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Simulating individual word identification
thresholds and errors in the fragmentation task

JOHANNES C. ZIEGLERand ARNAUDREY
Center for Research in Cognitive Neuroscience, CNRS, MarseiUe, France

and

ARTHURM.JACOBS
Center for Research in Cognitive Neuroscience, CNRS, MarseiUe, France

and Philipps-University, Marburg, Germany

This article presents a large-scale study that collected word identification thresholds and errors in
the fragmentation task for all four-letter French words. In the first part of this article, we identify some
of the variables (e.g., word frequency, neighborhood size, letter confusability) that affect performance
in the fragmentation task. In the second part, we analyze individual response performance and iden­
tify different response strategies. Wedemonstrate that the interactive activation model can account for
individual response strategies by adapting two of its original parameters: word-letter feedback and letter­
word inhibition. In the third part, we demonstrate that the adaptation of the interactive activation
model to the fragmentation task makes it possible to successfully simulate a facilitatory frequency ef­
fect on identification thresholds, an inhibitory neighborhood size effect on error rates, and an inhibitory
letter confusability effect on identification thresholds. When the task-specific processes of the frag­
mentation task are specified and individual response strategies are considered, the interactive activa­
tion model provides a parsimonious architecture for modeling the task-independent processes involved
in word perception.

Laboratory studies may only discover contextually situ­
ated performance-the fluid coupling of subject and labo­
ratory method-the complex interface of organism and
environment.

-G. C. Van Orden,
personal communication, November 12, 1995

Reading is typically studied by manipulating a set ofper­
ceptual and linguistic variables within a variety of labo­
ratory methods (tasks). Each task is believed to tap into
a common mental structure that is involved in reading.
However, each task also contains some idiosyncratic, task-
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specific requirements that reveal nothing, or only a little,
about the common mental structure underlying reading.
This scenario contains at least three challenges for cog­
nitive psychology. The first challenge is to tease apart the
task-specific aspects from those aspects that may truly
reflect the contents, structure, and functioning ofthe cog­
nitive system. The second challenge is to capture the flex­
ibility and variability with which subjects seem to adapt
to a particular task-that is, the fluid coupling of subject
and task mentioned above. The third challenge involves
finding and manipulating a set of perceptual and lin­
guistic variables that helps us to identify the content,
structure, and processes of the reading system.

What Is Task-Specific and What Is Not?
The first challenge requires, on the one hand, that one

specify and implement what one believes to be the com­
mon cognitive architecture underlying performance across
a number ofdifferent tasks. On the other hand, it requires
that one specify and implement those properties that are
specific to a particular task. For example, perceptual iden­
tification, lexical decision, and letter search may all tap
into a common cognitive structure that is involved in read­
ing. However, they all clearly involve some task-specific
mechanisms, such as identifying words when they are
briefly presented and masked, discriminating words from
nonsense letter strings, or deciding whether a word con­
tains a particular letter. Therefore, the modeling of per­
formance in a particular task requires that one specify the
task-specific read-out mechanisms, the connection be-
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tween the processes within the model, and the observed
dependent variables.

Recently, Grainger and Jacobs (1993, 1994, 1996; Ja­
cobs & Grainger, 1992) pursued such a modeling approach
for the lexical decision, the perceptual identification, and
the Reicher tasks. They chose the implemented and well­
specified interactive activation model (McClelland &
Rumelhart, 1981; Rumelhart & McClelland, 1982) as the
common architecture underlying word perception in dif­
ferent tasks. In addition, they implemented a number of
task-specific mechanisms (read-out procedures) that al­
lowed them to predict percentage of errors, reaction time
(RT) means and distributions, and strategic influences in
specific tasks. For example, they suggested that three pro­
cesses underlie a speeded binary response in the lexical de­
cision task: Twoofthe processes use lexical information to
generate a yes response, and the third uses both lexical and
time information to generate a no response. These sources
of information are: (1) the overall (global) activity in the
orthographic lexicon, operationalized in the simulation
model as the sum of the activation levels of all word units;
(2) the (local) activity ofword units in the orthographic lex­
icon, operationalized as the activation level of individual
word units; and (3) the time (cycles) from stimulus onset.

In the present paper, we generalize Grainger and Jacobs's
(1996) approach by investigatingand modeling performance
in a different task: the screen fragmentation procedure
(Snodgrass & Mintzer, 1993; Snodgrass & Poster, 1992;
Warrington & Weiskrantz, 1968). According to Snodgrass
and Mintzer (1993), this technique presents a "more direct
method of measuring visual recognition" (p. 249). In this
task, subjects are presented with a highly fragmented word
at the beginning ofeach trial (see Figure 1). They are asked
to gradually demask the word until they are able to identify
it. This task allows the measurement of identification thresh­
olds and errors. Identification thresholds refer to the level
of fragmentation at which the subjects generate a correct
response. Errors are responses that do not match the target
word in one or more letters.

I" 1 Tt.r~ :!

2 Tl'f~
Beginning
of a trial 3 Tl'fE

4 'l'f E,

5 'lifE

6 IllFE

7 IDEE

8 IDEE
Figure 1. Example of the fragmentation procedure used in the

present study. The stimuli (here the French word idee) are first
presented at the most fragmented level (Levell). Subjects grad­
ually demask them until they can identify the words. Note that,
in this example, idee may be misidentified asjupe up to Level 4.
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With respect to the modeling enterprise described
above, simulating performance in the fragmentation task
generates a number of questions. Can the interactive ac­
tivation framework, which is usually thought to reflect
the automatic, early, and fast processes involved in word
perception, serve as the basic modeling architecture for
a task in which subjects can take the time to exploit their
lexical and spelling knowledge, develop possible response
strategies, and guess correct responses? Can the interac­
tive activation framework be used to simulate error pat­
terns in the fragmentation task? To simulate identifica­
tion errors, it has to be specified how it happens that, on
occasion, incorrect items have higher activation levels
than do correct ones and are selected for response. Er­
rors are not only a major variable in the fragmentation
task but also in related fields, such as cognitive neuro­
psychology (see, e.g., Caramazza, 1992) or language
production (see, e.g., Dell, 1986; Schade & Berg, 1992).

