
Behavior Research Methods & Instrumentation
1974, Vol. 6 (5), 493-496

Use of an algebraic language in laboratory control
programming with small (4K) computers

NICHOLAS VITULLI and JAMES H. REYNOLDS*
Colgate University, Hamilton, New York 13346

Most lab-control programs for small (4K) computers must be written in assembly or machine
language, making it necessary for the user to expend considerable time and effort both in learning
assembly-programming skills and in writing programs. One of the most frequently used small laboratory
computers (the PDP-8 series) can, however, be programmed to provide sophisticated control using an
algebraic language (FOCAL) in as little as 4K memory locations. The FOCAL language includes a special
program sequence, FNEW, which provides capacity for a single user-defined function written in machine
language. This paper describes an implementation of the FNEW sequence that permits execution of
multiple user-written machine language subprograms within a FOCAL program. Use of this capability in
the context of process-control problems in the behavioral laboratory is discussed and illustrated.

Most commercially available computers require special
hardware interfaces which allow them to turn experi
mental circuits on and off, or to sense inputs, on
command. Programming instructions for controlling this
additional hardware are normally in machine language.
Some laboratories have computers of sufficient size to
incorporate these machine instructions into subroutines
which permit process-control programming in a higher
level language such as FORTRAN (e.g., Restle & Brown,
1969). Many labs, however, are equipped with small
(4K) machines that do not have sufficient memory to
support an effective higher-level language. Thus, psychol
ogists with programming skills in a high-levelIanguage
are often discouraged from using laboratory computers
because their use requires development of additional
assembly or machine language skills.

For laboratories equipped with any of the Digital
Equipment Corporation's (DEC) PDP-8 series of com
puters, this difficulty can be surmounted in large part by
writing lab control programs in FOCAL! and, when it
becomes necessary to provide interface instructions in
machine language, to do so by using the FOCAL
function subprogram FNEW in the manner described
below. FOCAL is an easy-to-learn algebraic language that
is efficient enough to provide advanced programming
capabilities in PDP-8 machines with 4K memory. The
FNEW calling and exiting sequence, described in the
1972 edition of DEC's handbook Programming Lan
guages (Vol. 2, pp.1145 through 11-54), allows the
FOCAL user to write a function subprogram in assembly
language. To use FNEW, the user first inserts his own
routine within the calling-exiting sequence, and then
adds the entire FNEW subprogram (calling sequence,
user's routine, and exiting sequence) as an overlay to
FOCAL-8 or FOCAL-69. As a result, the user can, in

*Requests for reprints should be sent to James H. Reynolds,
Psychology Dept.., Colgate University, Hamilton, New York
13346.

effect, create a machine-language function unique for his
purposes and can then call the function from any
FOCAL program in the same way that any standard
FOCAL function can be called.

While this usage of FNEW helps to expand the
versatility of the FOCAL language, it is still limited to
some extent because only one such new routine can be
added easily. 2 However, the present paper illustrates a
way that overcomes this limitation by constructing a
FNEW subprogram that permits execution of any
sequence (and even differing sequences) of machine
language instructions, at any point or points in a FOCAL
program, simply by calling FNEW and giving (as the
arguments to FNEW) the machine instructions to be
executed. Figure 1 presents a flow chart and listing of
the modified routine that includes the original calling
sequence listed in the handbook (p. 11-46); it also
includes the instructions that permit FNEW to execute
any sequence of machine instructions passed to it as
arguments.

The listing in Fig. 1 contains several important modifi
cations of the FNEW sequence illustrated in the hand
book (p. 1146): the listing includes appropriate loca
tions of START to be used when the user's answers to
the two FOCAL questions about loading additional
functions vary (see p. 1147 in handbook); two instruc
tions (see Locations 5311, 5312) have been added which
store the contents of Location 16 temporarily whenever
the routine is called, thus preserving any information
previously stored there; and most important, seven
instructions (see Locations 5325-5333), which initialize
the accumulator and the Location ANS, return the
original information to Location 16, and then begin the
instruction sequence which permits execution of up to
10 machine-language arguments any time FNEW is
called, have been added.

