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A template-matching pandemonium recognizes
unconstrained handwritten characters

with high accuracy

AXELLARSEN and CLAUSBUNDESEN
University ofCopenhaqen, Copenhaqen, Denmark

Psychological data suggest that internal representations such as mental images can be used as tem­
plates in visual pattern recognition. But computational studies suggest that traditional template
matching is insufficient for high-accuracy recognition of real-life patterns such as handwritten char­
acters. Here we explore a model for visual pattern recognition that combines a template-matching
and a feature-analysis approach: Character classification is based on weighted evidence from a num­
ber of analyzers (demons), each of which computes the degree of match between the input charac­
ter and a stored template (a copy of a previously presented character). The template-matching pan­
demonium was trained to recognize totally unconstrained handwritten digits. With a mean of 37
templates per type of digit, the system has attained a recognition rate of 95.3%, which falls short of
human performance by only 2%-3%.

Analysis ofan input pattern by template matching con­
sists in superimposing a stored pattern (template) on the
input and determining the degree of match (overlap or
correlation) between the input and the template. In tradi­
tional recognition by template matching, the input is first
compared against a number of templates and then classi­
fied as a member ofthe same category as the best match­
ing template. To compensate for irrelevant variations in
the spatial position, size, and orientation of the input, the
input pattern and the template can be aligned by being
shifted, size-scaled, and rotated before their degree of
match is determined.

Psychological studies suggest that simple visual pat­
terns such as letters or digits can be recognized by use of
internal representations as holistic templates. Mental im­
ages form one type of representations that seem to be
used as templates. They can be transformed, and trans­
formation of mental images appears to be one way of
achieving recognition regardless of stimulus position,
size (see Bundesen & Larsen, 1975; Jolicoeur & Besner,
1987; Larsen & Bundesen, 1978), and orientation (see
Shepard & Cooper, 1982; Shepard & Metzler, 1971; also
see Bundesen, Larsen, & Farrell, 1981; Larsen, 1985).
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Most cases ofvisual recognition are presumably based
on comparing input patterns against long-term memory
representations instead of short-term representations
such as mental images. The nature of visual long-term
memory representations is controversial, but simplicity
favors the view that visual representations in long-term
memory are similar in format to visual representations in
short-term memory (template-like mental images).

Suggestive empirical evidence that visual long-term
representations may be used as templates in recognition
ofsimple visual patterns has come from two sources. First,
a number of reaction time studies have shown systema­
tic decrements in recognition speed and accuracy caused
by irrelevant variations in visual size (see Cave & Koss­
Iyn, 1989; Larsen & Bundesen, 1978) and orientation
(see Cooper, 1975; Jolicoeur, 1985, 1990; Jolicoeur &
Landau, 1984). The results support the notion that "vi­
sual pattern recognition is based on position-wise compar­
ison of stimulus patterns with memory representations"
(Larsen & Bundesen, 1978, p. 19), and template match­
ing is the most elementary way of making position-wise
comparisons (also see Ullman, 1989). Second, template­
matching models have yielded good fits to observed visual­
confusion matrices (see Gervais, Harvey, & Roberts,
1984; Holbrook, 1975) and excellent fits to observed
variations in legibility across character sets (see Loomis,
1990).

The computational efficiency of template matching
has been seriously questioned. For several decades, com­
mon wisdom has held that template matching is insuffi­
cient for recognition of unconstrained real-life patterns
(see, e.g., Eysenck & Keane, 1990; Hummel & Bieder­
man, 1992; Humphreys & Bruce, 1989; Lindsay & Nor­
man, 1972; Neisser, 1967; Reed, 1973). Recognition of
unconstrained handwritten characters is probably the most
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frequent textbook example of a task on which template
matching should fail.

We recently tested the efficiency of traditional tem­
plate matching in machine recognition of totally uncon­
strained handwritten digits (Larsen & Bundesen, 1992).
Our learning and recognition algorithm was simple; no
previous knowledge concerning handwritten digits
was presupposed, and preprocessing was limited to
Gaussian smoothing and normalization with respect
to position, size, and orientation. For patterns pre­
sented in a known orientation, recognition rates were
69%, 77%, and 89%, respectively, when about 5, 10,
and 60 templates had been learned for each type of digit.
For patterns presented in unknown orientations, rec­
ognition rates were slightly lower. High levels of relia­
bility could be attained by omitting classifications based
on weak evidence. However, at the end of training, the
effect offurther increase in the number of templates was
extremely small, and recognition rates substantially
higher than 90% seemed practically impossible to
obtain. For comparison, human subjects tested with a
random sample of the handwritten digits (presented in
upright orientation) achieved a mean recognition rate of
97%.