In the present article, we add task-specific procedures
to the interactive activation model that allow us to pre­
dict identification thresholds and errors in the fragmen­
tation task (see the section on the general simulation
method). In this respect, the central question is: Can we
capture the flexible, strategic, and complex behavior that
is observed in the fragmentation task with the basic prin­
ciples and the simple structure of the interactive activa­
tion model?

Individual Predictions
The second challenge concerns the prediction ofindi­

vidual task performance. A number ofcognitive psycho­
logists believe that predicting individual differences and
describing strategic adaptation are central issues for
theory construction in cognitive psychology (see, e.g.,
Brown, Lupker, & Colombo, 1994; Lemaire & Siegler,
1995; Reder, 1987, 1988; Siegler, 1987; Sperling &
Dosher, 1986; Stone & Van Orden, 1993; Underwood,
1975). What are the strategies that subjects adopt to
maximize performance and minimize the duration of the
experiment? How can the interactive activation model
predict individual performance and adaptation to task re­
quirements?

The fragmentation task seems to be well suited to pur­
sue these issues since it allows the subjects to trade
visual bottom-up information and lexical top-down in­
formation by developing an adequate response strategy.
For example, subjects may decide to barely demask the
stimulus and quickly generate a word identification re­
sponse by using their lexical and spelling knowledge
(guessing strategy). Others may demask the word until
they have enough visual information to be sure about its
identity (conservative strategy). In this article, we at­
tempt to simulate individual differences and strategic
adaptation within the interactive activation framework by
systematically manipulating two of the model's original
parameters: word-to-letter feedback and letter-to-word
inhibition.
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Which Variables Should Be Manipulated?
The third challenge involves finding and manipulat­

ing an interesting, theoretically motivated set of percep­
tual and linguistic variables that may reveal something
about the content, the structure, and the functioning of
the reading system. For example, word frequency or the
number of a word's orthographic neighbors could be
such variables. The problem is that many of the linguis­
tic variables that influence word perception are highly
correlated (see, e.g., Frauenfelder, Baayen, Hellwig, &
Schreuder, 1993; Landauer & Streeter, 1973). This makes
it virtually impossible to find two samples of words that
differ in the variable(s) of interest and that are matched
on all other relevant variables known to influence perfor­
mance (see Cutler, 1981; Treiman, Mullennix, Bijeljac­
Babic, & Richmond-Welty, 1995).

As a way out of this dilemma, Treiman et al. (1995) re­
cently proposed that traditional small-scale experiments
be supplemented with large-scale studies that are analyzed
with regression methods. "In such large-scale studies,
there is no attempt to choose stimuli that differ on only
the variable(s) of interest and that are matched on 'nui­
sance' variables. Rather, the characteristics of the stimuli
are allowed to vary as they will. Statistical techniques are
used to examine the contribution of each variable above
and beyond the contribution ofall ofthe other variables"
(Treiman et aI., 1995, p. 132). This was the approach
adopted in the present article (for a similar approach, see
Rumelhart & Siple, 1974; Spieler & Balota, 1996).

In the present study, the subjects were presented with
virtually all four-letter French words in the context of a
fragmentation task. Identification thresholds and errors
were measured for all of these words. Thus, we did not
design one particular experiment with a limited number
ofstimuli to test for one specific effect (e.g., the frequency
effect on identification thresholds), but we collected a
large database of identification thresholds and errors for
all four-letter French words. This database was analyzed
with regression methods; it served as a constraint for de­
veloping an interactive activation model for the fragmen­
tation task, one capable of simulating individual identi­
fication threshold and error data.

MODEL

Our modeling approach contains two steps. First, we
specify and implement a set of mechanisms and princi­
ples that may underlie word perception in different tasks.
Second, we implement those mechanisms that may be
specific only to the task at hand-here, the fragmentation
task. In line with previous simulation work (Grainger &
Jacobs, 1993, 1994, 1996; Jacobs & Grainger, 1992), we
chose McClelland and Rumelhart's (1981) interactive
activation model as the common architecture underlying
word perception in a variety of reading tasks.

The interactive activation model simply contains a
feature level, a letter level, and a word level (orthographic
lexicon). Each unit in the feature level represents one of

a letter's features, each unit in the letter level represents
one letter of the alphabet, and each unit in the word level
represents one word of the lexicon. The interactive acti­
vation model implements two major principles. The first
principle is interactive activation-that is, activation
spreads along bidirectional connections between units
belonging to different levels. Compatible units have ex­
citatory connections; they mutually activate one another
(e.g., the letter unit L in the second letter position activates
the word unit blue and vice versa). Incompatible units have
inhibitory connections; they mutually inhibit one another
(e.g., L in the second position inhibits all word units that
do not contain an L in the second position). The second
principle is within-level inhibition-that is, units within
the same level mutually inhibit one another through in­
hibitory lateral connections (e.g., each word unit inhibits
all other word units).

To simulate performance in the fragmentation task, we
had to deal with the following issues. First, the model had
to be generalized to include task-specific mechanisms.
These mechanisms account for the fact that the visual
input in the fragmentation task is degraded during an early
level within the sequence of fragmentations. Subjects
can gradually add visual information until they are able
to identify the word (give a response). Second, some prop­
erties ofthe fragmentation task, such as poor visual input,
change the global stability and dynamics of the model.
Thus, the standard parameter settings had to be adapted
in order to simulate performance in this task. Third, we had
to face the possibility that subjects may use different re­
sponse strategies to optimally perform the task. Fourth,
a read-out procedure (i.e., the model's output) had to be
implemented that produces identification thresholds and
errors (i.e., the dependent variables). The details of the
task-specific implementation are given in the section de­
scribing the general simulation method.

