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Inverse 3-D graphics: A metaphor
for visual perception
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There are two key elements in defining the problem of visual perception. The first is that useful in-
formation about the world, such as the shape, material, illumination, and spatial relationships of ob-
jects, is encrypted in the image. Second, the encryption process, of going from a description of the
world to an image, is not in general reversible. Any single source of image information is usually am-
biguous about its causes in the scene. Seeing is the process of decoding the image information. 3-D
computer graphics simulates the process of encrypting scene information into the image. By creat-
ing images from synthetic scenes, we can gain insights into the constraints used by the visual system
to decode image information, and we can begin to bridge the gap between the simple images of the
laboratory and complex natural scenes. Computer graphics modeling and animation tools provide
the means to generate stills and animations that produce strong perceptual interpretations, yet are
theoretically indeterminate. I will describe several illusions involving computer renderings and ani-
mations that illustrate the constraints human perception uses to solve ambiguity about material,

shape, and depth.

Computer graphics technology provides the means for
an unprecedented control of visual information. While our
understanding of early visual processing has informed the
science of display design, the technology has also handed
back an extraordinarily flexible set of tools for the study of
human visual perception. In this paper, I will first intro-
duce 2-D and 3-D computer graphics tools and their role
in the study of visual perception. In the following main
sections, I will ask two questions: (1) What is 3-D graphics?
And (2) What is visual perception? The reader should not,
of course, expect either a thorough treatise on 3-D com-
puter graphics, or a deep answer to the nature of percep-
tion. However, appropriate answers to both questions lead
naturally to a metaphor of visual perception as inverse 3-D
graphics. 3-D graphics specifies how to make an image
from a 3-D scene, whereas inverse 3-D graphics specifies
how to construct a scene from an image. This metaphor of
inverse 3-D graphics, in turn, leads to experimental ques-
tions about how perception resolves ambiguities in going
from image data to descriptions of the 3-D scene. Finally,
in the third main section of this paper, I will illustrate how
we have used 3-D graphics in two domains: lightness per-
ception, and movement in depth. I will begin here by dis-
tinguishing 2-D and 3-D computer graphics.

2-D Graphics and the Proximal Stimulus

2-D graphics software and hardware technology pro-
vides environments to simulate the processes of drawing
and painting, with the added advantage of direct and pre-
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cise control of the image color and intensity at each pixel.
Historically, both vector and raster-based 2-D graphics
have been used to measure the limits of human spatial, tem-

- poral, and color visual discriminations. In the traditional

terms of perceptual psychology, 2-D graphics specifies the
proximal stimulus to vision. Control over the proximal
stimulus provides for the study of intermediate-level orga-
nization processes in vision, such as illusory contours and
their relation to surfaces (Nakayama, Shimojo, & Rama-
chandran, 1990). 2-D graphics allows one to control the
image information used to specify contours at a level ap-
propriate for understanding early and intermediate-level
vision (Cavanagh, 1987). However, in everyday visual
functioning, scene factors such as object shape, depth, light-
ing, and material together with the eye’s optics interact in
rich and complex ways to determine the proximal stimu-
lus. The scene parameters specify what perceptual psychol-
ogists have traditionally called the distal stimuli to vision.
A distal stimulus, such as object size (say, 10 cm), gives rise
to a pattern of intensities on the retina. This retinal pattern
contains information about the proximal stimulus—a
corresponding retinal size (say, a 1-mm patch). For the
study of vision, information about distal stimuli can be
specified either implicitly, in terms of image intensities
and 2-D geometry (2-D graphics), or explicitly, in terms of
scene parameters and camera specification (3-D graph-
ics). 2-D graphics has the advantage of giving flexible and
direct control of the image geometry and intensities—the
input and proximal stimulus to vision—but at the expense
of an exact description of possible scene causes of the
image.!