The logic of this latter sequence is not difficult to
follow. The original FNEW instructions listed at Loca-

493

494 VITULLI AND REYNOLDS

****.

(Figure continuation)

IPATCMfS TO PL,~ FOCAL WITHOUT INTtPHIJPTS

00113 '63
I 1354 I~AS ill II>
I 2414 IwAS '!ooll

21311 '2737
I 5330 I.AS 111'10:11

711>2 *27&2
I 7001" I.AS /;><1b4

IPATCMES TO ELTMINATE " ; II A"O ":"

1217 '1717
1211 761110 7&e0 IwAS 115'.>1

IlU2 'b002
&01112 al'l0 HPI" IWAS IIS'SI

oc TAl. 1.0tATlONS
IYES-YES
INO.HS
INO.NO

.* •• ***'*.*.* ••• *••••••••• **.*~

I •••••••• RFTUHN 10 tOLAL MAINLINt •
I 'PROr.HAM _ITM rLNTf",TS LF ANS •
I • AS VAl LIE 0t f II"rT Ill~' FNf~ •
/ •• t ••••••••• , ••• , ••• , ••• • ••••• •

I

••• ~*t*"**"*'*'~'**'·****I........ EXlruTl LIST •
••••• ,* •• * , ••••••••••••••

ANS

TO 10 ARGUMENTS •••••

FlAtt!

AN~

RET
16
SIb
16
LISI
RETtl

Ie t.t._._.t _ _ _.·
SIb I........ PRfPAkF LOCATIoN II> FOR •
LIST-I I *PREStN! US~ A/;D FUTIJRf RETUPN*
t6 I **t.t.t ••• _t .. t ••• _ ••• ' ••••• _ ••

KOUNT I
KOUNT I
INTEGERI t**_t __ ._t.t.t •. '•..• '._•......
10 1 ••••••• * LOAU UP TO II" MACHINf •

I *LA"~UAGf AkGUM~N!~ IhTG FNt~,.

I • STARTINr. AT LIST
I t.*.t_. __ ._.t.t __.__ .__ .'._

I..••_t.t.t •• t_ •• _••• _._ ••••••••
I •••••••• lERn AN~ A"O ALCUMULATUR, •

*AND AOU JMP RfT+1 INSTf.\ICTIO",.
Tn F"" OF lIST ARGUMl~l~ •***._-- •• ----_ •• -, .. ,...,.,...,

FLAtt.!
ClII
FLAt
fFUN3I

TAD
DCA
TAli
DCA
DCA
ISZ
JMll
DCA I
l'USHJ
ARr.
SI\l'
JI'll'
ClA CLl
DCA
TAD
DCA
TAO
DCA
.lp.\l'
,IMP
Cl A ClL
HO
Cll RAR
DCA
RAR
DCA
TAO
DC A
Jp.\l'
PI
III
'"fl
l I!lT~ I
ALLO~ lit'I ***.1li

Sib,
rill,
KOLINT,
ANS,

I ***.* f NEw •• *••• ** ••••••• ******** •••• *.* ••• *** •• *••
~OTTOp.\:"OI3<;

FNTAllf c"'3711
J"T!.r.t""f1053
PUSI"J-lI5110
FlACc01/1411
HU,,31-et3b
CHAR c011161l
fVAL-16J3
l'Ol',,-55111
I ***** PRESE"T lENGTI" IS Ill>
ISTAIlT-IIIlIhilI>
ISTAR,c5177~66

~TARTa5377.61>

lIS T, (II
QI

""PI

"'"PI
PI

""ARG, TAO CHAR
TAl) "'COM"IA
llZA ClA
JMl' .+4
PUSHJ
nAl-!
lAC
POPJ

MCOM"., 7':>24

-BOTTOI<
FNf~~1

-nITABF+III
FNEllI
*STAIlT
FNfw,

~03'j

\'137/1
\'Ill 53
45111l
~01111

"n.
IIIIU
1613
';5111

';311

\'Ill 35
0035 ';310

1!I/l10
~II til 5311

';311
'i31 I 1016
5312 33116
5313 1352
53111 3016
5315 335'"
5316 235i'
5317 111153
5320 31116
5321 115111l
5322 ';361>
5323 711 til
53<'11 'i316
5325 7300
5326 H';I
53<'7 13311
5330 311\1>
5331 \34.
';332 3016
5333 'i353
53311 5335
5335 73U
533/1 1351
5337 7110
53110 30115
53111 7011!1
53112 3046
53113 \3117
53411 3~1i4
53/15 '; 36
53116 Pl01111l
0;3/17 1110111
5350 1"00"
5351 \'10"'0
5352 5352

5353 \'10\'10
53511 ~011''''

5355 1"0~0

53<;6 000O
53'j1 ~fd1"0

5360 0fdl"0
';361 Pl01110
53611 11'00O
'i363 ~fd1ll0

53&/1 ~01110

53&5 I"001l
5366 1066
S3&7 1371>
537O 7611O
5171 ';375
5312 1154O
5373 1612
53711 7III " I
5375 55111
537/1 75211

Fig. 1. Listing and flowchart of a subprogram designed to process machine language instructions. Machine language
instructions.