To summarize, we collected identification thresholds
and errors in the fragmentation task for virtually all four­
letter French words. Using regression analyses, we deter­
mined which perceptual and linguistic variables account
for variance in performance in this task. We analyzed in­
dividual response strategies. Finally, we propose an exten­
sion of the interactive activation model capable ofsimu­
lating individual identification thresholds and error rates
in the fragmentation task.

GENERAL METHOD

Subjects
Ten subjects from the Center for Research in Cognitive Neuro­

science participated in the experiment. All were native French
speakers and had normal or corrected to normal vision. The exper­
iment lasted about 4 h.

Apparatus and Stimuli
The experiment was controlled by a Compaq 486 personal com­

puter. As experimental stimuli, we used all four-letter French
words, excluding those with a frequency ofless than 2 occurrences
per million, proper names, contractions, abbreviations, and foreign
words. This selection resulted in a total of 580 words. Word fre-



quency ranged from 2 to 25,532 occurrences per million according
to a French word frequency count (Imbs, 1971). The words were
displayed in uppercase Triplex Vectorial Police (Size 4) ofBorland
Pascal. Each letter was centered within a 24 X 32 pixels square
window (16 X 32 pixels square window for thin letters).

Procedure
The subjects were seated in a dentist chair in a sound-attenuated

experimental box. At the beginning of the experiment, the subjects
were familiarized with the typography by presenting all the letters
ofthe alphabet. We used the ascending method oflimits of the orig­
inal screen fragmentation procedure, as described by Snodgrass and
Poster (1992) and by Snodgrass and Mintzer (1993). During the ex­
perimental trials, a test word was first displayed at the most frag­
mented level of presentation (Levell). The subjects were asked to
gradually demask the word by pressing the space bar of the key­
board until they had sufficient information to generate a response.
Identification thresholds and errors were recorded.

This demasking process was entirely controlled by the subjects.
As long as they could not identify the word, they were instructed to
press the space bar to go on to the next more complete (less frag­
mented) version of the stimulus. They were asked to give a response
by typing the word on the keyboard as soon as they thought that
they knew what the stimulus was. The subjects were instructed to
respond as soon as possible without making pure guesses. Their re­
sponse was not corrected. The subjects could give only one response
on each trial. Having responded, they could not keep on demasking
the word until they found the correct response. Instead, once the re­
sponse was given, the next trial was automatically initiated. An ex­
perimental session was subdivided into 10 blocks of 58 words, and
the subjects were invited to make a break between the blocks. The
stimuli were presented in a different random order for each subject.

Fragmentation Procedure
The fragmentation procedure was identical to the one described

by Snodgrass and Poster (1992) and by Snodgrass and Mintzer
(1993). Words were fragmented in order to produce eight levels of
fragmentation (see Figure I for an illustration of the eight frag­
mentation levels). The fragmentation was achieved by randomly
deleting blocks of pixels according to the function: P(level) =
.85(8-1eve1), where P is the proportion ofcritical pixel blocks retained
in the word, and level ranges from I imost fragmented i to 8 (com­
plete word). For example, at Level 1,32% of the pixel blocks were
exposed, whereas at Level 4, 52% of the blocks were presented.
One pixel block consisted of 8 X 8 pixels. Fragments were added
cumulatively from one level to the next, so that a stimulus at a par­
ticular level of fragmentation contained all the features ofthe stim­
ulus at the preceding level of fragmentation. The words were frag­
mented on line, with a different random selection ofpixel blocks on
each word trial.

GENERAL SIMULATION METHOD

In the interactive activation model, the visual presentation ofa let­
ter string initiates the following sequence of events. The visual in­
put activates the corresponding set of feature units. Feature units
activate compatible letter units and inhibit incompatible letter units.
In turn, each letter unit activates compatible word units, inhibits in­
compatible word units, and inhibits all other letter units that share
the same position. Then, word units feed back activation to all com­
patible letter units and inhibit all other word units. For each pro­
cessing cycle, the model proceeds through this same sequence of
events. The level ofactivation ofall units is continuously registered.
Under normal viewing conditions, the model "recognizes" a word
when the activation of its corresponding word unit reaches a criti­
cal activation threshold (the M-criterion in Grainger & Jacobs,
1996). Under degraded viewing conditions (as in the fragmentation
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task), if no unit reaches the activation threshold M before a given
time threshold T(i.e., after a given number ofprocessing cycles), then
no response is generated and more information is required.

To capture performance in the fragmentation task, the simulation
procedure was adapted to mimic the experimental procedure. On
each trial, the word was presented to the model in its most frag­
mented version (Levell). Ifa word unit reached the critical activa­
tion threshold M before the time threshold T, the model made a re­
sponse. Otherwise, the model made a "pass" and the word was
presented at the next level of fragmentation (Level 2). We obtained
10 simulated subjects by presenting the 580 words 10 times to the
model. The simulation of individual identification thresholds and
errors in the fragmentation task required modifications in the input
procedure, the parameter settings, and the read-out procedure. These
will be described next.

Input Procedure
The fragmented input for the model was obtained by randomly

activating a certain number of feature detectors at the feature level.
The number of activated features equaled the proportion P of pixel
blocks that were used to obtain the stimulus fragmentation in the ex­
periment. For example, at fragmentation Level I, 32% of the fea­
tures were randomly selected and activated in the model. Note that,
whereas McClelland and Rumelhart (1981) used 14 features to rep­
resent all letters, we used a more detailed matrix of 43 features to
represent each letter. We increased the number of features in order
to better capture particularities of the typography and similarities
(confusability) between letters.

Parameter Settings
The model contains excitatory (alpha) and inhibitory (gamma)

connections. The impact (weight) ofeach type ofconnection is de­
termined by a parameter. Essentially, there is one set ofparameters
governing the flow of activation and inhibition between the feature
and the letter level, one between the letter and the word level, and
one within each level.These parameters crucially constrain the global
stability and dynamics of the model. In the following section, we
describe how these parameters were adapted in order to simulate
performance in the fragmentation task.

