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Every day, we make hundreds of decisions on the basis
of uncertain information.For example, the medical doctor
must decide from an x-ray whether a patient has a tumor
or not, the football referee must decide whether the de-
fender interfered with the receiver, or the traveler on a two-
lane road must decide whether there is enough time to
pass the cars in front. These are categorization problems,
because every pattern of light and dark on an x-ray, every
pass play, and every road condition is unique, yet there
are only two possible decisions—“tumor” or “no tumor,”
“interference” or “no interference,” and “pass” or “do not
pass.” In each case, we can be correct or incorrect, but
perfect performance is impossible. Categorization prob-
lems of this sort differ along a number of factors. This ar-
ticle focuses on two: category discriminability and the
costs and benefits associated with each categorization
decision.1 Category discriminability is defined as the stan-
dardized distance between category means, also called d ¢
(Green & Swets, 1966; Macmillan & Creelman, 1991;
Maddox & Dodd, in press). For example, a patient’s de-
gree of chest pain might be a good discriminator between
heart attack and no heart attack (high category discrim-
inability)but might be a poor discriminator between can-

cer and no cancer (low category discriminability). Costs
and benefits are the rewards and punishments accrued
for correct and incorrect categorization responses. For
example, the medical doctor generally benefits when
making the correct diagnosis, but the benefit of a correct
tumor diagnosis might be greater than the benefit of a
correct no-tumor diagnosis. Similarly, there is generally a
cost associated with an incorrect decision; a more severe
cost might be incurred if a cancer patient is misdiagnosed
as having no tumor than if a healthy individual is misdi-
agnosed as having a tumor.

When presented with a categorization problem of this
sort, the optimal classifier (a hypothetical device) maxi-
mizes long-run reward by setting a decisioncriterion along
the stimulus dimension and giving one categorization re-
sponse for dimensional values below the criterion and
the other categorization response for dimensional values
above the criterion. The location of the optimal decision
criterion is determined from the costs and benefits. A doc-
tor who behaves like the optimal classifier would be bi-
ased toward making tumor diagnoses, because this strat-
egy will save more lives, even though this bias will lead
to more incorrect diagnoses in the long run. This doctor
is more willing to misdiagnosea healthy person as having
a tumor than he or she is to misdiagnose a cancer victim
as healthy. Importantly, the magnitude of the sacrifice in
accuracy associated with reward maximization is af-
fected by category discriminability, with low category
discriminability leading to a large sacrifice in accuracy
and high category discriminability leading to a smaller
sacrifice in accuracy.

This research was supported in part by National Science Foundation
Grant SBR-9796206 and NIH Grant R01 MH59196. We thank Steven
Sloman and one anonymous reviewer for helpful comments on an ear-
lier version of this manuscript. We also thank Lorilei Cardenas for help
with data collection. Correspondence concerning this article should be
addressed to W. T. Maddox, Department of Psychology, Mezes Hall
330, University of Texas, Austin, TX 78712 (e-mail: maddox@psy.
utexas.edu).

Feedback effects on cost–benefit
learning in perceptual categorization

W. TODD MADDOX and COREY J. BOHIL
University of Texas, Austin, Texas

Two experiments were conducted in which the effectsof different feedback displays on decision cri-
terion learning were examined in a perceptual categorization task with unequal cost–benefits. In Ex-
periment 1, immediate versus delayed feedback was combined factorially with objective versus opti-
mal classifier feedback. Immediate versus delayed feedback had no effect. Performance improved
significantlyover blocks with optimal classifier feedback and remained relativelystable with objective
feedback. Experiment 2 used a within-subjects design that allowed a test of model-based instantiations
of the flat-maxima (von Winterfeldt & Edwards, 1982) and competition between reward and accuracy
(Maddox & Bohil, 1998a)hypotheses in isolation and of a hybrid model that incorporated assumptions
from both hypotheses. The model-based analyses indicated that the flat-maxima model provided a good
description of early learning but that the assumptions of the hybrid model were necessary to account
for later learning. An examination of the hybrid model parameters indicated that the emphasis placed
on accuracy maximization generally declined with experience for optimal classifier feedback but re-
mained high, and fairly constant for objective classifier feedback. Implications for cost–benefit train-
ing are discussed.
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To date, a number of studies have examined decision
criterion learning for biased cost–benefit ratios (e.g.,
Bohil & Maddox, 2001; Busemeyer & Myung, 1992;
Busemeyer & Rappaport, 1988; Erev, 1998; Maddox &
Bohil, 1998a, 1998b, 2000; Stevenson, Busemeyer, &
Naylor, 1991; for related work, see Erev, Wallsten, &
Budescu, 1994; Wallsten & Gonzalez-Vallejo, 1994).
The most common result is that human observers use a de-
cision criterion that is intermediate between the optimal
reward-maximizing criterion, and the unbiased accuracy-
maximization criterion, even though they are instructed
(and paid) to maximize reward. Maddoxand Bohil (1998a)
offered a competition between reward and accuracy
maximization (COBRA) hypothesis to account for this
pattern of results. The idea is that observers attempt to
maximize long-run reward, as instructed, but also place
some importance on the accuracy of their responses. One
reason that observers might place some importance on ac-
curacy is that they generally receive local (trial-by-trial)
information regarding the accuracy of their responding.
For example, following the categorization response, the
feedback display often includes the reward accrued on that
trial and the reward accrued for a correct response (Bo-
hil & Maddox, 2001; Maddox & Bohil, 1998a, Experi-
ment 2, 2000). For correct responses these values are the
same, and for incorrect responses these values are dif-
ferent. Notice that a displayof this sort includescorrective
feedback regarding reward and accuracy maximization.

