
Behavior Research Methods, Instruments. & Computers
1999.31 (3), 410-415

A tutorial on creating logfiles
for event-driven applications

GREGHREINHOLT and HELMUT KRUEGER
Swiss Federal Institute oj Technology, Zurich, Switzerland

This paper describes the practical steps necessary to write logfiles for recording user actions in
event-driven applications. Data logging has long been used as a reliable method to record all user ac
tions, whether assessing new software or running a behavioral experiment, With the widespread in
troduction of event-driven software, the logfilemust enable accurate recording of all the user's actions,
whether with the keyboard or another input device. Loggingis only an effective tool when it can ac
curately and consistently record all actions in a format that aids the extraction of useful information
from the mass of data collected. Logfiles are often presented as one of many methods that could be
used, and here a technique is proposed for the construction of logfiles for the quantitative assessment
of software from the user's point of view.

LOGFILES

Logfiles historically evolved from the testing measures
that were necessary with the early programming languages
(Hetzel, 1985). They were introduced, for technical rea
sons, to record the sequence offunctions that were called
within a program, to assess its efficiency and to help in the
debugging. They gave the programmers a detailed record
ofthe flow through a program. The important factors of
ten were time and memory used, and the values for these
were sampled and stored. Testing was routinely associ
ated with engineering and manufacturing processes, and
it was quite natural to see it take shape as part ofthe soft
ware development process.

Out of logging for purely technical evaluation arose
the need to log for knowledge ofwhat the user was doing.
One ofthe earliest user interface guidelines states, "User
records will permit assessment of performance and im
provement of user interface design" (Smith & Mosier,
1986, p. 333). Unfortunately, exactly how to implement an
effective logging method and how to use the resulting
data to improve user interface design is not documented.
This shift from a technocentric approach to a user-cen
tered approach has also shifted the purpose ofthe logfile
from being arecord of where the program has been to
being arecord ofwhere the user has been and what he or
she has done there. This change has not always been im
plemented in the most efficient manner (from the au
thors' personal experience), and occasionally a logfile is
created that cannot actually be used to analyze the user
actions, but only details the interior workings of the pro-

Correspondence concerning this article should be addressed to
G. Breinholt, Emmasingel 24, Building HWD, Box 218, 5600 MD
Eindhoven, the Netherlands (e-mail: greg.breinholt@philips.com).

gram. Data logging is often implemented in experiment
controller hardware and software to enable the subse
quent analysis (Palya & Walter, 1993).

Developing from basic logging came the capture and
playback method (also called capture/replay). It is one of
the most popular commercial tools for interface evalua
tion (Heizer, 1990). During capture, all the interactions
between the user and the software are recorded in a script
file. This includes all messages displayed on the screen,
all keypresses, and all movements and actions with the
mouse. Later, this script file can be played back to the
original software, to simulate the presence ofthe user. The
programming needed to modify software so that it gen
erates such scripts is often a difficult and time-consuming
task, and recently, noninvasive methods that do not require
that the original software be modified have been devel
oped (Nesi & Serra, 1995). Although the capture and play
back method provides a good visual record ofthe user's
actions, it is often not suited for statistical analysis, be
cause the script file is structured to aid the replay and not
the analysis of the data.

Logfiles can be analyzed by many statistical packages,
providing quantitative data about times to complete ac
tions, frequencies ofactions, and so forth. There are more
complex methods, such as maximal repeating pattern
analysis (Siochi & Ehrich, 1991; Siochi & Hix, 1991). Ihis
technique uses an algorithm to detect repeated user actions
in data files. The hypothesis is that repeated sequences of
user actions are of interest to the evaluator and may indi
cate problems with the user interface.

When compared with other methods, such as verbal
protocol analysis, questionnaires, or interviews, logfiles
have several advantages and, unfortunately, several dis
advantages (Henderson, Smith, Podd, & Varela-Alvarez,
1995; Jeffries, Miller, Wharton, & Uyeda, 1991). The ad
vantages stern mainly from the ease with which some sort
of quantitative results can be obtained. Although large

Copyright 1999 Psychonomic Society, Inc. 410

A TUTORIAL FOR CREATING LOGFILES 411

Table 1
Typical Events for Programming Languages

With Graphical User Interfaces

amounts of data may be produced, the data evaluation is
often quicker than other methods (Yamagishi & Azurna,
1987); there may, however, be a need for a specialized
analysis tool (Hoiem & Sullivan, 1994). The limitations
of logging come from the nature of the data, which are
purely objective and contain no subjective user prefer
ences (Henderson et al., 1995; Hoiem & Sullivan, 1994;
Jeffries et al., 1991; Yamagishi & Azurna, 1987). Logfiles
must record the user's actions in terms of what, where,
and when, to later answer the why?