1.Feature-letter connections. In the original interactive activa­
tion model (McClelland & Rumelhart, 1981), the absence ofa fea­
ture was considered as informative as its presence. For example, if
subjects recognize a visual configuration that looks like the letter
F, the absence of the bottom line will tell them that it cannot be the
letter E. Therefore, in the original model, both the presence and the
absence ofa feature determine letter activation. For example, on the
one hand, if the bottom line C) is present in a given stimulus, the
corresponding feature unit sends excitation to all letter units that
contain this feature (e.g., E, L) and inhibition to all letter units that
do not contain this feature (e.g., F, V). On the other hand, if the bot­
tom line is absent, this absent-feature unit sends excitation to all let­
ter units that do not contain this feature (e.g., F, V) and inhibition to
all letters that do contain this feature (e.g., E, L). The original param­
eter values for these excitatory and inhibitory connections between
the feature and the letter levels were .005 and .15, respectively.

In the fragmentation task, however, the absence of a feature is
less informative than its presence. At an early level of fragmenta­
tion, a feature may simply be absent as a consequence offragmen­
tation and not because it is truly absent in the letter. For example, if
subjects recognize a visual configuration in a highly fragmented
stimulus that looks like the letter F, the absence of the bottom line
will not guarantee that the letter is an F; it could be the letter E, in
which the bottom line is missing because of fragmentation. To ac­
commodate for those task-specific aspects, the connection weights
of absent features were changed as a function of the level of frag­
mentation. Excitatory connections between absent features and letter
units were set to become stronger as the stimulus gets more visible
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(a = .005 * P, where P varies between .32 and 1.0 and represents
the proportion of displayed pixel blocks; see the general method
section). Similarly, inhibitory connections between absent features
and letter units were set to increase exponentially as the stimulus
gets more visible [y=.15 * exp(190 * «PliO) - .1»]. This modi­
fication guarantees that absent features have nearly no impact on
letter activation when the stimulus is highly fragmented; they be­
come more important as stimulus information increases, and they
reach their original parameter value (i.e., .005 and .15, respectively)
when the complete word is displayed (i.e., P = 1.0).

2. Letter-letter and word-word connections. Letter units
within the letter level and word units within the word level mutu­
ally inhibit each other. This lateral inhibition principle implements
a competition process between units belonging to the same pro­
cessing level. The parameters governing the flow of inhibition
through the lateral connections were set at .04 within the letter level
and at .21 within the word level.

3. Letter-word excitatory connections. Letter units activate
word units that are compatible with them. The parameter governing
this flow of activation was set at .07.

4. Letter-word inhibitory and word-letter excitatory con­
nections. The values of the parameters governing the flow of inhi­
bition between letter and word units and the flow of activation (feed­
back) betweenword and letter units were determined for each subject;
they varied as a function of a subject's individual performance and
strategic adaptation to the task requirements (a point that will be
further developed in the results section). An increase in letter-word
inhibition can be interpreted as an increase in a subject's ability and
effort in paying attention to the letter information. The more he or
she focuses on the bottom-up letter information, the better he or she
is at inhibiting incompatible word candidates. In contrast, an in­
crease in word-letter excitation (feedback) can be interpreted as an
increase in a subject's ability to use lexical information to mentally
fill in missing fragments. The exact values for these parameters are
given in the results section.

Read-out Procedure
The model made a response when a word unit reached the re­

sponse threshold (M) before the time threshold (T). Ifno word unit
reached the M threshold before the T threshold, the model passed
on to the next less fragmented level (i.e., more feature detectors
were activated, in accordance with the input procedure described
above). The cycle at which a word unit reaches the M threshold cor­
responds to the model's identification threshold. Ifa word unit that
is different from the input stimulus reaches the activation threshold
M, the model has incorrectly identified a word: it made an error.

As in previous simulation work (see, e.g., Grainger & Jacobs,
1996; Jacobs & Grainger, 1992), we used normally distributed M
and T thresholds. The mean of the distribution for the M threshold
was .67 with an SD of .09 (this distribution was truncated at .90 for
the upper value and .15 for the lower value). The mean of the dis­
tribution for the T threshold was 22 processing cycles with an SD
of 3 (this distribution was truncated at 28 for the upper value and
17 for the lower value).

RESULTS AND DISCUSSION

The results section is organized into three parts. First,
we present results from a multiple regression analysis
that uncovers which ofthe independent variables account
for a significant portion of the variance in the identifica­
tion threshold and error data of the fragmentation task.
Second, we analyze individual response patterns and
demonstrate how a variant of the interactive activation
model can account for such response patterns. Third, we
evaluate the model's ability to simulate the subjects' per-

formance with respect to those variables and effects that
account for the major part of the variance in the regres­
sion analysis.

Regression Analysis
The two performance measures (dependent variables) in

the fragmentation task were identification thresholds for
correct word identifications and percentage oferrors. The
subject's identification threshold for each word was de­
fined as the level offragmentation at which correct identi­
fication occurred. Identification thresholds varied between
1 and 8. The percentage oferrors corresponded to the per­
centage of responses that did not match the target word
in one or more letters (incorrect word identifications).

As independent variables, we chose a number ofvari­
abies that had been shown to influence visual word rec­
ognition performance in a variety of word recognition
paradigms. These variables were plain and logarithmic
word frequency (F and 10gF, respectively), neighborhood
size (N), the number ofhigher frequency neighbors (HFN),
summed positional letter frequency (LF), summed posi­
tional bigram frequency (BF), and letter confusability in
the fragmentation task (CONF).