This article reports the results of two simulated med-
ical diagnosis categorization experiments with a biased
cost–benefit ratio. In Experiment 1, different category dis-
criminabilities were combined factorially with different
types of corrective feedback in an attempt to identify feed-
back that would enhance the local information regarding
reward maximization and reduce the local information
regarding accuracy maximization, leading to more nearly
optimal decision criterion learning. Each observer com-
pleted several blocks of trials in only one of the experi-
mental conditions.This allowed an examinationof the time
course of decision criterion learning under various condi-
tions. Experiment 2 includeda subset of the Experiment 1
conditions, but in Experiment 2 each observer completed
several blocks of trials in all the experimental conditions.
The within-subjects design allowed us to develop and test
a series of quantitativemodels, each of which was applied
simultaneously to the data from all the experimental con-
ditions separately for each observer and block of trials
(Bohil & Maddox, 2001; Maddox & Ashby, 1993; Mad-
dox & Bohil, 1998a, 2000; Maddox & Dodd, in press).
Each model instantiated a different hypothesis regarding
the effect of category discriminability, feedback, and
cost–benefits on decision criterion learning. Two spe-
cific hypotheses will be outlined shortly, and the details
of these models will be left for the Results section of Ex-
periment 2 and the Theoretical Analyses section. Before
we turn to the experiments, a brief review of the optimal
classifier and these two hypotheses is in order.

The optimal classifier is a hypotheticaldevice that max-
imizes long-run reward and is willing to sacrifice long-

run accuracy to attain this goal (e.g., Green & Swets,
1966). More formally, consider the situation facing a med-
ical doctor who must classify a patient into one of two dis-
ease categories, A or B. Suppose the patient is given
medical test X, which is diagnostic of the two diseases.
In addition, suppose that the outcomes of test X for dis-
eases A and B are normally distributed, with means mA
and mB and standard deviation sA and sB, as depicted in
Figure 1A. The optimal classifier records perfectly the
test result, denoted x. The optimal classifier has perfect
knowledge of the distribution of test results for each dis-
ease category (i.e., the form and parameters of the distri-
bution). This information is used to construct the optimal
decision function, which is computed from the likelihood
ratio of the two category distributions,

lo (x) = f (x |B) / f (x |A), (1)

where f (x |i ) denotes the likelihood of test result x given
disease category i. If test result x is more likely to result
from disease B than from disease A, the likelihood ratio
will be greater than one. If test result x is more likely to
result from disease A than from disease B, the likelihood
ratio will be less than one. Figures 1A and 1B depict cat-
egorization problems for two discriminabilities, d ¢ = 1.0
and d ¢ = 2.2, respectively.The optimal classifier has per-
fect knowledge of the costs associated with incorrect di-
agnoses and the benefits associated with correct diag-
noses. This information is used to construct the optimal
decision criterion

bo = (VaA 2 VbA ) / (VbB 2 VaB), (2)

where VaA and VbB denote the benefits associated with
correct diagnoses and VbA and VaB denote the costs as-
sociated with incorrect diagnoses (lowercase subscripts
denote responses, and uppercase subscripts denote cate-
gories). The optimal classifier (e.g., Green & Swets, 1966)
uses lo(x) and bo to construct the optimal decision rule:

If lo(x) . bo, then respond “B”;

otherwise, respond “A.” (3)

When the cost–benefit differences are equal across cat-
egories (i.e., when VaA 2 VbA = VbB 2 VaB), then bo = 1,
and the optimal classifier assigns the stimulus to the cat-
egory with the highest likelihood, simultaneously maxi-
mizing long-run accuracy and long-run reward. When
the cost–benefit differences are unequal—for example,
when (VaA 2 VbA) = 3(VbB 2 VaB), then bo = 3.0, and the
optimal classifier will generate a disease A diagnosis un-
less the likelihoodof disease B is at least three times larger
than the likelihood of disease A. Under these conditions,
the optimal classifier will sacrifice long-run accuracy,
which is obtained by using the b = 1.0 decision criterion,
to maximize long-run reward by using bo = 3.0.