EVENT-DRIVEN APPLICATIONS

Input Method

Mouse

Keyboard

General

Event Object Receives Event When

mouseDown button is first down
mouseUp button has been released
mouseClick button used
mouseDblClick button double-clicked
keyDown key is first down
keyUp key is released
keyClick key used
change object changed
gotFocus received system focus
lostFocus lost system focus

The general trend to move from text-based command
interfaces to interaction through direct manipulation and
graphical interfaces has radically changed the dialogue
that occurs between user and computer. The locus of
control is finally moving in favor ofthe user, whereas the
computer acts after, and waits for, the user response. This
gives the user more freedom when interacting; at any one
time, there are increasing numbers of objects that re
spond when the user clicks the mouse, fields that change
when text is entered via the keyboard, commands that
may be sent through character-based shortcuts, and in the
future, voice-based recognition of spoken commands.
The program must accept these interactions and then re
spond appropriately, while keeping arecord of these in
puts. The choice of user actions, termed events, should
drive the program, keeping the user in control ofthe flow
through the task at hand.

Although there are many possible user events, they
must all be recorded in such a manner that there is a con
sistency and reliability to their format that enables the
analysis. It is this structured format that greatly enhances
the value of the logfile when sifting through the often
large quantity of recorded data.

IMPLEMENTED EVENTS

Two of the most popular development tools for proto
typing and writing experiment applications are Visual
Basic (VB) running under Windows 95/NT and Hyper
Card on the MacOS. VB uses aversion of the standard
BASIC language, whereas HyperCard uses its own Hyper
Talk, a language with a simplified English syntax. These
development tools are similar in their choice of pro
gramming paradigm: They are object based and event dri
ven. The languages use graphical objects (such as but
tons, menus, text fields, etc.) that respond to certain user
events. These objects or controls are named OLE Cus
tom Extensions (OCX) or ActiveX Controls in VB. They
may respond to many user events, although normally
only a subset is implemented for each contro\. In VB, the
possible events to which the control may respond are se
lected from a predefined list, and for HyperCard, the
events are freely assigned with a code. Typical events are
shown in Table 1; these are very general events that al-

most all controls may receive from the user. There are, of
course, specialized events that apply to particular con
trols-for example, the scroll-bar can receive a scrollUp
or ascrollDown event.

When a control receives a user event, it is then up to
the programmer to implement methods that handle the
event and make the application respond in the appropri
ate manner. For example, when the user clicks the mouse
on a button that says "Print Options," it will send the
mouseClick event to the button, which, when it contains
the correct code, may weil bring up a dialogue box contain
ing various user-definable options about printing. AI
though the highlighting of the button may be automatic,
the implementation of the response is dependent on the
programmer.

METHOD

Whatto Log
The logfile will record, with each user action, a de

scriptor string that contains the following information:
(I) who is using the program; (2) which application are
they using; (3) when are they using it; (4) where are they
within the program; (5) what have they done; and (6)
auxiliary data, as necessary.

Before defining how to log data, it must be clear ex
actly what information is required to classify the user's
actions and the task that he or she is completing. In be
havioral research, this may include several auxiliary items,
to identify the particular experimental conditions under
which the subject works.