3-D Graphics and the Distal Stimulus
Visual perception is more than the receiving of images;
it entails the understanding of images in terms of the
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causes, in the scene, of image intensities. 3-D graphics
provides the experimenter with the technology to simu-
late how images are naturally caused. In contrast to 2-D
graphics, 3-D graphics has the advantage of direct con-
trol or simulation of the scene or distal stimulus parame-
ters, but with the drawback of confounding these causes
in the image. However, as elaborated in the next section,
this inherent “drawback” simulates the natural encryp-
tion process of image formation, and it can be exploited
in the attempt to understand how human perception de-
codes the image to extract useful information about the
distal scene. Insofar as vision is a process that extracts
useful scene parameters, 3-D graphics provides technol-
ogy for manipulating scenes so that we may study percep-
tion’s determination of scene parameters from image
data. In the remainder of this paper, I will focus on the tech-
nological and scientific possibilities of 3-D graphics for
perception. An understanding of 3-D graphics is impor-
tant for an appreciation of its potential. However, because
there is a large gap between real and virtual 3-D scenes,
it is also important to understand its limitations. The fun-
damentals are reviewed in the next section.

WHAT IS 3-D GRAPHICS?

3-D graphics simulation is a large, complex, rapidly
changing field.2 This section provides a broad overview
of 3-D graphics at the level of the application user, rather
than the programmer. Let us consider the 3-D computer
graphics programming environment as a simulation of
some of the jobs one would expect to find among a film
production crew.?

Carpenter

A basic component is the modeling software required
to build and design objects—a “carpenter.” Most model-
ers characterize objects in terms of polygonal surfaces
Jjoined together. This representation takes advantage of
built-in hardware for manipulating polygons in 3-D, which
works fine for polygonal objects; but smooth objects re-
quire many polygons for a good approximation. Spline-
based models offer a more flexible alternative for smoothly
varying shapes. A variety of tools for manipulating shapes
go beyond mere carpentry; they include machine-shop
metaphors of twisting, lathing, and extrusion, as well as
the fuzzier concepts of sculpting with clay. Flexible model-
ing tools provide the opportunity for generating novel
stimulus classes for studies of shape-based recognition
(Biilthoff & Edelman, 1993; Gauthier & Tarr, in press)
as well as shape perception (Biilthoff & Mallot, 1988;
Mamassian, Kersten, & Knill, 1996; Todd & Mingolla,
1983).

Many objects are not rigid, and advanced modeling
techniques compute the change in form of articulated ob-
jects, such as the linked segments of the human body,
using inverse kinematics. For example, in order to create
a scene with a walking human figure, the user specifies
the start and end points of, say, a hand, and the computer
calculates the joint angles required to achieve that tra-

jectory. One step beyond kinematics is to model the dy-
namics, masses, and moments of inertia of objects as well
as the forces between them. To date, studies of visual per-
ception have been primarily limited to the simpler model-
ing tools. In the examples below, [ will focus on the ren-
dering and kinematics of simple nonarticulated objects
that can be easily modeled as polygonal approximations.

Painter

Real objects have more properties than geometric ones;
they are made of “stuff.” Stuff is characterized by vari-
ous kinds of surface materials: textures with varying col-
ors and bumpiness, colored paints and pigments, degrees
of shininess, translucency, and transparency. Modeling
materials is a challenging problem involving an under-
standing of the physics of how real surfaces reflect light
(Cook & Torrance, 1982; Nayar & Oren, 1995), as well
as reasonable approximations that seem to work well vi-
sually (Bui-Tuong, 1975). Materials can refract light, gen-
erate colored interference patterns, and reflect light at
wavelengths different from any of those absorbed. Tex-
tures depend on how material and shape varies over a wide
range of spatial scales. Some material appearances are not
solely dependent on the surface material itself. Whether
a material appears like chrome, for example, requires a
scene environment to reflect off of the material. A brass
door knob will not look mirror-like unless there is an ap-
propriate pattern of reflections from the surrounding sur-
faces.

Most of the basic material properties can be modeled
and generated independently in a “material property edi-
tor” and then stuck on to the objects as needed. A funda-
mental property is the reflectance of a surface—the frac-
tion of incident light reflected. But the light reaching the
camera also depends on the direction of the light source,
and the viewpoint. A classic material model is the “Lam-
bertian” surface, in which the intensity at the image is
independent of the viewpoint, and proportional to the co-
sine of the angle, 6, between the surface normal and the
vector pointing toward the light source:

intensity = reflectance X cosf

One way to model textures is to vary the degree of reflec-
tance as a function of distance along a surface. Comput-
ers thus make it easy to apply the texture of a banana
onto a telephone.

