Orthogonal polynomial coefficients and trend analysis for unequal intervals and unequal Ns : A microcomputer application

DANIEL COULOMBE

University of Ottawa, Ottawa, Ontario, Canada
If treatment levels in an experimental design are quantitative in that each level represents a point on a continuous scale, then the relationship between the treatment levels and the population means for the dependent variable can be studied. Techniques for this type of study are termed trend analysis and are discussed in most textbooks on experimental designs (Keppel, 1973; Kirk, 1982; Winer, 1971).
In order to perform trend analysis, a set of orthogonal coefficients representing the trends under study must be used. Extensive tables exist in which the required coefficients can be found (Fisher \& Yates, 1957). Less extensive tables are also available in current texts on experimental design. However, these tables can be used only for studies in which the distance between each treatment level is equal and the number of subjects in each level is equal. If one or both of these conditions is (are) absent, trend analysis still can be performed, but the appropriate coefficients must be computed beforehand. Algorithms to do so are presented by Gaito (1965) and by Kirk (1982).

Current algorithms to compute orthogonal polynomials involve the solution of simultaneous equations. In Gaito (1965) and in Kirk (1982), algebraic solutions for linear and quadratic coefficient sets are available. However, solving the equations becomes very tedious for higher order polynomials. Tyson and Fieldes (1982) developed a routine to compute orthogonal polynomials when unequal intervals between treatment levels are used. Dunlap (1975) and Possamai (1975) presented FORTRAN programs that can be used to compute the coefficients appropriate for all situations. In this paper, I present a BASIC program having the capability of generating the orthogonal polynomials and performing all steps involved in trend analysis. This program can be used following an analysis of variance involving any number of treatments.
The Computer Program. The computer program is listed in Table 1. The output, a sample of which is reproduced in Table 2, includes a listing of the orthogonal coefficients, the ANOVA table with tests of significance of each trend, and tests of goodness of fit, with the polynomial equations and tests of departure from trend.

The program itself is divided into five parts. Lines $10-$ 130 include the initialization and data entry procedures. The program first requests the number of groups or con-

[^0]Table 1
Program Listing (TRENDAN.BAS)

10 CLS : DEFINT I, J,K,N

20 INPUT "Number of groups or conditions";K:PRINT:PRINT
$30 \operatorname{DIM} A(K, K), A S(K), B(K+1), C(K), C 1(K, K), L(K), H(K), R 3(K, K), X(K, K), X B(K), Y(K, K+1)$,
2 (K)