Category Discriminability
and the Flat-Maxima Hypothesis

When the cost–benefit differences are unequal, the
optimal classifier sacrifices some degree of accuracy to
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maximize long-run reward. The magnitude of this sacri-
fice in accuracy declines as category discriminability, d ¢,
increases. For example, the optimal classifier must sac-
rifice 8% accuracy when d ¢ = 1.0, but only 3% when d ¢ =
2.2 (see Table 1). In addition, category discriminability
has other important theoretical implications for decision
criterion learning. As has been suggested by many re-
searchers, suppose that the observer adjusts his or her
decision criterion (at least in part) on the basis of the rate
of change in reward, with larger values being associated
with faster decision criterion learning (e.g., Busemeyer
& Myung, 1992; Dusoir, 1980; Erev, 1998; Erev, Gopher,
Itkin, & Greenshpan, 1995; Kubovy & Healy, 1977; Roth
& Erev, 1995; Thomas & Legge, 1970). To formalize this
hypothesis, one can construct the objective reward func-
tion (ORF) that plots the objective expected (long-run)
reward as a function of the decision criterion placement
(e.g., Busemeyer & Myung,1992; Stevenson et al., 1991;
von Winterfeldt & Edwards, 1982). Figure 2A displays

the ORF for d ¢ = 1.0 and d ¢ = 2.2 for a 3:1 cost–benefit
ratio. Specifically, Figure 2A plots expected reward as a
function of the deviation between the observer’s decision
criterion (b) and the optimal decision criterion (bo) stan-
dardized by d ¢. This k 2 ko measure, ln (b )/d ¢ 2
ln(bo) /d ¢ = ln(b /bo) /d ¢, is the ratio of the actual and op-
timal decision criterion standardized by d ¢. The deriva-
tive of the ORF denotes the rate of change in expected re-
ward; the larger rate of change, the steeper the ORF at
that point. Figure 2B shows the relationship between the
steepness of each ORF and k – ko. The horizontal line on
Figure 2B denotes a fixed steepness value, and the ver-
tical lines denote the associated k – ko values for each d ¢.
Note that the observer’s decision criterion, k, is always
closer to the optimal value, ko, for the steeper ORF—d ¢ =
2.2, in this case. Thus, if the observer adjusts his or her
decision criterion on the basis of the rate of change in re-
ward (or steepness of the ORF), steeper ORFs should be
associated with more nearly optimal decision criterion.

Figure 1. Hypothetical distributions for Categories A and B when (A) d ¢ = 1.0, and (B) d ¢ = 2.2. The b = 1 and bo =
3 values denote the accuracy-maximizing (equal likelihood) and reward-maximizing (optimal) decision criteria, re-
spectively, for a 3:1 cost–benefit condition.
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von Winterfeld and Edwards (1982; see also Kubovy &
Healy, 1980) referred to this as the flat-maxima hypothesis.

Unequal Cost–Benefit Differences
and the Competition Between Reward
and Accuracy Maximization Hypothesis
of Decision Criterion Learning

A ubiquitous finding in the categorization literature is
that the observer’s decision criterion is generally inter-
mediate between the optimal reward-maximizing crite-

rion and the accuracy-maximizing criterion when the
cost–benefit differences are unequal. Maddox and Bohil
(1998a) offered the COBRA hypothesis, which assumes
that the observer attempts to maximize long-run reward,
as instructed, but also places some importance on the ac-
curacy of his or her responses. For example, consider the
two-category problem depicted in Figure 3. In this case,
the cost–benefit difference is unequal. Notice that the de-
cision criterion that maximizes expected reward (k r) is
different from the decision criterion that maximizes ex-

Figure 2. (A) Expected reward as a function of the deviation from the optimal decision criterion (i.e., k 2 ko),
called the objective reward function (ORF) for category discriminability, d ¢ = 1.0 and 2.2. (B) Steepness of the
ORF (from panel A) for category discriminability, d ¢ = 1.0 and 2.2. The two vertical lines denote the k 2 k o val-
ues for a fixed value of steepness. Notice that the deviation from the optimal decision criterion is smallest for d ¢ =
2.2 and largest for d ¢ = 1.0.

A

B
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pected accuracy (ka). Thus, an observer who places im-
portance (or weight) on both goals will use a suboptimal
decision criterion. To instantiate this hypothesis concep-
tually and within the framework of a mathematical model,
we assume a simple weighting function, k = wka + (1 2
w) k r, where w (0 # w # 1) denotes the weight placed on
accuracy maximization. This weighting function results
in a single decision criterion that is intermediate between
that for accuracy maximization and that for reward maxi-
mization.2 In Figure 3, k1 denotes a case in which w , .5,
whereas k2 denotes a case in which w . .5.