Gaffer

Lights too are part of the scene description and must
be synthesized. Lights can be single points or extended
area lights, as with a fluorescent panel. Realistic illumina-
tion is a nontrivial computational problem. The main
challenge is that the effects of illumination are not local,;
they depend on the global geometry of the scene as well
as on the material properties of objects. The image color
of a surface depends on direct light coming from luminous
sources as well as indirect light bouncing off other sur-
faces (Christou & Parker, 1995; Greenberg, 1989; Hurl-
bert, 1995; Langer & Zucker, 1994). Cast shadows can
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Figure 1. Illustration of the process of synthesizing images from models of lights, material, and ob-
jects. These scene properties can, in principle, be thought of as being drawn from an “urn” which speci-
fies a probabilistic model that constrains object shapes, properties, and lighting. For real objects, object
shapes and materials are not necessarily independent.

be modeled by ray tracing, in which the image intensity
at a point is determined only by those rays from a light
source which are not blocked by other surfaces. Shortcuts
to rendering often avoid ray tracing and approximate or
ignore cast shadows because of the computation time re-
quired for accurate physical modeling. Below, we will con-
sider an example of ray-traced shadows for a study of
depth perception.

Camera Operator

A number of camera parameters determine the view-
point and the geometry of projection. A synthetic camera
can be set to perspective or orthographic projection. Per-
spective projection scales an object’s image scale size in-
versely proportional to distance. Orthographic projection
maintains a fixed image size proportional to object size
and independent of distance, as with telephoto long shots.
Some software packages model the effect of depth-of-
field on focus, in which large apertures have a narrow
depth range of sharp focus, and small apertures have a
large range of sharpness.

Director and Action

The prepared collection of objects, lights, and cameras
are assembled onto a stage. The positions, orientations, and
properties of the objects—actors and props—can be
specified at each point in time with the use of an “anima-
tion editor” or “Director.” The final stage is “action.” Using
aprogram called a renderer, the computer simulates roll-
ing the film, and the images are rendered to make an ani-
mation. I have left out a description of the final stage of
film production, corresponding to film editing. An in-
creasing number of software and hardware packages can
be used to arrange the final composition (e.g., Adobe
Premiere).

A highly simplified schematic of the 3-D graphics
process is shown in Figure 1. The decisions about lights,
material, and objects are represented by “urns,” because
later I will talk about the idea of a stochastic prior model
for object, material, and lighting parameters. The fact
that 3-D graphics programs treat these processes as in-
dependent is related to how human perception under-
stands images.

So what does 3-D computer graphics technology offer
to the study of human visual perception?

WHAT IS VISUAL PERCEPTION?

At this point, it should be clear that a major advantage
of the use of computer graphics technology to gain an un-
derstanding of visual perception is that it provides the
means for an unprecedented control of the stimulus vari-
ables in an experiment. I will illustrate this in a sample
study later. But let us consider perception itself. The first
thing to note is that visual perception’s input is the output
of processes that make images from scenes. This is true
regardless of whether the image is synthetic or real. Visual
processing starts off with the image, which is an en-
cryption of the object properties used to make it. The
function of human vision is to determine the identities,
properties, and relations between objects and between
the viewer. But the description of what vision needs is
no longer explicitly represented in the image and is more
closely related to the elements that a 3-D graphics
programmer might have used to make the image than to
the image itself. The information about objects, however,
is severely encrypted, because variability over illumina-
tion and camera (or eye) Position can produce an infinite
variety of images for a given collection of objects in the
world. How does vision decode an image to arrive at ob-
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Figure 2. Schematic of the process of arriving at scene descriptions from image data. The
process of inverse 3-D graphics is a metaphor for perception.

ject properties from images that are theoretically am-
biguous?

We can gain significant insight into the process of vi-
sion by thinking about visual perception as inverse 3-D
graphics (Figure 2). This basic idea, of course, is not
new. Much research in computer vision over the past cou-
ple of decades has been characterized as “inverse optics.”
And there is the much longer history of characterizing
the problem of perception as how one goes from infor-
mation obtained from the proximal stimulus (the image) to
inferences about the distal stimulus (e.g., the object or
scene). Clearly, too, there is more to visual perception
than just an attempt to infer object shape, material, and
lighting properties from images. Decisions about object
identity, relations, actions, and categories all involve per-
ception in some form or another. The advantage of think-
ing about the inverse computer graphics metaphor is that
it makes clearer how one can use computer graphics
technology to ask questions that would have been very
difficult to ask and answer only a decade ago. But first,
let us ook at some of the problems faced by any system
doing inverse 3-D graphics.