Format
Between the individual data elements is an item de

limiter, a characte- that is used in a consistent manner to
separate data elements. Typical delimiters include the
space (), the slash (I), the colon (:), and the semicolon
(;). It is important to note that some computer operating
systems return date and time information with colon,
slash, or space delimiters (e.g., 10:02:18, 18/9/97, 189
97). The actual format ofthe data and time is often set by
the user in a preference file, so a consistent format can
not be guaranteed. The comma is also used by some sys-

412 BREINHOLT AND KRUEGER

Subject_1 Test I 21/10/97

Subject_IlTest_1/21/10/97/10: 12:51

Subject_1 :Test_1 :21/10/97:10: 12:51

data item I data item 2 dataJtem_4

10:12:51 11 Tab

11 Slash

11 Colon

Figure 1. Example of data items with tab, slash, and colon delimiters.

tems to denote numbers that are larger than one thousand
(e.g., 12,345). It is, therefore, recommended that only the
tab character (ASCII character 10) be used as the delim
iter, since this ensures that individual data elements will
remain separate. Figure I shows items separated with tab,
slash, and colon delimiters and illustrates the merging of
the data that can occur without an effective delimiter.

To record a logfile so that it is suitable for analysis
with computer statistics packages, care must be taken
with the actual format ofthe data. It is important that the
data be recorded in the same order and be of similar data
types. For example, always store the time followed by the
current screen name followed by the user action. Ifa data
element is optional or empty, there are two ways to re
cord this: Store nothing, or use a marker to indicate no
value. Some analysis packages accept the first method,
where it will actually just be arecord oftwo tab charac
ters. For others, it must be explicitly recorded that it has
a null value (e.g., using the actual word null). These null
markers can later be replaced in a text editor, ifthe analy
sis package requires a particular character to represent
no value.

The data to be recorded with each user action can be
separated into two parts: static data and dynamic data.
These are described below.

Static data. These are data that do not change while a
single user is working with the application. When testing
software under experimental conditions, these would be
the subject's personal data and adesignator for the cur
rent test. Figure 2 shows an example of static data.

Much of the personal data is recorded in categories;
this is necessary in order to simplify analysis with statis
tics packages. For example: Ifthere are 20 subjects, their

element names may range from 8 I ... 820; if there are
two different tests, they may be called Tl and T2. It is
safer to use an alphabetic character followed by a nu
meric character, as this makes the elements easier to dif
ferentiate than does simply a number, and it is often nec
essary so that the data can be analyzed by category.
Although meaningful names, such as "ComputerTest L,"
are easier to read and understand, the resulting increase
in logfile size can make storage during the test more dif
ficult and the later analysis slower, with some statistical
packages.

Dynamic data. These are recorded data that change
as the user interacts with the system; they provide a log
ofthe user's actions. The main part ofthese data records
what the user has done, where the user was within the sys
tem, and when he or she made that action (the what, where,
and when oflogfiles). Figure 3 shows an example ofthe
dynamic data part.

The dynamic data contain the time of the action, often
called the time stamp, which should contain at least two
measures: the current time and the incremental time. The
current time is the time, given by the system, when the
event occurred. This is usually given in a format defined
by the operating system. As was previously discussed,
the actual format may change from machine to machine
on the basis of user preferences. The incremental time
contains the time difference between actions-that is, the
time since the last action was made. If this is also re
corded, it makes analyzing time data much easier, since
this is a frequently required time measure. The process
ing time of the computer may also be recorded, to give
an indication ofhow long the system took to process var
ious user actions or even the actual logging functions

SI 43 M 19/9/97 Tl EI 11

Where:

SI subject number

43 age

M gender (M/F)

19/9/97 date ofthe test

Tl test number

Additional static elements may be:

EI experience category

J I occupation category

Figure 2. Example of static log data.

A TUTORIAL FOR CREATlNG LOGFILES 413

10:12:34 9.43 Print Mask Button Print MO Click Left

Where:

10:12:34

9.43

Print Mask

current time

incremental time (seconds)

name of current active window

Button

Print

MO

Click

Left

object type: button, textfield, menu etc.

object name

input method that fired the event: mouse, keyboard

action: Click, DblClick, KeyPress, etc.

control dependant data;

for mouse:

for keyboard:

which button (Left, Middle, Right)

actual key pressed

Figure 3. Example of dynamic log data.

Note that, in VB, the current position of the mouse (X!
and Y!) and whetherthe Shift, Control, or Alt key (Shift%)

themselves. This may be important when determining how
long the user had to wait before receiving some form of
feedback from the program.

For HyperTalk: on mouseUp
LogData (the long name ofme),

"MO","mouseUp","NULI.:'
end mouseUp

Howto Log
This involves three steps: (I) get the specific infor

mation from the control; (2) merge the static and dy
namic data; and (3) update the logfile.