A major focus of the present study was to determine
whether the flat-maxima and COBRA hypotheses were
important in accounting for performance differences
across feedback conditions. Specifically, model-based
instantiations of each hypothesis in isolation were com-
pared with a hybrid model that instantiated important as-
sumptions from both hypotheses with respect to their
ability to account for decision criterion learning across
category discriminability and feedback conditions.

EXPERIMENT 1

In Experiment 1, we examined the optimality of
cost–benefit learning for different types of feedback dis-
plays. Two factors were examined. First, we manipulated
the number of trials on which feedback was provided. In
the immediate feedbackcondition,feedback was provided
on each trial. This is the approach taken in most studies
of cost–benefit learning (e.g., Healy & Kubovy, 1981;

Maddox, 1995; Maddox & Bohil, 1998a, 1998b). The
immediate feedback condition was contrasted with a de-
layed feedbackcondition, in which feedback was provided
on every fifth trial. Importantly, the delayed feedback was
based on aggregate performance across all five trials (i.e.,
the total reward earned across all five trials) and was not
based only on performance for the fifth trial. This was im-
portant because we wanted to ensure that the amount of
quantitative information was identical in both conditions.
Delay procedures like this have been used occasionally
to study such diverse topics as concept formation (Schroth,
1995, 1997), memory retention (Rankin & Trepper, 1978;
Sassenrath, 1975), and training procedures (Duker, Hens-
gens, & Venderbosch, 1995; Reid & Parsons, 1996) and
to test models of decision making (Busemeyer & Myung,
1992).

Second, we manipulated the nature of the corrective
feedback. In the objective classifier condition, we pro-
vided information about the reward that could have been
earned on that trial (or on the last five trials) had the ob-
jectively correct response been given. Again, this is the
approach taken in most studies of cost–benefit learning
(e.g., Healy & Kubovy, 1981; Maddox, 1995; Maddox &
Bohil, 1998a, 1998b). In the optimal classifier condition,
we provided informationabout the reward that was earned
by the optimal classifier on that trial (or on the last five
trials). Importantly, on a certain proportion of trials, the
optimal classifier will respond incorrectly and will earn
no reward. However, the objective classifier, by definition,
will never respond incorrectly and thus will always earn

Figure 3. Schematic illustration of the competition between reward and accuracy (COBRA) hypothesis. The k r de-
cision criterion denotes the decision criterion that is being used by the observer in an attempt to maximize expected
reward. The k a decision criterion denotes the decision criterion that maximizes expected accuracy. The k1 decision
criterion denotes the decision criterion resulting from the COBRA hypothesis with the assumption that less impor-
tance (or weight; w , .5) is being placed on accuracy maximization. The k2 decision criterion denotes the decision
criterion resulting from the COBRA hypothesis with the assumption that more importance (or weight; w . .5) is
being placed on reward maximization.
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a reward. Optimal classifier feedback should help the
observers realize that they need not attempt to respond
accurately on every trial. Combining the delay factor with
the nature of the feedback factor yielded four feedback
conditions: immediate/objective classifier, immediate/
optimal classifier, delay/objective classifier, and delay/
optimal classifier.

Each observer completed a single session of catego-
rization with a 3:1 cost–benefit ratio. Each observer par-
ticipated in only one of the eight experimental condi-
tions. Each session consisted of three distinct phases:
baseline, training, and transfer. In the baseline phase, the
observer completed a minimum of 120 categorization tri-
als in which no cost–benefit manipulation was present.
If the observer reached a predetermined performance
criterion in 120 trials, the training phase began. Other-
wise, additional baseline trials were presented until the
criterion was met. The baseline condition was included
to ensure that the observers had accurate knowledgeof the
category distributionsprior to any cost–benefit manipula-
tions. The training phase consisted of three 120-trial
blocks of categorizationwith a 3:1 cost–benefit ratio. The
feedback manipulations were instantiated during the
training phase. The transfer phase consisted of a single
120-trial block of categorization, in which no feedback
was provided on any trial.

Method
Observers. One hundred and forty undergraduate students at the

University of Texas, Austin participated in this experiment in par-
tial fulfillment of a class requirement. There were 18 observers in
each of the four d ¢=1.0 conditions and 17 observers in each of the
four d ¢ = 2.2 conditions.

Stimuli and stimulus generation . The stimulus was a filled
white rectangular bar (30 pixels wide) set flush upon a stationary
base (40 pixels wide) that was centered on the computer monitor.
The height of the bar varied from trial to trial. There were two cat-
egories, A and B, each def ined by a specific univariate normal dis-
tribution (Ashby & Gott, 1988). The separation between the Cate-
gory A and the Category B means were 42 and 91 pixels for d ¢ =
1.0 and 2.2, respectively. The Category A and Category B standard
deviation was 42 for both d ¢ levels. For each level of d ¢, 120 unique
stimuli were constructed by taking 60 random samples from each
category distribution. The orders were randomized separately for
each of the four blocks of trials.