Inverse Computer Graphics:
A Metaphor for Perception

The central problem is that information about scene
geometry and object properties is confounded in the image
data that an eye or robot camera might receive. There are
two sorts of ambiguity: geometrical and photometrical.
Consider, first, the geometry. Given the 2-D image of
what to us looks like a wire-frame cube, there is an infinite
set of distinct 3-D objects that project to the same 2-D im-
age. For example, the polygonal representation of a 3-D
object is a list of coordinates corresponding to the vertices

of each pOlngIlZ {(xl’yl’zl)’ (x25y2’22)’ (x3,y3,z3), .. }
The geometrical component of the image data is also a
list of vertices, but under orthographic projection, minus
any information about the z-coordinates: {(x;,y,), (x,,5,),
(x3,¥3), ... }. A classic example of this ambiguity is the
Necker cube illusion, in which human vision sees only two
object descriptions of a line-drawing of a transparent
cube. The real puzzle is not why there are two percepts
instead of one, but rather: Why does human vision settle
on just two out of an infinite number? (For one answer to
this question, see Sinha & Adelson, 1993.)

Consider, now, the photometry, and especially changes
in image intensity. Here the profound nature of the image
ambiguities have only become appreciated with the advent
of computer vision research. Intuitively, it seems that in-
tensity edges should be really important for determining
the boundaries of objects. But two decades of computer
vision research in “edge detection” have not produced an
algorithm that can generate a cartoon from a natural image
with the sophistication of a cartoonist’s copy. What'’s the
problem? A basic problem is that edges can have various
degrees of fuzziness and be quite noisy. Intensity changes
can occur over a wide range of spatial scales, and the
scale of importance cannot be determined from local mea-
surements. For example, the intensity changes in fine
wood grain are largely independent of the object’s bound-
ing contours. Spatial scale and noise pose well-known
challenges to edge detection algorithms (Canny, 1986).
But there is a second fundamental problem of establishing
edge identity, illustrated in Figure 3.

Given a local patch of intensity change (e.g., as mea-
sured by an edge detector), there are many possible causes
of that change (Figure 3). The conclusion is that there is
no local source of image intensity information that can
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Figure 3. A measurement of a local change of image intensity, illustrated by the el-
liptical patch in the upper left, is highly ambiguous as to what in the scene caused it.
Changes in material, depth, and surface orientation can create a local intensity
change. Cast shadows and specularities also produce similar local intensity changes.

completely disambiguate one kind of edge from another
(e.g., a shadow edge from a material change). Edge sig-
natures can be classified as providing various degrees of
support for inferences about different scene causes, but
the support is weak at best.

For example, the elliptical sample in Figure 3 could be
from defocus (not shown), a cast shadow penumbra, or
even a shape orientation change or crease at some spatial
scale. A solution to the dilemma of local ambiguity is to
somehow incorporate global information, in terms of
intermediate-level grouping or top-down knowledge
about the class of objects that vision typically deals with.
I will touch on these points later. So how should we think
about the resolution of ambiguity?

Inverse Computer Graphics as
Statistical Inference

A natural framework for analyzing the information
available for making reliable decisions in the face of un-
certainty is provided by a Bayesian formalism for statis-
tical inference (Adelson & Pentland, 1991; Biilthoff &
Yuille, 1991; Kersten, 1990; Knill & Richards, 1996). A
brief sketch of this framework should make clear the for-
mal relationship between inverse and forward 3-D graph-
ics. Suppose we have a scene description, represented by
a vector of parameter values, scene, and image measure-
ments, image. (These could, for example, correspond to
the two lists [3-D and 2-D] of polygon vertices in the ex-
ample above.) The inverse graphics problem is “given
image, find scene.” One approach is to characterize our
knowledge of what constrains the solution as a posterior
probability of a scene description given the image data,
p(scenelimage):

p(scenelimage) «< p(image|scene) p(scene)