In traditional recognition by template matching, the
classification of an input depends solely on the type of
the best matching template. This is wasteful of informa­
tion. The method fails to utilize the diagnostic power of
templates for any given type of digit in discriminating
between digits ofother types. For example, the degree of
match with a template for a digit of Type 0 yields infor­
mation about the likelihood that the input belongs to
Type 6 rather than Type 7, but this information is not uti­
lized. When the template-matching approach is com­
bined with a feature-analysis (pandemonium; Selfridge,
1959; Selfridge & Neisser, 1960) approach to recogni­
tion, the degree ofmatch with any given template may be
treated as a particular feature of the input, and the feature
may be used as positive or negative evidence for any
classification. We explored such a system. It encodes new
patterns as templates, uses the templates for feature analy­
sis, strengthens the role of useful templates, and weak­
ens the role of useless ones.

MODEL

Our pandemonium model of human character recog­
nition contains a number of feature demons (analyzers),
each of which stores a particular template. The template
is a copy of a previously presented character. When a
character is presented to the system for recognition, the
character is first normalized in spatial position and size
and smoothed by convolution with a circularly symmet­
ric two-dimensional Gaussian filter. Next, each feature
demon determines the degree of match between the char­
acter and the template stored with the demon. The de­
gree of match is a measure of the maximum correlation
that can be found between the two patterns by permitting
some displacement between their centroids.
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Above the level of feature demons is a number ofcog­
nitive demons, one for each type of character. Each cog­
nitive demon is connected to every feature demon, and
the net input to a cognitive demon is a weighted sum of
the degrees of match determined by the feature demons.
The activation of a cognitive demon increases with the
net input to the unit.

On top ofthe processing hierarchy is a decision demon.
It classifies the input character as belonging to the type
that corresponds to the cognitive demon with the highest
activation.

SIMULATIONS

General Method
Input patterns. The input patterns presented to the pandemo­

nium consisted of 6,000 totally unconstrained handwritten digits
(600 tokens of each of the 10 types of digit). The digits were taken
from zip codes collected by the U.S. Postal Service from dead letter
envelopes (see Larsen & Bundesen, 1992). The number ofwriters
is not known, but can be assumed to approach the actual number
of samples. The material was provided in digitized and binarized
form. Typical samples are shown in Figure 1.

Recognition algorithm. When an input pattern was presented
to the system, it was processed as follows.

1. The centroid ("center ofgravity") ofthe character (defined as
a figure consisting of pixels with a value of Ion a ground of pix­
els with a value of 0) was found.

2. The size of the character was determined as the greatest dis­
tance from the centroid to any pixel that belonged to the character
(i.e., any pixel with a value of 1).

o
).

Figure 1. Examples of input patterns.
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3. The input pattern was normalized with respect to the position
and the size of the character. Effectively, an object-centered Carte­
sian xy coordinate system was imposed on the input pattern so that
the origin of the coordinate system coincided with the centroid of
the character and the units of length along the x and y axes equaled
the size of the character. 1

4. The normalized input pattern was smoothed by convolution
with a two-dimensional Gaussian filter,

I (x 2
+ 2)G(x,y) = -- exp -~ ,

21ra2 2a 2

with standard deviation C1.

5. The smoothed input pattern was compared with every tem­
plate stored in memory. When the input was compared with a par­
ticular template, the two patterns were first aligned so that their
centroid pixels coincided. Then the template was shifted relative to
the input by a certain number of pixels along the x axis and a cer­
tain number ofpixels along the y axis. All shifts ofup to ::': 0.2 units
oflength (20% ofthe size ofa character) along the x axis and ::':0.2
units along the y axis were tested. For each shift, the product mo­
ment correlation between the two patterns was determined. Letting
r be the highest product moment correlation obtained between the
two patterns, the degree of match between the input and the tem­
plate was defined as r7 (see Larsen & Bundesen, 1992).2 The de­
gree of match was stored as the level of activation of a unit (tem­
p/ate node) associated with the template.