Procedure. The observers were told that perfect performance
was impossible. However, an optimal level of performance was
specified as a goal (in the form of desired point totals). The ob-
servers were told that they were participating in a hypothetical med-
ical diagnosis task and that the height of the bar represented the re-
sults of a particular medical test. The test was designed to
distinguish between two diseases, such as “burlosis” and “namitis,”
hereafter referred to simply as “A” and “B.” The observers were in-

formed that they would receive the medical test result for a new pa-
tient on each trial and that their goal was to maximize points in each
session. The observers were told not to worry about speed of re-
sponding and that the stimulus would remain on the screen until
they responded. Before being exposed to the cost–benefit manipu-
lation, each observer completed a minimum of 120 baseline trials,
in which the cost of an incorrect response was zero (i.e., VaB = VbA =
0) and the benefit of a correct response was 2 points (i.e., VaA =
VbB = 2). If the observer reached an accuracy-based performance
criterion (2% below optimal), he or she was allowed to begin the ex-
perimental condition. If the observer did not reach criterion, he or
she continued in the baseline condition until criterion was reached.
Once the observer reached criterion, he or she was allowed to begin
the experimental condition. In the experimental condition, the ben-
efit of a correct “A” response was 3 points (i.e., VaA = 3), the bene-
fit of a correct “B” response was 1 point (i.e., VbB = 1), and the cost
of an incorrect response was zero (i.e., VaB = VbA = 0). Table 1 dis-
plays the point totals and accuracy rates for the optimal classifier
for each d ¢ condition.

During each trial of the training phase, a stimulus was presented
and remained on the screen until the observer responded. On feed-
back trials, the feedback remained on the screen for 750 msec. The
feedback was followed by a 125-msec intertrial interval, during
which the screen was blank. On no-feedback trials, the screen re-
mained blank for 875 msec. In the immediate feedback condition,
feedback was provided on each trial. In the delayed feedback con-
dition, feedback was provided following every fifth trial, and
the feedback was based on aggregate performance across all f ive
trials. In all the conditions, the feedback display contained four
lines of information. The top line presented the points earned on
the previous trial (in the immediate feedback condition) or on the
previous five trials (in the delayed feedback condition). In the ob-
jective classifier condition, the second line presented the number of
points that could have been earned for a correct response on the pre-
vious trial (in the immediate feedback condition) or for correct re-
sponses on the previous five trials (in the delayed feedback condi-
tion). In the optimal classifier condition, the second line presented
the number of points that were earned by the optimal classifier on
the previous trial (in the immediate feedback condition) or on the
previous five trials (in the delayed feedback condition). The third
line presented a running cumulative point total for the observer. The
fourth line presented a running cumulative total for either the ob-
jective or the optimal classifier, depending on condition. Sample

Table 1
Points and Accuracy (per 120-Trial Block) for the

Optimal Classifier That Maximizes Long-Run Reward

d ¢ = 1.0 d ¢ = 2.2

Condition Points Accuracy Points Accuracy

Baseline 166 69% 206 86%
3:1 Cost–Benefit 186 61% 212 83%

Figure 4. Hypothetical feedback displays for the objective clas-
sifier and optimal classifier conditions.
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feedback displays for the objective and the optimal classifier con-
ditions are depicted in the top and bottom panels of Figure 4, re-
spectively.

Results
All analyses were performed on the three blocks of

training data and on the transfer data. In comparing
human performance with that of the optimal classifier, a
number of performance indices can be examined. In this
article, we took a converging operations approach (Gar-
ner, 1974). Specifically, we examined several different,
but related, performance indices and focused on patterns
of results that converged across indices. Because the op-
timal classifier attempts to maximize long-run reward, it
was of interest to compare each observer’s reward with
that of the optimal classifier. In our experiment, reward
came in the form of points that were earned on each trial,
dependingon the observer’s response (see Table 1). These
point totals accrued across trials, and at the end of the
experiment, the observer received monetary payment that
was proportional to their point totals. Because the opti-
mal point totals differed across d ¢ conditions, it was im-
portant to standardize the observer’s point totals across
conditions.Thus, we computed the percentage of optimal
points as follows:

% of optimal points

= 100(observed point total /optimal point total).

An observer whose point total was less than that pre-
dicted by the optimal classifier would yield a percentage
of optimal point value that was less than 100, whereas
performance that was superior to that of the optimal clas-
sifier would yield a percentageof optimal point value that
was greater than 100.

Another measure of interest was to compare each ob-
server’s accuracy rate with that predicted by the optimal
classifier. Again, we standardized and computed the per-
centage of optimal accuracy as follows:

% of optimal accuracy

= 100(observed accuracy/optimal accuracy).