Inverse 3-D graphics <> Forward 3-D graphics &
Scene synthesis model

Finding the scene description that maximizes the left-hand
side of the equation is the problem of sorting through
possible scene descriptions to find ones most likely to
have caused the image data. This is a hard theoretical
problem because of the ambiguities in the mapping. The
key idea from Bayes’s theorem is that the probability of
a scene description can be rewritten in terms of a forward
3-D graphics model of image formation (the “likeli-
hood” model) and a model of scene synthesis (the “prior”
model). These models can be thought of as embodying
constraints to resolve the ambiguity of the image data.
The first constraint is the probability of the image data,
given a 3-D computer graphics scene. If there is no
added uncertainty in going from the 3-D scene to the
image, then p(image|scene) = &(image — @(scene)),
where @() is the 3-D graphics operation specifying how
the lighting, camera, and surfaces all interact to produce
the image. 8() is called a “delta” function and is a filter
which is zero wherever the model does not predict the
image data, and infinitely high where it does. The main
point is that the forward 3-D graphics model completely
characterizes the likelihood constraints. However, as we
have noted with the Necker cube example, there can re-
main unresolved ambiguities. The second constraint is the
a priori model of the world. Think of a prior model of
the world as a statistical model for draws from the “urns”
in Figure 1. The urns are filled with paper slips specifying
possible scene parameters, and the proportion of identi-
cal slips matches the probability of that description. For
example, cubes may be a priori preferred over other wire-
frame objects because of familiarity or more generic con-
straints such as compactness (Sinha & Adelson, 1993).

Writing down Bayes’s rule is only a first step toward
solving the problem of inverse optics. A full scene re-
construction is not feasible, because of the huge dimen-
sionality inherent in a scene. Human vision does not com-
pute a full reconstruction at each moment either, and the
hard part of the inverse problem is to discover short, yet
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functional descriptions of the scene parameters that per-
ception is actually interested in. This is where experimen-
tal studies of the constraints and representations used in
human vision are important, and where the technology of
computer graphics is particularly useful. The Bayesian
framework provides a common language and intuition
for computer vision, 3-D graphics, and human visual in-
ference. For behavioral scientists, the promising prospect
of a Bayesian perspective is to be found in the psycho-
physical study of constraints that human vision adopts to
arrive at unique conclusions about the state of the world
from an ambiguous image. Let us consider two examples:
empirical studies of human lightness perception and of
apparent motion from cast shadows.

APPLICATIONS OF 3-D COMPUTER
GRAPHICS TO PERCEPTION

Lightness Perception

The left-hand panel of Figure 4 shows a version of a
lightness illusion due to Edwin Land and John McCann
(1971). As Land and McCann describe, it is closely re-
lated to the Craik—O’Brien—Cornsweet illusions that go
back to the 1940s and 50s. The observation is that the
left side of the two-tone slab appears darker than the
right side of the slab, even though the left and right sides
have identical intensity patterns—the patterns are both
identical luminance gradients.

A number of models have been proposed to “explain”
this illusion. Most have the following elements, which are
shared by many lightness algorithms (Hurlbert, 1986).
The image intensity pattern is differentiated with respect
to distance (e.g., via lateral inhibitory processes in the
retina), This amplifies rapid intensity changes. Then small
values are thresholded out (set to zero), and the signal is
integrated. Information about slow spatial changes is
thus lost. The big intensity change in the middle of the

slab signals an edge between regions of constant light-
ness, which is interpreted as “darker to the left, and lighter
to the right.” There are a number of problems with this
kind of spatial filter explanation of the Land—McCann
and related effects, but rather than focus on the details
here, let us consider the problem from a functional rather
than a mechanistic point of view—a point of view closely
related to inverse 3-D graphics.

How could the carpenter, painter, and gaffer have
combined their skills to make the horizontal gradient in
Land and McCann’s illusion? Suppose that the assignment
was given to two different construction teams. It turns out
that they could end up making two quite different scene
sets to produce the intensity gradients (see Figure 5).

Consider the solution represented by Scene 1 in Fig-
ure 5. Here, the carpenter gives a flat panel to the painter
who brushes the left and right sides of a flat panel with
dark and light gray paint, respectively. Then the gaffer lines
up the light sources so that an illumination gradient falls
from right to left. (This is what Land & McCann did
originally to make this illusion, before the days of con-
venient computer graphics.) But there is second way to
construct a scene to generate two gradients (Knill & Ker-
sten, 1991). This is illustrated on the right side of Fig-
ure 5 (Scene 2). The carpenter supplies two cylinders. The
painter paints them both with the same medium gray paint.
The gaffer arranges the lights so that illumination is stron-
gest on the left.?