6. The input was classified as a digit of Type 0, 1, ... , or 9. Each
digit type was represented by a unit (class node), the net input of
which was a weighted sum of the degrees of match computed at
Step 5 (the levels of activation of all template nodes). The activa­
tion of the class node equaled the hyperbolic tangent of its net

input." The input pattern was classified as a token ofthe digit type
represented by the class node with the highest activation.

Implementation. The algorithm was written in C. It was exe­
cuted on a computer system consisting of a Digital Equipment
Corporation Micro-VAX 2 and a DEC-station 3100.

The input characters varied widely in size, about 7 X 12 pixels
up to 53 X 53 pixels. After normalization, each character was rep­
resented in a format such that the greatest distance from the cen­
troid (i.e., the centroid pixel) to any pixel that belonged to the
character equaled 15 pixels (l unit oflength). Distances between
pixels were measured from center to center.

Whereas the normalized character was represented as a figure of
pixels with a value of 1 on a ground ofpixels with a value of0, the
Gaussian filter coefficients were quantized on a 7-bit scale so that
the sum of the coefficients was within the range of the scale. The
standard deviation C1 of the Gaussian filter equaled 1.5 pixels, and
the greatest distance from the center of the Gaussian filter to a
pixel at which the quantized filter coefficient was different from 0
equaled 3 pixels.

The smoothed input pattern had a value of 0 at any pixel farther
than 18 pixels from the centroid. Each product moment correlation
between the smoothed input pattern and a template stored in mem­
ory was made by computing the Pearson product moment correla­
tion coefficient between the two patterns across all pixels located
at or within a distance of 18 pixels from the centroid of one or the
other pattern.

Experiments
The recognition system was trained on a fixed subset

of the input patterns. The subset (training set) consisted
of 4,000 digits (400 randomly selected tokens of each
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Figure 2. Mean recognition rates on training (open circles) and test sets (filled circles)
as functions of the number of passes through the training set. (Results are based on five
independent simulations.)
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Figure 3. Distributions of weights on connections from template to
class nodes at the end of training. Upper panel: Weights on intrinsic
connections. Lower panel: Weights on extrinsic connections. Results
are based on five independent simulations.
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almost all of the weights on intrinsic connections were
positive. Most weights on extrinsic connections were
negative, but a substantial proportion (21%) were posi­
tive. Many templates had heavy positive weights on their
intrinsic connections, light positive weights on some of
their extrinsic connections, and negative weights on the
remaining ones.

The reliability of the recognition responses was de­
fined as the relative frequency ofcorrect responses among
all responses. At the expense of getting omission errors
(rejections), reliability of recognition responses could
be increased by omitting responses that would have been
based on weak evidence. During passes through the test
set, we investigated the effect of rejecting a test pattern
(omitting response to the pattern) if the difference in ac­
tivation between the two most active class nodes was
below a certain threshold. The rejection rate was varied
by changing the threshold. The results are shown in Fig­
ure 4. As illustrated, reliabilities of97.0% and 99.0% were
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type). In each pass through the training set, the 4,000
digits were presented one at a time in random order.

At the beginning of training, only one template was
stored in memory. This template was a smoothed normal­
ized version ofa randomly selected member ofthe train­
ing set. The weight on the connection from the template
node to the class node that represented the character type
of the template (the correct classification) was 1. Weights
on connections to the other nine class nodes were -0.01.

During the first pass through the training set, learning
occurred whenever an input was incorrectly classified.
In this case, the smoothed normalized version of the in­
correctly classified input was added to the set of tem­
plates stored in memory. The corresponding template
node was connected to the correct class node with a
weight of 1 and to the other nine class nodes with weights
of -0.01. After the first pass, about 370 templates had
been stored (mean offive independent simulations).

During later passes through the training set, no new
templates were acquired, but weights on connections from
template to class nodes were adjusted. After each pre­
sentation of a training pattern, weight adjustments were
made by the delta rule (see Stone, 1986; Sutton & Barto,
1981; see also Donegan, Gluck, & Thompson, 1989).
Specifically, the change in weight on the connection from
template node i to the class node for digit type j equaled

0.025d;Ct - a).

Here, d, is the degree of match signaled by the template
node, and aj is the activation of the class node. If the
training pattern was oftypej, then constant t = 0.7, else
t = -0.7.