\$): $\mathrm{NN}=\mathrm{NN}+\mathrm{N}(1)$

N(I)
60 PRINT TAB(60) CHR $\$(30)$;"Level $=\pi>" ;: L I N E$ INPUT LS:L(I) $=V A L(L S)$
80 PRINT:INPUT "Treatment Sum of Squares"; $\mathbf{R}(1,1): \mathbf{R}(1,2)=K-1: R(1,3)=R(1,1) / R(1,2)$ 90 INPUT "Error Sum of Squares"; $\mathbf{R}(2,1): \mathbf{R}(2,2)=\mathrm{NN}-\mathrm{K}: \mathbf{R}(2,3)=\mathbf{R}(2,1) / \mathbf{R}(2,2): \mathbf{R}(1,4)=\mathbf{R}$ $(1,3) / R(2,3)$
$100 \mathbf{R}(3,1)=\mathbf{R}(1,1)+\mathbf{R}(2,1): \mathbf{R}(3,2)=\mathbf{N R}-1$
110 DATA LINEAR, QUAD, CUBIC, QUARTIC, QUINTIC,6th, 7 th, $8 \mathrm{th}, 9 \mathrm{th}, 10 \mathrm{th}$
120 CLS:PRINT "TREND ";TAB(10);:FOR I=1 TO K:PRINT USING " \&** \quad ";"C("; I ;")"; :NEXT I
130 PRINT:PRINT $\operatorname{STRINGS(79,205)}$
$140 \mathrm{~N}=\mathrm{K}:$ FOR $\mathrm{II}=1$ TO $\mathrm{N}: \mathrm{Cl}(1, \mathrm{I})=1$: NEXT I $1: \mathrm{CC}=1$
150 FOR $I=2$ TO $-(10<K) * 10-(K<=10) * K: \operatorname{READ} A \$(I-1)$
160 FOR I1=I-1 TO 0 STEP - $1:$ FOR $12=1$ TO $R: A(I 2, I-I 1)=L(12)$ - $11:$ NEXT 12,11
170 FOR $11=1$ TO K:FOR $12=1$ TO $1: X(I 1,12)=A(11,12) * N(11):$ NEXT $12, I 1$
180 FOR I $3=1$ TO CC:FOR $11=1$ TO $1: Y(13,11)=0:$ FOR $12=1$ TO K
$190 \mathrm{Y}(\mathrm{I} 3, \mathrm{II})=\mathrm{Y}(\mathrm{I} 3, \mathrm{I} 1)+\mathrm{Cl}(\mathrm{I} 3,12) * \mathrm{X}(12, \mathrm{~T} 1)$
200 NEXT [2, I1, 13
210 FOR $\mathrm{Il}=1$ To CC:FOR $12=1$ TO $\mathrm{CC}+1: \mathrm{R} 3(\mathrm{I} 1, \mathrm{I} 2)=\mathrm{Y}(\mathrm{I} 1, \mathrm{I} 2+1): \mathrm{NEXT} 12, \mathrm{I}$
220 IF CC=1 THEN R3 $(1,1)=1 /$ R3 $(1,1)$: GOTO 280
230 FOR $13=1$ TO CC:FOR II=1 TO CC-1:Z(11)=R3(1, $11+1) / R 3(1,1):$ NEXT II
$240 \mathrm{Z}(\mathrm{CC})=1 / \mathrm{R} 3(1,1):$ FOR $\mathrm{I} 1=1$ TO CC-I: FOR $12=1$ TO CC-1
$260 \mathrm{R} 3(\mathrm{I} 1, \mathrm{CC})=-\mathrm{R} 3(\mathrm{I} 1+1,1) * \mathrm{Z}(\mathrm{I} 2): \mathrm{NEXT}$ I
270 FOR 12=1 To CC:R3(I1,I2)=2(I2):NEXT 12, I
$280 \mathrm{~B}(1)=1:$ FOR $\mathrm{I} 1=1$ TO $\mathrm{CC}+1: \mathrm{B}(\mathrm{Il}+1)=0:$ FOR $12=1$ TO CC
$290 \mathrm{~B}(\mathrm{I} 1+1)=\mathrm{B}(\mathrm{I} 1+1)+\mathrm{R} 3(\mathrm{I} 1, \mathrm{I} 2) *(-\mathrm{Y}(\mathrm{I} 2, \mathrm{~L})): \mathrm{NEXT}$ I2, I 1
$300 \mathrm{CC}=\mathrm{CC}+1: \operatorname{PRINT} \operatorname{AS}(\mathrm{I}-1) ; \operatorname{TAB}(10) ;: \mathrm{FOR} \mathrm{I}=1=1 \mathrm{TO} \mathrm{K}: \mathrm{Cl}(\mathrm{CC}, \mathrm{Il})=0:$ FOR I2=1 TO I
 II) ; : NEXT II: PRINT

320 NEXT I
330 PRINT STRINGS (79,205):COSUB 670
340 CLS: PRINT TAB(24) "ANOVA TABLE":PRINT STRINGS(61,45)

360 PRINT "SOURCE"; TAB(17)"SS"; TAB(25)"DF"; TAB(36)"MS"; TAB(47)"F"; TAB(58) "P(F)"
: PRINT STRINGS (61,45)
370 PRINT BETWEEN ; PRINT USING US $\$; \mathbf{R}(1,1) ; R(1,2) ; R(1,3) ; R(1,4) ;: D 1=R(1,2): D 2=$
$\mathrm{R}(2,2): \mathrm{F}=\mathrm{R}(1,4): \mathrm{GOSUB}$ 610:P
$380 \mathrm{~B}(0)=\mathrm{S} / \mathrm{NN}:$ FOR $I 1=2 \quad$ TO K
390 FOR $I=1$ TO K:SS=S
) $=$ SS $/ D E N: S S=S S-2 / D E N$