Knill and Kersten (1991) pointed out that the per-
ceived lightness difference for the cylinder version on
the right side of Figure 4 was different than the perceived
lightnesses for the flat panel on the left. The lightnesses
of the two cylinders on the right appear similar, and to
many observers the same. And why not? After all, they
were made with the same paint! This perceptual solution
depends on information in the curved contours which
supports the hypothesis that the two gradients are caused

Figure 4. The intensity pattern in the horizontal direction for the “slab” (left) and “two cylinders”
(right) is identical. However, the apparent relative lightness of the left and right sides of the slab is
greater than that for the left and right sides of the two cylinders. The lines at the bottom illustrate
the light intensity that a photometer might measure going from left to right across the screen. From
“Apparent Surface Curvature Affects Lightness Perception,” by D. C. Knill and D. Kersten, 1991,
Nature, 351, p. 228. Copyright 1991 by Macmillan Magazines, Ltd. Adapted with permission.
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Figure 5. Imagine two set-design crews assigned the task of producing a scene that generates a pair
of horizontal luminance gradients as shown on the left. One easy solution, of course, would be to use
a 2-D computer graphics program, or an airbrush. But what if the crews were constrained to make a
3-D scene and could make appropriate surface shapes, arrange the illumination, and manipulate the
reflectances with paint? Two possible solutions are shown on the right.

by a change in surface shape, rather than a change in il-
lumination. Evaluating which of several scene construc-
tions, each of which is consistent with some of the image
data, can be constrained by additional image information
(e.g., the contour curvature), or prior models. Stereovi-
sion can also provide information about curvature that
will affect lightness perception (Buckley, Frisby, & Free-
man,1994). The lesson from this example is that the vi-
sual perception of lightness better resembles a process
of inverse graphics, in which perceived lightness is as-
sociated with reflectance of the paint, than it does the out-
put of a spatial filter.

The Perception of Motion in
Depth From Shadows

Let us turn to a second example, this time involving
the perception of depth from shadows. Artists have known
at least since the time of Leonardo Da Vinci that a shadow
cast by an object is useful to portray relative depth be-
tween the object and the surface receiving the shadow
(Yonas, Goldsmith, & Hallstrom, 1978). One might also
expect that when an object moves away from a back-
ground surface, motion of the shadow will provide in-
formation about a change in depth.’ But there is a prob-
lem—-there are many cues to object depth which somehow
must be integrated (see, e.g., Cutting & Vishton, 1995) .
When an object approaches an observer, the image size
usually grows measurably. In fact, a very strong cue to
change in depth is a change in an object’s image size. For
example, the rate of change of an object’s image size is
a very powerful source of information for collision time
(see, e.g., Lee & Reddish, 1981). Also, when an object
changes depth, the object’s image almost always moves
relative to the background. The lack of change in either

size or position is, conversely, a strong cue to object sta-
tionarity.

We wanted to know whether shadows are strong enough
to override image information (zero motion) that would
normally provide an overwhelming signal supporting the
hypothesis, “no motion in depth.” Although shadow mo-
tion typically accompanies a change in size and position
of an object, is shadow motion information strong enough
to override these cues to motion in depth? It is not un-
reasonable to suppose that shadow cues alone would be
too weak—human vision may have specific sensitivities
to both dilation and translational motion (Regan, 1986).
Furthermore, from a theoretical point of view, computing
motion using global rather than local information is a dif-
ficult, and still unsolved problem.

Computer graphics gives one the ability to control cues
that normally covary. We used Wavefront’s “Advanced Vi-
sualizer” on a Silicon Graphics computer to simulate the
motion of a square surface under specific conditions.
First, we aligned the camera, the central square, and the
background center to be constrained to remain along a
line perpendicular to the background. Together with or-
thographic projection, which maintains constant image
size of the objects, this ensured that there was no move-
ment (in the image) of the central square relative to the
checkerboard background (Figure 6). This is called an “ac-
cidental alignment” of the central square with the back-
ground and the line of sight—it almost never happens
under typical viewing arrangements. We were interested
in whether a moving cast shadow is sufficient by itself to
induce an apparent change in depth of the central square.