To briefly characterize these variables, word frequency
is known to systematically facilitate performance in lex­
ical decision, naming, and perceptual identification (see,
e.g., Forster & Chambers, 1973; for a review, see Monsell,
1991). Neighborhood size is defined as the number of
words that can be obtained by changing one letter of the
word (Coltheart, Davelaar, Jonasson, & Besner, 1977).
Neighborhood size and the number of higher frequency
neighbors have been found to facilitate naming perfor­
mance (Peereman & Content, 1995), inhibit perceptual
identification performance (Grainger & Jacobs, 1996;
Grainger, O'Regan, Jacobs, & Segui, 1989, 1992; Snod­
grass & Mintzer, 1993), and inhibit and/or facilitate lex­
ical decision performance, depending on the type ofnon­
words, list composition, and the strategy of the subjects
(Andrews, 1989, 1992; Huntsman & Lima, 1996; Sears,
Hino, & Lupker, 1995; for a review, see Grainger & Ja­
cobs, 1996). Positional letter and bigram frequency are
measures of orthographic redundancy. Orthographic re­
dundancy might help or hurt performance, depending on
the task requirements (see Grainger & Jacobs, 1993; Mas­
saro & Cohen, 1994; Massaro, Jastrzembski, & Lucas,
1981). The confusability index is a graded empirical mea­
sure that was derived from a previous study (Rey, Zieg­
ler, Montant, & Jacobs, 1996). In this study, we obtained
mean correct identification thresholds for all letters ofthe
alphabet in exactly the same way as we did for the words
in the present study. These mean identification thresholds
served as an index ofletter confusability. Accordingly, the
confusability index in the present study was defined as
the sum ofthe mean identification thresholds ofa word's
constituent letters. This confusability index was normal­
ized to vary between 0 and 1.

A total of580 cases (mean values for all words averaged
across subjects) went into the regression analysis. Sim­
ple correlations for the two dependent measures (identi-



fication thresholds and errors) and the seven independent
measures were calculated. Partial correlations, reflecting
the correlation ofeach independent variable with the vari­
ance of all other variables pulled out, were carried out on
each of the dependent measures. Table I gives the simple
and partial correlations and their corresponding signifi­
cancelevel.

The analysis of the simple correlations makes it pos­
sible to address three questions: (1) What are the variables
that are most strongly correlated with performance in the
fragmentation task? (2) Does a variable that accounts for
variance in the threshold data also account for variance
in the error data? (3) Are the independent measures inter­
correlated and, if so, to which extent?

As concerns the first question, the threshold data are
most strongly correlated with logarithmic word frequency
and letter confusability: the lower the frequency ofa word,
the higher its identification threshold; the higher the con­
fusability of a word's constituent letters, the higher its
identification threshold. The error data are most strongly
correlated with the neighborhood measures (N andHFN),
letter frequency, and letter confusability: Error rates in­
crease as a function of the density and frequency of a
word's orthographic neighborhood, its letter frequency,
and the degree of its confusability.

As concerns the second question, there seems to be an
interesting dissociation: Although word frequency is
strongly correlated with identification thresholds, it is not
significantly correlated with error rates. In contrast, al­
though the neighborhood variables (N and HFN) and let­
ter frequency are strongly correlated with error rates, they
are not significantly correlated with identification thresh­
olds. Only the confusability index is strongly correlated
with both variables; however, it is more strongly corre­
lated with identification thresholds than with error rates.

As concerns the third question, it can clearly be seen
in Table 1 that most ofthe independent measures are highly
intercorrelated. For example, logarithmic word frequency
is highly correlated with letter and bigram frequency (.193
and .432, respectively). Neighborhood size is highly cor-
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related with the number ofhigher frequency neighbors, let­
ter frequency, and bigram frequency (.721, .546, and .313,
respectively). Only the confusability index does not seem
to be significantly correlated with any of the other inde­
pendent variables.

The analysis of the partial correlations makes it pos­
sible to examine the contribution of each variable above
and beyond the contribution of all other variables. This
analysis confirmed that logarithmic word frequency and
confusability accounted for some unique variance on
identification thresholds (- .313 and .449 , respectively),
whereas neighborhood size, letter frequency, and confus­
ability accounted for unique variance on error rates (.164,
.151, and .160, respectively). Bigram frequency functioned
as a classic suppressor variable: It was not correlated with
the dependent measures (thresholds, errors), but it was
strongly correlated with other independent variables (e.g.,
F, N, and LF). This way, it bound some of the irrelevant
variance of the other independent variables, which re­
sulted in its significant partial correlation. To summarize,
it seems that identification threshold data can be accounted
for on the basis ofword frequency and confusability; error
data seem to be best accounted for by neighborhood
structure, orthographic redundancy, and confusability.

Individual Predictions
The following analyses address the question as to

whether there are individual differences in how subjects
perform the fragmentation task.! Ifso, can the interactive
activation model be tuned to predict individual perfor­
mance? In order to identify individual response strategies,
we plotted the mean correct identification threshold for
each subject against its mean error rate (averaged across
the 580 words). These data are presented in Figure 2A.

Figure 2A clearly reveals individual response patterns
in the fragmentation task. The performances of Subjects
1-7 reflect a speed-accuracy tradeoff-that is, subjects
trade levels (speed) against errors (accuracy). For exam­
ple, Subjects 1-4 responded late and made only a few
errors (conservative response strategy). In contrast, Sub-

Table 1
Simple and Partial Correlations Between Identification Thresholds (Levels)

and Errors and Seven Independent Variables

Variable Levels Errors F

Simple

logF N HFN LF SF Conf

Partial

Levels Errors

Levels
Errors .192t
F -.052 -.060 .024 -.018
log F - .224t -.039 .475t - .313t - .033
N -.047 .310t -.031 .016 -.016 .164t
HFN .035 .223t -.130* -.376t .721t -.059 -.025
LF -.024 .240t .193t .143t .546t .382t -.004 .151t
SF .027 .046 .432t .293t .313t .196t .593t .138t -.092*
Conf .427t .I46t -.028 -.009 -.004 -.008 -.068 -.066 .449t .160t

Note-F, frequency; N, number of neighbors; HFN, number of higher frequency neighbors; LF, letter fre­
quency; SF, bigram frequency; Conf, confusability index. *p < .05. "p< .001.
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Figure 2. Individual response patterns for the subjects (panel
A) and the model (panel B). The numbers next to the data points
indicate the numbers of real and simulated subjects.

ject 7 responded earlier and made more errors (guessing
strategy). Subjects 5 and 6 lie in between these two ex­
tremes.