An observer whose accuracy rate was less than that pre-
dicted by the optimal classifier would yield a percentage
of optimal accuracy value that was less than 100, whereas
an observer whose accuracy rate was greater than that
predicted by the optimal classifier would yield a per-
centage of optimal accuracy value that was greater than
100. This measure would be especially informative, be-
cause the optimal classifier sacrifices accuracy in order to
maximize long-run reward. An observer who placed some
importance on accuracy maximization would likely per-
form more accurately than the optimal classifier.

In addition, we examined the observer’s decision cri-
terion estimate, k = ln(b)/d ¢ from signal detection theory
(Green & Swets, 1966; Macmillan & Creelman, 1991;
von Winterfeldt & Edwards, 1982). Because we were in-
terested in comparing the observer’s decision criterion
with that of the optimal classifier, we computed the devi-
ation from the optimal decision criterion as follows:

deviation from optimal decision criterion = k – ko.

For each of the three measures, we start with a 2 (d ¢)
3 2 (delay) 3 2 (nature of the feedback) 3 4 (blocks)
mixed design analysis of variance (ANOVA) in which
only the block factor was within-subjects.3 Table 2 sum-
marizes the ANOVA results for each of the three perfor-
mance measures for the main effects and two-way inter-
actions. All the three-way interactions and the four-way
interaction were nonsignificant for all three measures.
All effects that were statistically significant at p , .05
are denoted with an asterisk (*). Marginal significance
levels (i.e., .05 , p , .10) are denoted with the exact sig-
nificance level. Nonsignificant effects (i.e., p . .10) are
denoted with n.s. for nonsignificant. The main effects for
category discriminability and block were significant for
all three measures, and the nature of feedback 3 block
interaction was significant for two of the three measures.
All other effects were significant for one or no perfor-
mance index.

Figures 5–7 display the main effects of category dis-
criminability and block and the nature of feedback 3
block interaction, respectively, for each of the three per-

Table 2
Analysis of Variance Results

for Experiment 1 for the Three Performance Indices

Deviation
% of % of from Optimal

Source Optimal Points Optimal Accuracy Decision Criterion

d ¢ * * *
Delay n.s. n.s. n.s.
Nature of feedback n.s. n.s. n.s.
Block * * *
d ¢ 3 delay n.s. n.s. n.s.
d ¢ 3 nature of feedback n.s. n.s. n.s.
d ¢ 3 block .075 n.s. n.s.
Delay 3 nature of feedback n.s. n.s. n.s.
Delay 3 block n.s. n.s. n.s.
Nature of feedback 3 block .087 n.s. *

*p , .05.
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formance measures. Several comments are in order. First,
note that performance was closer to optimal for d ¢ = 2.2
than for d ¢ = 1.0 for the point and decision criterion mea-
sures, as would be predicted from the flat-maxima hy-

pothesis. In addition, note that the percentage of optimal
accuracy was larger for d ¢ = 1.0 than for d ¢ = 2.2 and was,
in fact, greater than 100% (see Figure 5). Recall that the
sacrifice in accuracy necessary to maximize long-run re-
ward is larger for d ¢ = 1.0 than for d ¢ = 2.2. On the basis
of COBRA, we hypothesized earlier that this larger ac-
curacy sacrifice might make observers place more weight
on accuracy maximization in the d ¢ = 1.0 condition, thus
leading to less optimal performance. This hypothesis is
supported by the data. Second, note that performance
generally improved over blocks for the three performance
measures (see Figure 6). Finally, note that the nature of the
feedback effect increased across blocks for all perfor-
mance measures (Figure 7) but that the effect was largest
for the point and decision criterion measures. Specifi-
cally, performance was closer to optimal for optimal clas-
sifier feedback,as compared with objectiveclassifier feed-
back, and the magnitude of this effect increased across
blocks. Post hoc t tests were conducted separately for each
block to determine when the feedback effect was signifi-
cant. For both the pointand the decisioncriterion measures,
the effect was nonsignificantduring Training Blocks 1 and
2 ( p . .05) and was significant during transfer Block 4
( p , .05). During Block 3, the effect was marginal for
the point measure ( p = .061) and was nonsignificant for
the decision criterion measure ( p . .05).