The most important aspect oflogging event-driven ap
plications is that all user's actions must be recorded. For
this to be accomplished successfully, every object with
which the user can interact must be able to record this
interaction. Rather than writing many different routines,
it is often better to make a general routine that can be
called from each contro!. This general routine must sup
ply the essential information that identifies this particu
lar control from others, the type of interaction, and the
results ofthis interaction.

As an example, the mouse is clicked on a button named
"MyButton" on a form (a dialogue window) called "My
Form." The button may contain one of the following
scripts:

is used are automatically provided. If these are required
in the logfile, they could also be sent to the LogData func
tion. Specifically for VB, the ME keyword provides a way
to refer to the specific instance (including its properties)
of the class where the code is running. The ME keyword
is particularly useful for passing information about the
currently executing instance of a class to a procedure in
another code module. In HyperTalk, the command the
long name 0/me returns adescription of the object that
contains this code, including its name, the type ofobject
(button, field, etc.), the name ofthe current card, and the
name ofthe current window.The procedure LogData must
add to this information the static data and the time stamp.

The data from each user event can be simply appended
to an open text file, or if this is too slow, all the data for
a single user can be stored in memory and then written
to the file when the test has finished. In HyperCard, data
created when the test program is running can be stored
in text fields that will keep this static text even when the
program is exited and restarted. This can be very useful
in the event of a system crash.

The data recordcd in logfiles is best demonstrated with
examples.

RESULTS

Examp!e 1
This is a typical dialogue box for entering information

about a document under the Windows 95 operating sys
tem, as is shown in Figure 4.

Table 2 shows that Subject I (S I), aged 43 and female
(F), was completing Test I (Tl) on September 10, 1997.
At 13:23:12, the letter H was typed on the keyboard

Private Sub MyButton_MouseUp
(Button%, Shift%, xi, Y!)

LogData "MyForm","But",
"MyButton","MO","mouseUp",Button%
End Sub

ForYB:

414 BREINHOLT AND KRUEGER

Information

litel:1LogFiles paper

Theme: IH CII

Author:

OK

Cancel

Heip

Figure 4. Example of a dialogue box from the Windows 95 platform.

Table2
Extract ofData Recorded to Logfile for Example 1

SI
SI
SI

43
43
43

F
F
F

10/9/97
10/9/97
10/9/97

Tl 13:23:12 12.34 Info_Mask txtF Theme
Tl 13:23:13 0.56 Info_Mask txtF Theme
Tl 13:23:14 0.64 Info Mask txtF Theme

KB
KB
KB

Key_Press
Key_Press
Key Press

H
C
I

(KB) into a text field (txtF) called "Theme" in a window
called "Info_Mask." It was entered 12.34 sec after the last
entry. The letters C and I were then typed into the same
field, after 0.56 and 0.64 sec, respectively.

Example2
This is a typical dialogue box from the MacOS platform,

allowing the user to choose various printer page settings,
as is shown in Figure 5.

Table 3 shows that Subject 2 (S2), aged 21 and male
(M), was completing Test 2 (T2) on September 10, 1997.
At 14:00:34, the left (Left) mouse (MO) button was
clicked (Mouse_Click) on a button (But) called "A4" on
a screen called "Setup_Mask." This happened 2.14 sec
after the last action. On the same screen, 3.45 sec later,

the button "Portrait" was clicked on, followed by the but
ton "OK" after 2.09 sec.

CONCLUSIONS

Data logging is one of many human factors tools that
can be used to determine how software is being used and
has demonstrated its effectiveness in aiding the develop
ment ofnew systems (Good, 1985). Because ofthe purely
objective nature ofthe data recorded, logfiles are unable
to indicate a subject's satisfaction when using a program.
When evaluating the usability of a program, this there
fore requires that other methods also be employed. For
behavioral experiments, the user's reaction times may be
all that is required, and so a simple logfile may suffice.

Printer page setup

Paper: 0 US letter • A4 letter
o US legal 0 85 letter

Scale: ~'7o Printer Effech:
o Font Substitution?

Orientation IilTeHt Smoothing?

DlIte11 ::::~::c:itS:::~~~~~~g?
Figure 5. Example of a dialogue box from tbe MacOS platform.