However, the performance of Subjects 8-10 does
not fall on the regression line that describes the speed­
accuracy tradeoff for Subjects 1-7. Subjects 8-10 re­
sponded rather late and committed a large number ofer­
rors. An analysis of their individual response patterns
suggests a particular type of response strategy. These sub­
jects seem to have quickly demasked the word (by sim­
ply hitting the space bar four or five times in a row) with­
out even trying to identify the word at an earlier level
within the sequence offragmentations. Once they reached
a sufficiently complete version of the word (about Level
4 or 5), they seem to have guessed a word that is compat­
ible with the visual information. This particular type of
guessing strategy-rapid demasking until Level 4 or 5
and immediate guessing, even if the resolution of poten­
tial ambiguity with respect to multiple word candidates
would require that one go on to a less fragmented level­
efficiently reduces the time per trial. There are two indi­
cators in favor of this interpretation. First, Subjects 8 to
10 rarely responded before Level 4 or after Level 6. Sec­
ond, the experimenter reported that the time they took
to go from fragmentation Level 1 to Level 4 was much
shorter than that of Subjects 1-7, which indicates that

they did not fully explore the visual input during early lev­
els of fragmentation.

We attempted to tune our simulation model to capture
these different response patterns. Two parameters of the
original interactive activation made it possible to gener­
alize the model so as to predict individual performance
in the fragmentation task: word-letter feedback and
letter-word inhibition. Word-letter feedback would re­
flect the subjects' ability to exploit their lexical knowl­
edge to mentally fill in the missing fragments. Variations
in this parameter would therefore reflect lexical top-down
influences on perception. Letter-word inhibition, on the
other hand, determines the extent to which word units are
inhibited when one or more letter units are incompatible
with it. Variations in this parameter would then reflect the
subjects' ability to pay close attention to the visual input
and to exclude those word candidates from consideration
that are not compatible with the fragmented input.

As can be seen in Figure 2B, we were able to simulate
the speed-accuracy tradeoff obtained for Subjects 1-7
and the particular response strategy of Subjects 8-10 by
systematically manipulating word-letter feedback and
letter-word inhibition. The values ofthese two parameters
used to simulate the individual response patterns of the
10 subjects are given in Table 2.

As can be seen in Table 2, the speed-accuracy trade­
off of Subjects 1-7 is simulated by an inverse manipula­
tion of word-letter feedback and letter-word inhibition.
Subjects with a conservative response strategy (Subjects
1-4) are simulated with a high letter-word inhibition
and a low word-letter feedback. High letter-word inhi­
bition pulls down the activation of incompatible word
candidates, which reduces the possibility of errors. Low
word-letter feedback reduces the overall lexical activity,
which increases identification thresholds (fragmentation
levels). These parameter values change inversely as sub­
jects trade levels against errors. For example, the opposite
response pattern of a subject using a guessing strategy
(Subject 7) is simulated with a low letter-word inhibition
(which increases the possibility of errors) and a high
word-letter feedback (which reduces fragmentation lev-

Table 2
Parameter Values (Word-Letter Feedback and Letter-Word
Inhibition) Used to Simulate Individual Response Patterns

Parameter

Word-Letter Letter-Word
Subjects Feedback Inhibition

1 .070 .022
2 .085 .022
3 .080 .022
4 .080 .022
5 .110 .022
6 .120 .020
7 .140 .018
8 .080 .010
9 .087 .015

10 .090 .010
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Figure 3. Major effects in the fragmentation task. Panel A
shows the frequency effect on identification thresholds; panel B,
the neighborhood size effect on errors; and panel C, the confus­
ability effect on identification thresholds. The model's fit is indi­
cated in terms of root mean square deviations (RMSD). RMSD
gives the average square deviation between the predicted and ob­
served values.
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quency effect, the model overestimates the size of the
neighborhood effect. With respect to words with only few
neighbors, the model makes fewer errors than do subjects.
It is possible that this failure is related to the size of the
implemented lexicon (580 words). Since errors are gen­
erated on the basis ofthe implemented lexicon, the model
makes fewer errors than subjects do because it "knows"
fewer words than subjects do. An examination of the type
oferrors produced by the subjects supports this interpre­
tation: 30% of the incorrect word responses produced by
the subjects were words that are not in the model's imple-

els). The performance of Subjects 8-10 (late and error­
prone responding) is simulated with a much lower letter­
word inhibition and a relatively low word-letter feedback.

In sum, the model does a fairly good job in predicting
the individual tradeoff between error rates and identifi­
cation thresholds. This tradeoff is simulated by an inverse
and systematic manipulation ofletter-word inhibition and
word-letter feedback. Increasing letter-word inhibition
may be interpreted as an attentional bottom-up param­
eter that reduces the model's error rate. Increasing word­
letter feedback may be interpreted as a lexical top-down
parameter that reduces simulated identification thresh­
olds (fragmentation levels).

Model Evaluation
In this section, we evaluate the model's ability to ac­

count for the effects of those variables that exhibited the
strongest correlation with performance in the fragmen­
tation task. These variables are log word frequency on
identification thresholds (rpartial = - .313), neighborhood
size on errors (r partial = .164), and letter confusability on
identification thresholds (rpartial = .449). Figure 3 com­
pares the subjects' with the model's performance for these
three effects.Note that we presented all 580 words 10times
to the model (10 simulated subjects). Therefore, both the
obtained and simulated effects are based on a large num­
ber of data points.

Figure 3A shows the classic word frequency effect: the
higher a word's frequency ofoccurrence, the earlier it can
correctly be identified in the sequence of demasking. In
other words, high-frequency words can correctly be iden­
tified when only a few fragments of the word are visible.
The interactive activation model captures the systematic
decrease of identification levels with increasing word
frequency. However, the model overestimates the size of
the effect. On the one hand, low-frequency words are
identified later by the model than by subjects. On the other
hand, high-frequency words are identified earlier by the
model than by subjects.