Discussion
In Experiment 1, two modifications to the feedback

display were combined factorially with two levels of cat-
egory discriminabilityin order to study their effects on de-
cision criterion learning when the cost–benefit difference
was unequal. Performance improved with experience, and
higher category discriminability led to better learning.
These findings converge with those from a number of
published studies (Bohil & Maddox, 2001; Busemeyer
& Myung, 1992; Healy & Kubovy, 1981; Maddox, 1995;
Maddox & Bohil, 1998a, 1998b, 2000). Although the
delay and the nature of the feedback manipulationsdid not
reach statistical significance, the condition means sug-
gested that delayed feedback and optimal feedback im-
proved performance (for delayed vs. immediate feedback,
the percentages of optimal points was 90.0% vs. 89.3%;
the percentageof optimal accuracy was 99.4% vs. 98.8%,
and the deviationfrom optimal decisioncriterion was 2.58
vs. 2.62; for optimal vs. objective feedback, the per-
centage of optimal points was 90.6% vs. 88.7%; the per-
centage of optimal accuracy, 99.5% vs. 98.7%, and the
deviation from optimal decision criterion was 2.56 vs.
2.64). The feedback manipulation did interact with the
level of experience with the task, revealing no feedback
effect early in learning, but a large optimal feedback ad-
vantage late in learning (see Figure 7).

These data represent an important starting point. They
suggest that performance can be improved when the ob-
server is trained relative to the optimal classifier, as op-
posed to being trained relative to the objectively correct

Figure 5. (A) Percentage of optimal points, (B) percentage of
optimal accuracy, and (C) deviation from optimal decision crite-
rion, averaged across observers, for the two category discrim-
inabilities from Experiment 1. Standard error bars are included.



606 MADDOX AND BOHIL

response. Even so, these data are not rich enough to
allow an examination of the psychological processes that
might account for this feedback effect. This determination
requires a model-based approach, which is the focus of
Experiment 2.

EXPERIMENT 2

Experiment 2 used a within-subjects design to rigor-
ously examine the effects of category discriminability
and feedback manipulations on cost–benefit learning.
Because the delay manipulation did not reach statistical
significance in Experiment 1, it was excluded from Ex-
periment 2, and immediate feedback was provided.Thus,
each observer completed four experimental conditions
constructed from the factorial combination of two d ¢ lev-
els (1.0 and 2.2) with two feedback types (objective clas-
sifier and optimal classifier).

Method
Observers . Eight observers were solicited from the University

of Texas community. Each observer completed four approximately
30-min sessions. The observers were paid on the basis of their day-
to-day performance in the task.

Stimuli and stimulus generation . The stimuli and category
structure were identical to those in Experiment 1.

Procedure. The procedures were identical to those in Experi-
ment 1, with the following exceptions. First, a Latin-square design
was used to counterbalance the order of the four conditions across
observers. Second, different disease labels were used for each con-
dition and were assigned randomly across conditions.

Results
For completeness, we briefly outline ANOVA results

for the same performance measures as those used in Ex-
periment 1. A 2 (d ¢) 3 2 (feedback type) 3 4 (block)
within-subjects ANOVA was performed separately on
each of the three performance measures.4 Table 3 sum-
marizes the ANOVA results for each of the three perfor-
mance measures. The main effects of feedback type and
block were significant (or marginally significant) for two
of the three measures. In addition, the d ¢ 3 feedback type
interaction was significant for two of the three measures.

Figures 8–10 display the main effects of feedback type
and block, and the d ¢ 3 feedback type interaction, re-
spectively, for each of the three performance measures.
The results can be summarized as follows. First, perfor-
mance was closer to optimal for the optimal classifier
feedback than for the objective classifier feedback for all
three measures, although the effect was much smaller for
the accuracy measure (see Figure 8). Second, perfor-
mance became more nearly optimal across blocks for the
point and decision criterion measures but stayed nearly
constant for the accuracy measure (see Figure 9). Finally,
the d ¢ 3 feedback interaction was due to a much larger
effect of objective versus optimal classifier feedback on
performance for the d ¢ = 1.0 condition than for the d ¢ =
2.2 condition. Post hoc analyses revealed that optimal
classifier feedback yielded significantly better perfor-
mance than objective classifier feedback for the d ¢ = 1.0
condition ( p , .05 for both the point and the decision
criterion measures), but not for the d ¢ = 2.2 condition
( p . .05 for both measures).

Interestingly, the d ¢ effect on decision criterion place-
ment was nonsignificant. Even so, the decision criterion
was closer to optimal for d ¢ = 2.2 than for d ¢ = 1.0 (av-

Figure 6. (A) Percentage of optimal points, (B) percentage of
optimal accuracy, and (C) deviation from optimal decision crite-
rion, averaged across observers, for the four blocks of trials from
Experiment 1. Standard error bars are included.

A

B

C
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Figure 7. (A) Percentage of optimal points, (B) percentage of optimal accuracy, and (C) de-
viation from optimal decision criterion, averaged across observers, for the objective and op-
timal classifier feedback conditions by block from Experiment 1. Standard error bars are in-
cluded.
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erage deviation from optimal decision criterion = 2.252,
and 2.344 for d ¢ = 2.2, and 1.0, respectively), and more
important, the same relation held at the individual ob-
server level in 42 of 64 cases (8 observers 3 2 feedback
types 3 4 blocks), providing initial support for the flat-
maxima hypothesis.