3): GOSUB 610:PRINT USING " \#.央赖"; X

410 SS=0: DEN=0: NEXT II
420 PRINT "WITHIN ";:PRINT USING US\$;R(2,1);R(2,2);R(2,3):PRINT STRIMG\$(61,45) 430 US\$=LEFTS (US\$,19): PRINT "TOTAL ";:PRINT USING USS;R(3,1);R(3,2):PRINT STR NGS(61,45)
440 cosub 670

THEN GOTO 450
460 FOR II II TO MAX:CLS: SSDEP=0
470 PRINT "POLYNOMIAL EQUATIONS AND TEST OF GOODNESS OF FIT : ";AS(Li);" TRE
ND": PRINT STRINGS(79,205)
480 PRINT "LEVEL";TAB(10) "N";TAB(17) "MEAN";TAB(25) "PRED. MEAN";TAB(40) "DEP.
FROM PATTERN";TAB(61) "C(";II;"j)": PRINT STRINGS $(79,45)$
490 USS=" \#\# \#\#\# \#\#\#\#.**
500 FOR I2 $=1$ TO K

:COLOR 7,0:PRINT
570 PRINT: PRINT "SS DEP. FROM MODEL : ";SSDEP: PRINT "DEGREES OF FREEDOM : ";D1;"
"; R(2,2):PRINT "F
S80 GOSUB 610:PRINT "P(F) : $;$; $"$;
590 GOSUB 670: NEXT II
600 CLS: END
10 IF $\mathrm{F}<1$ THEN $\mathrm{SV}=\mathrm{D} 2: \mathrm{T}=\mathrm{D} 1: \mathrm{Z}=1 / \mathrm{F}$ ELSE $\mathrm{SV}=\mathrm{D} 1: \mathrm{T}=\mathrm{D} 2: \mathrm{Z}=\mathrm{F}$
$620 \mathrm{~W}=2 / 9 / \mathrm{SV}: L=2 / 9 / \mathrm{T}: \mathrm{Y}=\mathrm{ABS}((1-\mathrm{L}) \star Z-(1 / 3)-1+\mathrm{W}) / \mathrm{SQR}(\mathrm{L} * \mathrm{Z} \wedge(2 / 3)+\mathrm{W})$
630 IF $T<4$ THEN $Y=Y *(1+.08 * Y \wedge 4 / T-3)$
$40 \mathrm{X}=.5 /(1+\mathrm{Y} *(.196854+\mathrm{Y} *(.115194+\mathrm{Y} *(.000344+Y * .019527)))) \sim 4$
$50 \mathrm{TF} \mathrm{F}>=1$ THEN 660 ELSE $\mathrm{X}=1-\mathrm{X}$
$50 \mathrm{IFF} \quad \mathrm{F}=1$ THEN 660 ELSE $\mathrm{X}=1-\mathrm{X}$
670 RETURN
70 PRINT :PRINT :PRINT "Press any key to continue": BEEP
690 RETURN
ditions (treatment levels). Then, for each treatment level, the user is asked to input the number of subjects (n), the group mean, and the level value of the independent variable. Finally, the program requests the treatment and the error sums of squares.
Lines $140-330$ list the routine used to compute the orthogonal coefficients. The maximum order of the poly-