ALGEBRAIC LANGUAGE AND PROGRAMMING WITH 4K COMPUTERS 495

1.1 SET Q =FNEW (3273)
1.2 IF (FNEW (3276,1257)) 1.5, 1.5, 1.3
1.3 TYPE "NOT YET" ,!
1.4 GO TO 1.2
1.5 SET Q = FNEW (3274)
1.6 TYPE "NOW",!
1.7 QUIT

course, upon the location of ANS in the FNEW routine.
The listing in Fig. 1 shows the address of ANS to be
5351, so the code 2351 8 is the valid ISZ ANS
instruction for this listing. If FNEW is stored at other
starting addresses, the octal code for ISZ ANS must be
changed correspondingly.

Using these instructions with FNEW, the following
simple FOCAL program will turn on a stiinulus and
repeatedly print the message "NOT YET" on the
Teletype until the response key is pressed, at which time
it will turn the stimulus off, print the message "NOW,"
and stop.

In analyzing the program, note that all arguments in
each FNEW call are decimal equivalents of the desired
octal code. Also, FNEW will always return a value
which, even though it may not be used, must either be
assigned to a variable (e.g., Q in Lines 1.1 and 1.5) or
accounted for as a value in a FOCAL instruction (e.g., IF
in Line 1.2). Specifially, in Line 1.1, the FNEW routine
turns on the stimulus (3273 1 0 = 6311 8 = Turn on
stimulus), and then returns a value of f/J that is assigned
to Q. In Line 1.2, the first argument in FNEW asks if the
flag on the response circuit is raised (3276 1 0 =63148) ,

If it is, the next instruction is skipped; so FNEW ends by
returning to the IF statement with a value of f/J. If the
response key has not yet been pressed, the flag is not
raised, so the next instruction in the FNEW argument is
executed. This instruction (1257 1 0) is ISZ ANS, which
increments the value of ANS from f/J to 1. Consequently,
FNEW returns the integer 1 to the IF statement in
Line 1.2. Thus, the argument for IF will be a positive
integer I until the key is pressed, at which time it
becomes ¢. The remainder of the program is straight
forward; Lines 1.2-104 constitute a testing loop until the
argument for IF becomes 1;), after which the stimulus is
turned off (Line 1.5) and the program fmishes.

Another basic operation required in laboratory con
trol is accurate timing of a stimulus display. The

Table I
PDP-8 Machine Code

Function

Turn on stimulus

Turn off stimulus

Skip next instruction if
response flag is raised

ISZ ANS (increment
ANS by 1)

1257

3273

3274

3276

2351

6311

6312

6314

Octal
Code

where v is any variable name in FOCAL and the args I-N
are 4-digit decimal translations of the PDP-8 octal
machine-language instructions the user wants to execute.
The largest value for N depends upon the number of free
locations set aside for the LIST in FNEW. Although the
upper limit is 10 in the sample listing in Fig. 1, more
locations may be added at the user's discretion.

As an example of the modified FNEW's use, assume
that we have a computer equipped with an interface that
can turn an electrical device on and off (e.g., a light
stimulus, tape recorder, slide projector, etc.) by
machine-language instructions, and can also sense the
closing of a circuit by a toggle switch, keypress, or
similar means. Assume also the following PDP-8 machine
code for operating the stimulus circuit and sensing the
flag which indicates that the response circuit has been
activated (see Table 1). The first three octal instructions,
which operate the interface, are determined arbitrarily
for any given computer when the interface is installed.
The code for the PDP-8 instruction ISZ ANS depends, of

v = FNEW (arg I, arg 2, ... ,arg N)

tions 5315-5324 serve to load all the FNEW arguments
successively into the available-space locations, starting at
LIST. When all arguments have been thus loaded as
machine-language instructions, the sequence in
5325-5333 initializes the location ANS, then deposits
the instruction JMP RET + I, at the end of that list of
instructions, and branches to LIST; execution proceeds
from there. Since the last of the instructions now stored
in the previously empty locations following LIST is
JMP RET + 1, all of the machine language arguments
will be executed in order and then control will be
directed to RET + 1, from which point FNEW completes
its execution and returns to the mainline FOCAL
program.