In the interactive activation model, word frequency is
represented in terms ofresting level activation ofthe word
units. High-frequency words have a higher resting level
activation than do low-frequency words. They benefit from
a head start as compared with low-frequency words. We
suppose that the interactive activation model overestimates
the size ofthe frequency effect because the range ofrest­
ing level activation is too wide. Narrowing the range of
resting level activations could be considered as a minor
technical modification that probably does not affect the
model's ability to capture the highly systematic influence
of word frequency on identification thresholds.

Figure 3B shows an inhibitory effect of neighborhood
size on the error data. Subjects' error rates increase mo­
notonically with the number of a word's orthographic
neighbors. Words with many orthographic neighbors gen­
erate up to 15% errors. The interactive activation model
captures well the monotonic increase of the error rate as
a function ofneighborhood size. However,as with the fre-
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mented lexicon, such as very low-frequency words, con­
jugated verbs, or the plural form of nouns. However, this
finding cannot explain why the model makes more errors
than do subjects for words with many neighbors.

It is also possible that the model overestimates the size
of the neighborhood effect because its simple structure
fails to account for linguistic variables other than word
frequency, orthographic neighborhood, or confusability.
For example, in the model, words with no neighbors, so­
called hermits, produce virtually no errors. Hermits ben­
efit from the virtual absence oflexical competition (lex­
ical inhibition) because they have no neighbors. Thus,
the model makes the strong prediction that hermits
should be the most easily identifiable words. However,
since hermits often contain unique spellings and incon­
sistent sound-to-spelling correspondences (see Ziegler,
Jacobs, & Stone, 1996; Ziegler, Stone, & Jacobs, 1997),
they have been shown to produce inflated RTs and error
rates in the lexical decision task (Waters & Seidenberg,
1985; Ziegler, Montant, & Jacobs, 1997). Thus, the pres­
ent version ofthe model may overestimate the neighbor­
hood size effect because it does not account for variables
that go beyond purely orthographic and lexical process­
ing, such as variables related to phonological processes
in word recognition (see, e.g., Berent & Perfetti, 1995;
VanOrden, Pennington, & Stone, 1990; Ziegler & Jacobs,
1995; Ziegler, Van Orden, & Jacobs, 1997; for an exten­
sion ofthe interactive activation model that includes pho­
nological processes, see Jacobs, Rey,Ziegler, & Grainger,
in press).

Figure 3C illustrates the effect of letter confusability
on identification thresholds. The higher the confusabil­
ity ofa word's constituent letters, the more demasking is
needed to correctly identify the word. Considering the
history of the interactive activation model, it is interest­
ing that the model captures the systematic bottom-up ef­
fect ofletter confusability. Originally, this model was de­
veloped to capture context (top-down) effects on letter
perception. However, as the present simulation shows, it
also does a good job in dealing with bottom-up effects,
such as letter confusability.

Note that the present simulation results concerning the
effects offrequency, neighborhood size, and confusabil­
ity were not obtained from different simulations. They
are simply different illustrations of the model's behavior
(errors and identification thresholds) for the 580 words
that we presented to the model. Thus, one and the same
simulation captures the facilitatory effects of frequency
on identification thresholds, the inhibitory neighbor­
hood size effects on errors, and the inhibitory letter con­
fusability effects on thresholds.

GENERAL DISCUSSION

In the present article, we collected word identification
thresholds and errors in Snodgrass's fragmentation task
for all four-letter French words. In the first part of this
article, we attempted to find out which of the standard

variables known to affect word recognition performance
in other tasks covary with performance measures in the
fragmentation task. In the second part, we analyzed in­
dividual response performance and identified different
response strategies. In a further step, we demonstrated that
the interactive activation model can account for those in­
dividual response strategies by adapting two parameters:
word-letter feedback and letter-word inhibition. In the
third part, we demonstrated that the adaptation of the
interactive activation model to the fragmentation task
made it possible to successfully simulate a facilitatory
frequency effect on identification thresholds, an inhibitory
neighborhood size effect on error rates, and an inhibitory
letter confusability effect on identification thresholds.
When the task-specific processes of the fragmentation
task are specified and the subject-specific response strat­
egies are included, the interactive activation model pro­
vides a parsimonious architecture for modeling the task­
independent processes involved in word perception.

Which Variables Affect Performance
in the Fragmentation Task: Top-Down
and Bottom-Up Effects on Perception

As concerns the variables that affect performance in
the fragmentation task, the regression analyses suggest
the following global picture: Word frequency and con­
fusability affect word identification thresholds, whereas
neighborhood structure and orthographic redundancy af­
fect error rates. This global picture contains a number of
interesting details. First, it is logarithmic word frequency
rather than plain frequency that constitutes the better
predictor for identification thresholds (for a discussion
of this issue, see Massaro & Cohen, 1994; Paap & Jo­
hansen, 1994).

Second, letter confusability, as estimated in a separate
letter identification study (Rey et al., 1996), constitutes
a powerful predictor of word identification thresholds.
The more confusable the letters, the harder it is to identify
the word (cf. Rumelhart & Siple, 1974). Note that, al­
though all of the independent variables that are based on
lexical statistics (frequency, neighborhood structure, and
orthographic redundancy) are highly intercorrelated, none
of them is correlated with letter confusability. Therefore,
letter confusability reflects the visual, bottom-up informa­
tion that is independent of the lexical, top-down infor­
mation, as measured by such variables as frequency and
neighborhood structure. These results neatly show that
both bottom-up and top-down information jointly influ­
ence word perception in the fragmentation task. Future
research could try to investigate the tradeoff between
bottom-up and top-down information by quantifying these
contributions across different tasks and different subjects.