Table 2
Sample Run of TRENDAN

Group 1		8	Mean	2.75	Level ===> 0
Group 2	N	8	Mean	3.5	Level $===>1$
Group 3	N	8	Mean	6.25	Level ===> 2
Group 4		8	Mean	9	Level $\Rightarrow \Rightarrow 3$
Treatment Sum of Squares? 194.5Error Sum of Squares? 41					
Error Sum of Squares? 41					
TREND	c(1)	C(2)	C(3)	c(4)	
linear	-1.500	-0.500	0.500	1.500	
QUAD	1.000	-1.000	-1.000	1.000	
cubic	-0.300	0.900	-0.900	0.300	

anova table					
SOURCE	Ss	DF	MS	F	P (F)
BETWEEN	194.50	3	64.83	44.276	0.0000
LINEAR	184.90	1	184.90	126.273	0.0000
quad	8.00	1	8.00	5.463	0.0253
cubic	1.60	1	1.60	1.093	0.3054
WITHIN	41.00	28	1.46		
rotal	235.50	31			

polynomial equations and test of goodness of eit : linear trend

LEVEL	N	MEAN	PRED. MEAN	DEP. FROM PATTERN	$C(1 \quad j)$
1	8	2.75	2.15	0.60	-1.500
2	8	3.50	4.30	-0.80	-0.500
3	8	6.25	6.45	-0.20	0.500
4	8	9.00	8.60	0.40	1.500

MODEL $=3 \times 3$ Mean $=$	$5.38+2.15$
SS DEP. FROM MODEL	9.600001
DEGREES OF FREEDOM	2 , 28
F	3.278049
$\mathrm{P}(\mathrm{F})$	5.130608E-02

nomial is fixed at 10 in Line 150. If higher orders are desired, every occurrence of 10 should be changed to fit the new requirement. Also, additional terms should be appended to the data list in Line 110. When executed, this section also prints the computed coefficients in a tabular form (e.g., Table 2).

Lines 340-440 output the ANOVA table including each possible trend up to the maximum of 10 . In each case, the F ratio is computed and the exact probability of F is printed.
Lines 450-600 output the polynomial equations and the tests of departure from trend. In this case, and for each trend selected by the user, the program prints a table in which the n_{s}, observed means, means predicted by the model, departure from pattern, and coefficients are presented. In addition, the program displays the equation used to compute the expected means, as well as the test of departure from the model. Table 2 includes these various parts of the program output. The sample data are from Kirk (1982, p. 140).

Finally, lines 610-690 are subroutines to compute the exact probability of F ratios (derived from Poole \& Borchers, 1979) and to pause the display between pages.

Program Language and Requirements. The routine presented in this paper was developed on a Tandy 2000 computer, using Microsoft GW-BASIC. It can be run on any microcomputer using current versions of BASIC with, at most, minor syntax modifications. The memory requirement depends solely on the number of treatment levels. About 8 K RAM are necessary for problems involving 10 treatment levels.

Availability. A source listing can be obtained at no cost from the author.

REFERENCES

DUNLAP, W. P. (1975). A FORTRAN IV program for trend analysis with unequal intervals and unequal n_{s}. Behavior Research Methods \& Instrumentation, 7, 478-479.
Fisher, R. A., \& Yates, F. (1957). Statistical tables for biological, agricultural and medical research. New York: Hafner.
Gaito, J. (1965). Unequal intervals and unequal n in trend analysis. Psychological Bulletin, 63, 125-127.
Keppel, G. (1973). Design and analysis: A researcher's handbook. New York: Prentice-Hall.
KIRK, R. E. (1982). Experimental design: procedures for the behavioral sciences. Belmont: Brooks/Cole.
Poole, L., \& Borchers, M. (1979). Some common BASIC programs (3rd ed.), Berkeley, CA: Osborne/McGraw-Hill.
Possamal, C. A. (1975). CORAT: A FORTRAN subroutine to calculate orthogonal coefficients for trend analysis. Behavior Research Methods \& Instrumentation, 7, 315-316.
Tyson, H., \& Fieldes, M. A. (1982). A BASIC program for orthogonal polynomials and retrieval of regression coefficients for original model. Computer Programs in Biomedicine, 15, 151-154.
Winer, B. J. (1971). Statistical principles in experimental design. New York: McGraw-Hill.
(Revision accepted for publication June 7, 1985.)

[^0]: The author's mailing address is: School of Psychology, University of Ottawa, 275 Nicholas, Ottawa, Ontario, Canada K1N 6N5.