A physics-based simulation of illumination is compu-
tationally intensive for two main reasons: (1) [llumination
sources can be blocked, creating shadows. Calculating
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Figure 6. A computer animation was made in which a central square was moved away from, and then back toward, a checker-
board background. The motion was directly along the line of sight, and the camera was set to orthographic projection, result-
ing in no size change for the central square. Animation frames for the greatest separation between the central square and back-
ground are shown for four lighting conditions. From left to right, they are: extended light source from above, extended light
source from below, point light source from above, and point light source from below. Despite the lack of objective image mo-
tion of the central square, it nevertheless appears to move in depth for the extended light from above condition (left-most case).
A QuickTime movie demonstrating illusory motion from shadows, using an extended light source above the square, can be
viewed and dewnloaded from: http://vision.psych.umn.edw/www/kersten-lab/shadows.htm! From “Illusory Motion From
Shadows,” by D. Kersten, D. Knill, P. Mamassian, and 1. Biilthoff, 1996. Nature, 379, p. 31. Copyright 1996 by Macmillan Mag-

azines, Ltd. Adapted with permission.

shadows requires knowledge of what surfaces lie be-
tween the light source and the surface receiving the shadow
(e.g., the central square is between the light and the back-
ground checkerboard of Figure 6). (2) Surfaces receive
light not only from direct sources, but also from reflec-
tions off of other surfaces.

A standard computer solution to the first problem is to
calculate the image by using a ray-tracing algorithm.
Shadow penumbrae are a result of an extended light source,
which can be modeled in terms of density (an infinite
collection of sources spanning a finite area), or approxi-
mated in terms of a finite set of point sources arrayed on
apanel. We opted for the later approximation, with 20 light
sources arranged on a rectangular panel, simulating a fluo-
rescent light fixture. Unlike some penumbra approxima-
tions, ray-tracing from multiple light sources accurately
simulates the increase in blurriness of the penumbra as an
object moves further from the background. (It is also pos-
sible, with a simple stimulus as in Figure 6, to calculate
the penumbra in the image domain directly, and to use 2-D
graphics to generate the animations.)

The second problem is particularly challenging, because
it means that the intensity of the light at one point of a
surface depends on all the other surfaces it “sees” (which
also receive light from it!), as well as on the direct light
sources. A common and simple solution to the second
problem is to approximate all of the nondirect source con-
tributions to illumination as one term, called the “ambi-
ent light,” which has no direction. Some graphics pack-
ages model the ambient light as a component of the
reflectance, which is a bit misleading from the point of
view of an approximation to the physics of lighting. What
it means is that a given surface will have a nonzero inten-
sity even when the direct light sources are turned off. Un-
like with directional light sources, the image of a surface
rendered with only ambient light shows no dependence on
surface orientation. A more sophisticated solution to the
problem of indirect illumination is to use a radiosity model
(Greenberg, 1989). The surfaces in our simulation were
parallel and flat and could not reflect light onto each

other. However, more often than not there are other non-
visible surfaces that contribute ambient light to a surface.
Given uncertainty regarding these nonvisible surfaces,
we chose a simple ambient light model as a reasonable ap-
proximation. If there were no ambient term, the shadow
umbra would be black.

We measured the proportion of observers who reported
seeing apparent motion in depth for four conditions: light
from above versus from below; and a point light source
versus extended light source illumination (Figure 6). Four
groups of 16 observers each were asked to say whether
the central square appeared to move in depth or not. We
found that when the central square was illuminated with
an extended light source from above, all 16 observers re-
ported seeing the central square apparently moving in
depth. The strength and reliability of the effect was less
for the other conditions (Kersten, Knill, Mamassian, &
Biilthoff, 1996).

The percept is compelling, yet an analysis of how the
animations could have been produced in other ways using
3-D graphics shows that numerous ambiguities must be
resolved if one is to arrive at even a few interpretations.
Figure 7 illustrates some of those ambiguities. Again, im-
agine that we have asked several 3-D graphics program-
mers (or set design crews) to make a scene scenario to
produce this animation. They could have done it in quite
different ways.

Consider just the kinematics. A shadow displacement
can be achieved by moving the light source or the object.
The background rather than the central square could have
moved. Consider the material properties. The shadow
could be a transparent film surface that moves. The check-
erboard background could be transparent, and the shadow
could be a surface that is out of focus behind the check-
erboard background. How does human vision resolve
these ambiguities?