After each pass through the training set, performance
was measured on a separate test set. The test set con­
sisted of 2,000 digits (200 tokens of each type). No
learning occurred during passes through the test set.

Results based on five independent simulations are
shown in Figure 2. Before weights were adjusted (i.e.,
after the first pass through the training set), the recogni­
tion rate averaged 97.7% on the training set and 93.1%
on the test set. At the end of training, the recognition
rates on the training and test sets were 99.4% and 95.3%,
respectively." For both sets, convergence to the higher
level of performance was fast.

Figure 3 shows distributions of weights on connec­
tions from template to class nodes at the end of training
(means of the five simulations). Let an intrinsic connec­
tion be a connection from a node for a template of a cer­
tain type of digit to the class node for this type of digit,
and let an extrinsic connection be a connection from a
node for a template of a certain type of digit to a class
node for a different type ofdigit. The upper panel ofFig­
ure 3 shows the distribution of weights on intrinsic con­
nections, and the lower panel shows the distribution of
weights on extrinsic connections. The distribution of
weights on intrinsic connections had a mean of 1.5 and
a standard deviation of 0.7, whereas the distribution of
weights on extrinsic connections had a mean of -0.3 and
a standard deviation of 0.5. Thus, as would be expected,
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Templates per DigIt

Figure 5. Recognition rate as a function of the mean number of
templates per type of digit.
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DISCUSSION

attained on the test set with rejection rates of 3.5% and
14.1%, respectively.

The number of templates stored in memory could be
substantially reduced with only modest effects on per­
formance. At the end of training, the strength of a tem­
plate was calculated as the sum of the squares of the
weights on the connections from the template's node to
the class nodes. The weakest templates and their nodes
were removed, the remaining weights were readjusted by
further practice on the training set, and the recognition
rate was measured on the test set. The curve shown in
Figure 5 was generated by repeating this process many
times. As can be seen, a recognition rate of95% could be
attained with a total of 278 templates or about 28 tem­
plates per type of digit. With a mean of 8 templates per
type of digit, the recognition rate (89%) equaled the rate
we have reported for traditional recognition by template
matching with about 60 templates per type of digit (see
Larsen & Bundesen, 1992).
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Figure 4. Reliability of recognition responses as a function of re­
jection rate. (The reliability is the relative frequency of correct re­
sponses among all responses. A test pattern was rejected [response
was omitted) ifthe difference in activation between the two most ac­
tive class nodes was belowa certain threshold The rejection rate was
varied by changing the threshold. Results are based on five indepen­
dent simulations.)

written digits (see, e.g., Lam & Suen, 1988; LeCun et a\.,
1989; Suen, 1990).

It is instructive to trace the steps by which the recog­
nition rate was improved when our system for recogni­
tion by traditional template matching (Larsen & Bunde­
sen, 1992) was developed into the template-matching
pandemonium. In the system for recognition by tradi­
tional template matching, the input was always classified
as a member of the same category as the best matching
template. Various degrees of Gaussian smoothing were
tested. Without any Gaussian smoothing, the recogni­
tion rate was 86% at the end of training (i.e., when about
75 templates had been stored for each type ofdigit). The
highest recognition rate was obtained when the standard
deviation CT of the Gaussian filter equaled 10% of the
size of a normalized character. In this case the recogni­
tion rate reached a value of 89% (with about 60 tem­
plates per type of digit).

A small further increase in recognition rate was ob­
tained by improving the normalization with respect to
position. By tolerating minor displacements between
centroids of templates and input patterns (see Step 5 of
the current recognition algorithm), the recognition rate
was increased by about 0.5%.

Dramatic improvements in performance were found
when the system was rewired so that classification was
based on evidence summed across many templates rather
than evidence provided by the best matching template.
When all weights on intrinsic connections from template
to class nodes were equally great, and weights on extrin­
sic connections were close to zero, the recognition rate
averaged 93% (with about 37 templates per type of
digit). Adjusting the weights through learning yielded a
further increment of several percentiles up to the final
recognition rate of95.3%.
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Computational Efficiency
The recognition rate attained by the template-matching

pandemonium model of human character recognition is
remarkable. It falls short of human performance by only
2%-3% (see Larsen & Bundesen, 1992). Despite the ex­
treme simplicity of the model, it appears to perform as
well as the most complex and successful machine algo­
rithms designed specifically for recognition of hand-