Table3
Extract ofData Recorded to Logfile for Example 2

S2 21
S2 21
S2 21

M
M
M

10/9/97
10/9/97
10/9/97

T2 14:00:34 2.14 Setup_Mask But A4 MO
T2 14:00:38 3.45 Setup_Mask But Portrait MO
T2 14:00:40 2.09 Setup_Mask But OK MO

Mouse_Click
Mouse_Click
Mouse_Click

Left
Left
Left

For wider knowledge of a user's actions, logfiles can be
most effectively used as an addition to other methods or
as part of a combined method (Hietala, 1987).

As Hoiem and Sullivan (1994) state, "Experience has
shown us that collecting data from many sources contrib
utes to a more detailed yet broader picture ofthe human
computer interaction" (p. 169). That is probably the most
important factor for software evaluation methods. AI
though the total amount of data collected is greater, the
limitations ofone type ofdata are overcome by the others.

Data logging, as presented in this paper, can be a use
ful tool for the behavioral scientist or software evaluator,
but its use requires preplanning to ensure that it provides
serviceable data. First, the software must be capable of
generating the necessary events for all user actions on all
interface elements. This involvesadding code to the event
handling routines so that they call the necessary logging
function. Under certain experimental conditions, only
some actions may be of interest, but it is a better experi
mental practice to filter these from a complete record of
all actions, rather than to work with a reduced set. Finally,
implementing the logging function is simplified if it is
introduced as the program is under development, rather
than adding logging functions to the finished program.

REFERENCES

BEIZER, B. (1990). Software testing techniques (2nd ed.). New York:
Van Nostrand Reinhold.

GOOD, M. (1985, April). Theuse oflogging data in the design ofa new text
editor. Paper presented at Human Factors in Computing Systems 11:
CHI '85, San Francisco.

HENDERsoN, R. D., SMITH, M. C; PODD, J., & VARELA-ALVAREZ, H.

A TUTORIAL FOR CREATING LOGFILES 415

(1995). A comparison of the four prominent user-based methods for
evaluating the usability of computer software. Ergonomics, 38,
2030-2044.

HETZEL, W. (1985). The complete guide to software testing. London:
Collins.

HIETALA, P. (1987). Combining logging, playback and verbal protocol:
A method for analysing and evaluating interface systems. In 1. Ras
mussen & P.Zunde (Eds.), Empiricalfoundations ofinformation and
software science III (pp. 99-108). New York: Plenum.

HOIEM, D. E.. & SULLIVAN, K. D. (1994). Designing and using inte
grated data collection and analysis tools: Challenges and considera
tions. Behavior & Information Technology, 13, 160-170.

JEFFRIES, R., MILLER, J. R., WHARTON, c., & UYEDA, K. M. (1991,
April). User interface evaluation in the real world: A comparison of
four techniques. Paper presented at Reaching Through Technology:
CHI '91, New Orleans.

NESI, P.,& SERRA, A. (1995). A noninvasive object-oriented tool for soft
ware testing. Software Quality Journal, 4, 155-174.

PALYA, W. L., & WALTER, D. E. (1993). A powerful, inexpensive exper
iment controller or IBM PC interface and experiment control lan
guage. Behavior Research Methods, Instruments. & Computers, 25,
127-136.

SIOCHI, A. C; & EHRICH, R. W.(1991). Computer analysis ofuser inter
face based on repetition in transeripts of user sessions. ACM Trans
actions on Information Systems, 9, 309-335.

SIOCHI, A. C, & HIX,D. (1991, April). A study ofcomputer-supported
user interface evaluation maximal repeating pattern analysis. Paper
presented at Reaching Through Technology: CHI '91, New Orleans.

SMITH, S. L., & MOSIER, J. N. (1986). Guidelines for designing user inter
face software (Report AD-A 177 198). Bedford, MA: National Tech
nical Information Service, MITRE.

YAMAGISHI, N., & AZUMA, M. (1987, August). Experiments on human
computer evaluation. Paper presented at Cognitive Engineering in the
Design of Human-Computer Interaction and Expert Systems, Second
International Conference on Human-Computer Interaction, Honolulu.

(Manuscript received November 20, 1997;
revision accepted for publication April 13, 1998.)

