detailed theoretical development and further exper-
imental work are needed to resolve this problem in the
psychophysics of memory.
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NOTES

1. Interestingly, this latter case is indistinguishable from the uncer-
tainty hypothesis (see, e.g., Kerst & Howard, 1978), which asserts that
uncertainty always accompanies the retrieval of quantitative informa-
tion from memory and invariably leads to an unwillingness to render
extreme judgments. Consequently, a restriction in the response range
occurs, and, with this restricted range, the exponent necessarily de-
creases. Alternatively, Algom, Wolf, and Bergman (1985) venture that
the greater uncertainty in memory results in an increase in the “effec-
tive” stimulus range. Appealing to the general principle established by
R. Teghtsoonian (1973) that the exponent and stimulus range are in-
versely related, it follows that the exponent will be smaller in the mem-
ory case than in the perceptual case.

2. We also use the notation abDcd to denote the judgment that the
pair ab is more dissimilar than the pair cd and, generally, abDcd iff
cdSab.

3. Petrusic and Jamieson (1979) provided a test of the positivity
axiom through an analysis of RTs with comparative judgments (e.g.,
which of two triangles is taller). In particular, for all triples ordered a >
b > c on the underlying continuum, they showed that RT (ab) > RT (ac)
and RT (b¢) > RT (ac).

4. The nontestable, technical, axioms are: (1) solvability, a structural
condition that states that the intervals are sufficiently dense so that any
interval can be copied within any larger interval, and (2) Archimedean,
which assumes the existence of a finite standard sequence such that end
to end concatenation of adjacent elements in the sequence ensures stan-
dard (arbitrarily fine) intervals that can serve as units. Any interval can
thus be measured in terms of the number of copies of this unit interval.

5. In order to see the relationship between weak monotonicity and in-
tradimensional subtractivity, consider the following premise: if abSbhc
and bcScd. Weak monotonicity implies acShd, and transitivity abScd.
Thus, IDS follows—that is, abScd if and only if acShd. In the present
experiment, in order to keep the task manageable, only five stimuli were
in the set. Consequently, the weak monotonicity axiom could not be
tested fully. Rather, IDS was tested.

6. When magnitude estimation is used, the exponent for visual length
is invariably near 1.0 (see, e.g., Hartley, 1977; Stevens & Galanter, 1957,
M. Teghtsoonian & R. Teghtsoonian, 1965).The value of 0.55 obtained
in the present experiment with similarity comparisons converges nicely
with the 0.50 obtained by Parker, Schneider, and Kanow (1975), who re-
quired magnitude estimates of the similarity of pairs of visual extents
in one experiment and category ratings of similarity in another. In their
experiment, as in the present, a nonmetric MDS routine was used to ob-
tain the representations. If the magnitude estimation—based exponents
are multiplied by the exponent for subjective number, exponents in the
range obtained here and by Parker et al. are obtained (cf. Krueger,
1989).
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