Feature Analysis by Template Matching
Our template-matching pandemonium model for char­

acter recognition combines a template-matching with a
feature-analysis approach to pattern recognition. In the
combined approach, input patterns are analyzed on a
number of form dimensions (dimensions of variation in
form). Each form dimension is defined by a template. The
value of the input pattern on the dimension equals the de­
gree ofmatch between the input and the template. As the
value on the dimension (the degree of similarity to the
template) is a visual feature of the input, the process of
template matching is a process offeature analysis. Recog­
nition of the input pattern is based on al1of the visual fea­
tures that are extracted by template matching. Each fea­
ture is used as positive or negative evidence for each of
the possible classifications.

The templates in the current pandemonium are copies
of previously presented instances of handwritten digits.
Thus the long-term memory of the system contains pic­
torial representations ofmoderate complexity. The analy­
sis ofa new pattern is done by cross-correlating the input
with each ofthese representations, so new patterns are an­
alyzed by being filtered through a sample of previously
experienced patterns. By the learning process governed
by the delta rule, the role of useful feature analyzers
(templates) is strengthened and the role of useless ana­
lyzers is weakened. If the weakest analyzers are purged
(see Figure 5), feature analyzers are effectively selected
on the basis of their diagnostic power with respect to the
set of relevant pattern classifications. The feature analyz­
ers that survive correspond to those copies ofpreviously
presented patterns that are highest in diagnostic power.

The template-matching pandemonium throws new
light on the quest for the basic units or dimensions ofvi­
sual pattern analysis. In the middle of the century, a
strong plea was made for the development ofa perceptual
psychophysics (Gibson, 1950, 1959) that should include
a psychophysics ofform (Attneave & Arnoult, 1956).
Quantitative studies of shape and pattern perception
were initiated in attempts to create a psychological metric
of visual form (see, e.g., Brown & Owen, 1967; Michels
& Zusne, 1965). Ad hoc geometric measures such as
number of sides in a figure, number of angles, moments
of area, and moments of the perimeter were computed
and correlated with behavioral measures (see, e.g., Zusne,
1970). However, the fundamental problem remained un­
solved. The template-matching pandemonium model
suggests that the quest for the basic units or dimensions
of visual form was misguided. It suggests that there are
very many dimensions of variation in visual form (one
for each template), but no particularly basic ones. The
important dimensions of variation in visual form are not
mutually orthogonal, and few, if any, are universal.

Possible Role ofStructural Descriptions
Three general approaches to visual pattern recognition

are commonly considered: template matching, feature
analysis, and structural description (see, e.g., Hummel

A TEMPLATE-MATCHING PANDEMONIUM 141

& Biederman, 1992; Reed, 1973). In the structural­
description approach, an object is represented by a struc­
tural description, that is, a symbolic representation ofthe
geometric structure of the object. The structural descrip­
tion specifies the components of the object and ways in
which the components are interrelated. The components
may be elementary visual features (Sutherland, 1968) or
three-dimensional primitives such as generalized cones
(Marr, 1982; Marr & Nishihara, 1978) or geons (Bieder­
man, 1987; Biederman & E. E. Cooper, 1992; see also
related work by L. A. Cooper, Schacter, Ballesteros, &
Moore, 1992).

The template-matching, feature-analysis, and structural­
description approaches to pattern recognition are often
contrasted, but they are not incompatible. As described
in the previous section, our template-matching pande­
monium model for character recognition combines a
template-matching and a feature-analysis approach. The
template-matching pandemonium might be included as
a character recognition module in a model of word
recognition based on structural descriptions (symbolic
representations of spatial arrangements of letters). Such
a model would represent a simple synthesis oftemp1ate­
matching, feature-analysis and structural-description ap­
proaches to visual pattern recognition.

Recognition ofThree-Dimensional Objects
The template-matching pandemonium model can be

extended to recognition of three-dimensional objects. A
natural extension can be made by representing a three­
dimensional object by a col1ection of two-dimensional
perspective views obtained by inspecting the object from
different viewpoints. This mode of representation is at­
tractive because learning of a multiple-view representa­
tion seems much more easy than learning of a three­
dimensional model of the object (a single viewpoint­
invariant description ofthe three-dimensional geometric
structure ofthe object; see Biederman, 1987; Lowe, 1987;
Marr, 1982).