Third, it seems that different classes of independent
variables predict identification thresholds and error rates
in the fragmentation task. Word frequency affects iden­
tification thresholds but not error rates. Neighborhood
structure affects error rates but not identification thresh­
olds. Note that positional letter frequency also predicts



error rates. However, positional letter frequency and neigh­
borhood size are highly correlated (.546) because of the
fact that, the more neighbors a word has, the higher the
probability that a letter at a given position occurs in al1of
its neighbors. Since it seems that neighborhood size and
positional letter frequency essential1y measure similar
things, as can be seen by the reduction of the partial cor­
relations of both variables when the variance explained
by the other variable is pul1ed out, we do not consider
them separately here. Final1y, letter confusability affects
both identification thresholds and error rates.

The dissociation between variables that affect identi­
fication thresholds (e.g., frequency) and variables that af­
fect errors (e.g., neighborhood structure) can be de­
scribed by borrowing the language of dynamic systems
theory in psychology (Elman, 1995; Kawamoto, 1993;
Kawamoto & Zemblidge, 1992; Stone & Van Orden, 1994;
Van Orden & Goldinger, 1994). Performance in the frag­
mentation task may be thought of as a trajectory through
the linguistic state space from the initial encodings to an
attractor point. Each attractor in state space is bounded
by a separatrix, a (high-dimensional) boundary that cir­
cumscribes an attractor basin. Within the attractor basin,
the initial encodings are moved toward the respective at­
tractor point. Beyond this boundary, encodings fal1 in the
basin of some other attractor (see Van Orden & Gold­
inger, 1994). Identification thresholds in the fragmenta­
tion task may be a function ofthe dynamics that move en­
codings toward the respective attractor point. The gradient
of this trajectory seems to be affected by a word's fre­
quency. However, errors may reflect encodings that fal1
beyond the correct attractor basin into the basin ofan ad­
joining attractor. Orthographic neighborhood seems to
be one of the variables that determine the number and
the overlap of adjacent attractor basins.

Simulating Individual Differences
In the present article, we fol1owed an experimental ap­

proach to studying word perception that shares aspects
with a psychophysical approach: many trials and few
subjects (cf. Rumelhart & Siple, 1974). In contrast, the
typical psycholinguistic approach uses a few critical tri­
als and a large number of subj ects. One of the advantages
of the psychophysical approach is that it gives a stable
estimate of individual response patterns, since it allows
subjects to adapt their response strategy throughout a
large number of trials. In fact, among the 10 subjects
tested in this experiment, we found quite distinct response
patterns. Seven subjects showed a remarkable speed­
accuracy tradeoff. Their adaptation to the task consisted
in trading speed (levels) against accuracy (errors). The
extreme on one side was a conservative response strat­
egy; the extreme on the other side was a guessing strategy.
One group of subj ects showed a very particular response
strategy. This strategy consisted in (l) quickly passing
on to a less fragmented version of the word without any
exploration ofthe visual input at earlier levels offragmen­
tation and (2) guessing a word on the basis of this less
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fragmented input, even if the visual information was not
sufficient to decide between competing word candidates.

The interactive activation model provides a parsimo­
nious, elegant, and transparent way ofsimulating individ­
ual response strategies in the fragmentation task by adapt­
ing two parameters: letter-word inhibition and word­
letter feedback. These parameters can psychological1y be
interpreted in the fol1owing way: Letter-word inhibition
could be assimilated to the concept of attention. It may
reflect the subject's ability to detect a visual incompati­
bility between the fragmented letter information and the
potential word candidates that come to mind. For exam­
ple, subjects may perceive at the initial position ofthe word
a letter that looks like an F or a P. However, if they no­
tice in the first letter position a pixel in the right bottom
corner of the array, then they know that the first letter
cannot be F or P,and they can exclude al1words that start
with an F or a P, even if they initially thought that the
word must start with an F or a P. This is exactly the func­
tion of letter-word inhibition in the model. It inhibits
word units that are incompatible with the letter informa­
tion. As the individual simulations have shown, an in­
crease in this parameter effectively reduces the model's
error rate.

On the other hand, word-letter feedback could reflect
subjects' ability to exploit lexical and spel1ing knowledge
to mental1y fil1 in the missing fragments. In the model,
increasing this parameter increases the overal1 activation
(resonance) between compatible letter and word units.
Increasing this parameter therefore reduces the time it
takes for the model to identify a word (i.e., the simulated
fragmentation levels).

Task-Specific Modeling
In this article, we demonstrated how the interactive ac­

tivation model that typical1y simulates the automatic and
fast processes of word perception (Jacobs & Grainger,
1992) can be extended to simulate word identification
thresholds and errors in the fragmentation task. To this
end, we specified and implemented the task-specific
mechanisms that made it possible to connect the internal
mechanisms of the model (interactive activation, com­
petition, intralevel inhibition) to observable, task-spe­
cific, strategic, and individual performance, as measured
by two independent variables. The model succeeded in
simulating individual performance and the graded nature
of a variety of effects obtained in this task.

One of the interesting results of the regression analy­
sis was that lexical, top-down factors (frequency and
neighborhood structure) and visual, bottom-up factors
(letter confusability) provided strong and independent
contributions to predicting performance in the fragmen­
tation task. The simulation results show that the model
does a good job in accounting for the lexical, top-down
effects on fragmentation performance. In some ways,
this is less surprising, since the model was original1y de­
signed to capture context effects on letter and word per­
ception (i.e., the word superiority effect). However, as
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the present simulation results show, the model also nicely
predicts the bottom-up effects ofletter confusability. The
relatively simple structure of the interactive activation
model (feature, letter, and word levels) allows it to cap­
ture some of the joint influence of visual bottom-up in­
formation and lexical top-down information on percep­
tion. In particular, our simulations show that the model,
like the subjects, is able to trade bottom-up information
against top-down information. Thus, the principles of in­
teractive activation and the present task-specific imple­
mentation seem to provide a parsimonious description of
the fluid coupling of subject and laboratory method.
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