The first nine lines of code in Fig. 1 identify routines
that are part of FOCAL, and are explained in the
handbook. The FNEW routine itself performs the series
of tasks illustrated by the flowchart accompanying the
listing. The instructions between ARG and MCOMMA
are used to determine whether more arguments from the
FOCAL mainline program must be read into LIST. An
important location to note is ANS. ANS is set to zero
when FNEW is entered, and its value is returned to
FOCAL as the value of FNEW when the subprogram is
finished. As illustrated below, the user can vary the value
of ANS by providing appropriate instructions in the
FOCAL mainline programs, thus making ANS valuable
as a signal, a switch, or a storage location for informa
tion to be used by the mainline program. The patches
listed at the bottom of Fig. I, which allow FOCAL to
run without interrupts and eliminate the colon and equal
sign, are described on pp. 11-59-11-60 in Programming
Languages (1972, Vol. 2).

The call to the FNEW subroutine from the FOCAL
mainline program is

496 VITULLI AND REYNOLDS

following FOCAL program is designed to turn on a
stimulus circuit for T sec and then to turn it off:

1.1 TYPE "ENTER T" ,!; ASK T
1.2 SET T =-T
1.3 SET R = .0103
1.4 SET Q = FNEW (3273)
1.5 SET T = T + R
1.6 IF (T) 1.5, 1.7, 1.7
1.7 SET Q = FNEW (3274)
1.8 QUIT

The user may enter any value for T to the nearest
.01 sec. The stimulus circuit is activated in Line 1.4, and
timing takes place via the conditional loop at Lines
1.5-1.6. The accuracy of timing will vary depending
upon the value assigned to the variable R. Using a 4K
PDP-8fL, the writers obtained accuracy within ±.02 sec
when R = .0103 and T ranged between .25 and 10 sec.
Other machines and other time ranges may require
slightly different calibrations, but the program can easily
be "tuned" for accuracy by altering the value of R in
Line 1.3.

This level of timing and accuracy, while appropriate
for some types of research, is of course inadequate for
experiments requiring timing in milliseconds. For
milliseconds timing, more sophisticated software clocks
that employ delay loops can be written in machine
language and then embedded in a FOCAL program by
using the FNEW routine. The writers are currently
experimenting with a software clock consisting of 16
machine-language instructions that can be used in a
slightly larger FNEW routine than that listed in Fig. 1.
When properly calibrated, it provides accuracy within
±.002 sec for times ranging between .010 and
4.000 sec.4 Also, the FNEW routine can be used to
provide program control for real-time crystal clocks with
millisecond accuracy. (These can be added as peripheral
eguipment to the PDP-8.)

With a combination of the techniques shown in these

examples, it is not difficult to write more sophisticated
programs that control multiple S-R channels, monitor
response times, collect and print out trial-by-trial perfor
mance, and so on. The only real limitation on this usage
of FOCAL is memory size-Le., since FOCAL itself takes
up some memory, the allowable size of the program
written in FOCAL on any given machine will not be as
large as that which could be written in assembly
language. Even so, we have been able to put into a 4K
machine (equipped with a real-time crystal clock) a
FOCAL program that controls a discrimination-learning
experiment in which four Ss (fish) can be run simulta
neously at four different experimental stations. The
computer times and controls presentation of both light
and shock stimuli, and records response times (correct to
±.1 sec), independently for each S. In another context,
the FNEW routine has been used to control a digital
analog converter in an experiment conducted by the
Colgate University Physics Department. With larger
memory, the potential is limited only by the program
ming skills of the user. The required skills need no longer
be confined to machine or assembly language, but can be
developed more easily in a higher-level language that
students and researchers can quickly master.

REFERENCES

Restle, P., & Brown, T. V. A computer running several
psychological laboratories. Behavior Research Methods &
Instrumentation, 1969, 1, 312-317.

NOTES

1. FOCAL is a copyrighted trademark of the Digital Equip
ment Corporation.

2. Actually, the handbook offers procedures by which up to
three such routines may be overlayed. The procedures are
complex, however, and require a listing of the entire FOCAL
program in order to place the routines accurately in available
core (P. 11·47 of handbook).

3. An octal-decimal conversion table is available in DEC's
Small Computer Handbook (1972, Appendix H).

4. Listings and documentation for the current version of the
microsecond software clock are available on request.

(Received for publication June 28,1974;
revision received July 30, 1974.)