The efficiency of multiple-view representations of
three-dimensional objects has been explored by Edel­
man and Weinshal1 (1991), who trained a simple two­
layer network to recognize wire-frame objects from dif­
ferent viewpoints. The network learned to recognize 10
different objects, and the extent ofgeneralization to novel
views seemed comparable to that found in human sub­
jects (see Rock & DiVita, 1987; Rock, Wheeler, & Tu­
dor, 1989; Tarr & Pinker, 1989). At a more general level,
Poggio and Edelman (1990) and Ullman and Basri
(1991) have provided computational arguments that a
three-dimensional object can be recognized from any
viewpoint by use ofa multiple-view representation based
on a small number of views.

Neural Mechanisms ofVisual Recognition
The template-matching pandemonium model seems

general1y consistent with electrophysiological findings
on neural mechanisms of visual recognition. Shape-



142 LARSEN AND BUNDESEN

based recognition is thought to be subserved by a visual
pathway running from primary visual cortex (V 1) via vi­
sual areas V2 and V4 to inferotemporal cortex (IT) (see
Goodale & Milner, 1992; Mishkin, Ungerleider, &
Macko, 1983; Ungerleider & Mishkin, 1982). In an ex­
tensive investigation of the way in which visual form is
represented in the IT of the macaque monkey, Tanaka,
Saito, Fukada, and Moriya (1991) determined the opti­
mal stimulus of individual IT cells. In the anterior part of
IT (i.e., TE), most cells required moderately complex
features for their activation. Examples of features re­
quired for activation of individual cells in TE are the
shape of an inverted T, a six-rayed star, a horizontally
striped disk on top ofa vertically striped one. These crit­
ical features are two-dimensional, and responses ofcells
were almost always selective for the orientation of stim­
uli. The selectivity to the optimal stimulus was fairly
sharp, but not absolute.

Fujita, Tanaka, Ito, and Cheng (1992) found that cells
located at nearby positions in TE had similar-but not
identical-stimulus selectivity. Their results suggest that
TE consists of columnar modules in which cells with
overlapping but slightly different selectivity cluster to­
gether. According to Tanaka (1993), the selectivity and
the columnar organization are not determined by genes
or early development in infancy, but are subject to
changes by perceptual learning in the adult. Extended
discrimination training with particular shapes produces
a marked increase in the number ofcells that give a max­
imal response to some of the trained stimuli.

There are strong similarities between the foregoing
description of processing in TE and the template­
matching pandemonium. Just like the template-matching
pandemonium, TE contains a lot of units working in
paralle1. Each unit has a critical feature of moderate
complexity (much like a single handwritten digit), and
each unit belongs to a cluster of units with overlapping
but slightly different selectivity (like handwritten sam­
ples of a given type of digit). Units that are maximally
sensitive to particular shapes are created by training
with these shapes, but the critical features appear to be
two-dimensional rather than three-dimensional. The
two-dimensionality accords with the conjecture that
three-dimensional objects are recognized by use of
multiple-view representations in a template-matching
pandemonium.
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NOTES

I. Normalization with respect to orientation (see Larsen & Bunde­
sen, 1992) was not invoked. Each digit was input in the (approximately
upright) orientation in which it had originally been written on a letter
envelope.

2. Use of r 7 (the 7th power of r) instead of r implies that variations
in r have little effect unless Irl is high. For example, an increment in r
from 0 up to 0.5 makes a difference of 0.01 in r7, but an increment in
r from 0.5 up to I makes a difference of 0.99 in r 7.

3. The hyperbolic tangent ofx is a sigmoid function defined as

exp(x) - exp(-x)

exp(x) + exp(-x)

It is a linear transform of the logistic function

I + exp(-2x)

and it squashes the continuum of real numbers into the open interval
(-1,1).

4. In principle, any given pattern can be correctly classified by our
recognition algorithm if that particular pattern is stored as a template
with appropriate weights. If all patterns in the training set had been
stored as templates, a recognition rate of 100% on the training set
could have been obtained with weights of I and 0 on connections rep­
resenting correct and incorrect classifications, respectively.

The recognition rate of 95.3% on the test set could be increased. It
is a mean across five independent simulations. By running the five
pandemonia simultaneously and letting them vote on a majority basis,
the recognition rate rose to 95.9%.
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