Earlier, I presented a view of human image under-
standing as Bayesian statistical inference. Recall that am-
biguity can be resolved by using two basic types of con-
straints: ones that depend on how the image is formed,



INVERSE 3-D GRAPHICS: A METAPHOR FOR VISUAL PERCEPTION 45

Potential
object locations

Potential
shadow locations I

Background

Figure 7. [llustration of some of the ambiguities in scene interpretation of a moving shadow ani-
mation. Both the central square and the dark shadow regions could be anywhere along the line of
sight. The background could be transparent and in front of the shadow, rather than the reverse. The
light source could be moving, rather than the central square.

and the a priori constraints that are independent of image
informativeness. Image formation constraints include
the following: (1) A fuzzy edge is more likely to be a
shadow than a material change; (2) when a shadow
crosses a material change, the contrast across the mater-
ial is unchanged. The prior constraints reflect the statis-
tical structure of world properties. For example, on the
basis of the analysis above, we can make a plausible par-
tial list of a priori constraints that help resolve the ambi-
guities of Figure 7: (1) Opacity is more likely than trans-
parency; (2) backgrounds do not move; (3) backgrounds
are opaque; (4) light sources do not move. Note that any
of these could be violated. A major challenge for vision
research is to discover how multiple weak prior con-
straints and the image data are integrated to arrive at con-
fident decisions of not only what, but where, objects are.

GENERAL DISCUSSION

It is clear that 3-D computer graphics, through scene
creation and rendering, provides the means for the exper-
imental study of perception in ways that would have been
extremely difficult just a decade ago. However, there are
clear limits to the application of computer graphics tech-
nology to understanding human perception. These limits
are to be found in both the hardware technology and our
theoretical models of scenes and images. To understand
perception, we will continue to need research into statis-
tical models of specific domains at both the object and
the image level (e.g., human faces; see Hallinan, 1995;

Vetter & Troje, 1995). We will continue to require a bet-
ter understanding of surface properties and illumination.
For studies of vision and action, we both need and can ex-
pect significant progress in virtual reality technology (VR)
in the near future. VR promises unprecedented control of
whole environments; however, there are major technical
challenges to be faced, such as the achievement of visual
and cross-modality cue consistency, as well as the need
for higher temporal and spatial bandwidth.® For the fore-
seeable future, experimental design using both computer
graphics and VR will require careful consideration of
where and how the virtual world of computer graphics de-
parts from the real one. Despite the limitations of com-
puter graphics, we can expect that vision research will
become increasingly more limited by our scientific
imagination than by our experimental tools.
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NOTES

1. Some computer graphics applications specialize in precise
draftsman-like control of the geometry, and others provide painter-
like control of image intensities and colors. Adobe Photoshop pro-
vides painter-style control over images. Canvas from Deneba is an ex-
ample of an application that provides a blend of geometry and paint
control for 2-D graphics. Canvas has been used in recent published
studies of brightness perception (Adelson, 1993). 2-D animation
packages, such as Macromedia’s Director, provide control of 2-D ob-
jects over time as well.

2. An excellent source of current information is the SIGGRAPH
home page (URL: http://www.siggraph.org). SIGGRAPH is the
ACM’s special interest group for computer graphics. For a detailed in-
troduction to computer graphics, see Foley, van Dam, Feiner, and
Hughes, 1990.

3. Examples of such applications are Macromedia’s Extreme 3D for
the personal computer, and the Alias/Wavefront package “The Ad-
vanced Visualizer” for a high-end graphics workstations with spe-
cialized 3-D hardware, such as those made by Silicon Graphics, Inc.

4. The astute reader will also have thought of a third scene construc-
tion. The painter could have used an “air-brush” to make reflectance
gradients. And in fact, that is what can be done when this illusion is
generated using a 2-D, rather than 3-D, graphics program. This third
option is the veridical scene description for the printed page—but per-
ception does not seem to “know” this.

5. Cast shadow motion is a standard technique used in video games,
such as “Kings of the Beach” for Nintendo, to convey information
about where an object is relative to the ground plane.

6. An example of a virtual reality laboratory being constructed for
basic research into visual perception and action is at the Max Planck
Institute for Biological Cybernetics in Tiibingen, Germany (Distler,
1996; http://www.mpik-tueb.mpg.de/projects/bicycle/bicycle.html).