THEORETICAL ANALYSES

To this point, we have focused on ANOVA-based re-
sults.Although fruitful, this approach is limited for at least
two reasons. First, because an ANOVA focuses on “aver-
age” performance, performance profiles at the individual-
observer level cannot be examined. Second, because an
ANOVA determines only whether means are statistically
equal, it does not allow one to test rigorously a number of
important hypotheses. The focus of this section is on the
development and application of a series of decision
bound models. We begin with a brief overview of decision
bound theory that provides the underlying framework for
our modeling endeavor. The theory is described in detail
in numerous articles (e.g., Ashby, 1992a; Ashby & Per-
rin, 1988; Ashby & Townsend, 1986; Maddox & Ashby,
1993; Maddox & Bohil, 1998a, 1998b). We then outline
a number of hypothesesto be tested, instantiateeach within
the framework of a decision bound model, and summarize
the results of the model-based analyses. All analyses
were performed at the individual-observer level, because
of concerns with modeling aggregate data (e.g., Ashby,
Maddox, & Lee, 1994; Estes, 1950; Maddox, 1999; Mad-
dox & Ashby, 1998; Smith & Minda, 1998).

Decision Bound Theory
Decision bound theory assumes that the observer at-

tempts to respond optimally but is unable to because two
suboptimalities, perceptual noise and criterial noise, are
inherent in all humans (and other organisms). Perceptual
noise exists because there is trial-by-trial variability in the
perceptual information associated with each stimulus.
Criterial noise exists because there is trial-by-trial vari-
ability in the observer’s memory for the decision criterion.
Because perceptual and criterial noise exist, the human
observer cannot attain the level of performance reached
by the optimal classifier (i.e., cannot maximize long-run
reward). Even so, decision bound theory assumes that

the observer attempts to use the same strategy as the op-
timal classifier, but with less success owing to the effects
of perceptual and criterial noise. Besides perceptual and
criterial noise, other suboptimalities might exist. For ex-
ample, suboptimalities might exist in category distribu-
tion knowledge. All of the models tested in this article
assume that the observer had knowledge of the category
structures. This was an important assumption because
our interest is in studying observers’ decision criterion
learning, and not potential suboptimalitiesin category dis-
tribution knowledge. To ensure that this was a reasonable
assumption, the first block of trials consisted of baseline
trials, in which no cost–benefit manipulation was pres-
ent. The observers had to reach a rigid performance crite-
rion during this block before shifting to the experimental
trials, thus ensuring that the observer did have accurate
knowledge of the category distributions (see the Method
sections).

Suboptimalities might also exist in knowledge of the
cost–benefits and, thus, in the placement of the decision
criterion, k. All of the models tested in this section allow
for suboptimalities in the decision criterion placement.
The models differ only in the types of constraints imposed
on these suboptimalities across category discriminability
and feedback conditions. Each model was applied simul-
taneously to the data from all four experimental condi-
tions, separately by block and observer. During training
and transfer, each block consisted of 120 experimental
trials, and the observer was required to respond “A” or
“B” for each stimulus. Since there were four conditions,
each model was fit to a total of 960 estimated response
probabilities from each training block (120 trials 3 2 re-
sponse types [“A” or “B”] 3 4 conditions). The model
yielded predicted probabilities of responding “A” and
“B” by solving the following equations:

P (RA |xi ) = P [h (xpi ) , k |xi ]

and

P(RB |xi ) = 1 2 P [h(xpi ) , k |xi],

where xi is the bar height for stimulus i, xpi is the per-
ceptual effect for stimulus i under the assumption that
normally distributed perceptual noise exists, h is the de-
cision function, and k is the decision criterion (see Equa-
tion 4). Decision bound theory also postulates noise in

Table 3
Analysis of Variance Results

for Experiment 2 for the Three Performance Indices

Deviation
% of % of From Optimal

Source Optimal Points Optimal Accuracy Decision Criterion

d ¢ n.s. .063 n.s.
Nature of feedback * n.s. *
Block .060 n.s. .057
d ¢ 3 nature of feedback * n.s. *
d ¢ 3 block .054 n.s. n.s.
Nature of feedback 3 block n.s. * n.s.

*p , .05.
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the decision process—that is, criterial noise. However, in
the present application, criterial noise is nonidentifiable
with perceptual noise. All of the models outlined below
included two noise parameters, one for each level of d ¢.
The noise parameter represented the sum of perceptual and
criterial noise (Ashby, 1992a; Maddox & Ashby, 1993).

The goal of the model-based analyses was to shed
some light on the psychological processes that led to dif-
ferences in decision criterion placement across the d ¢ and
feedback conditions. In particular, we were interested in
determining whether variants of the flat-maxima and
COBRA hypotheses could account for the data. To fa-
cilitate the developmentof each model, consider the fol-
lowing equation that determines the decision criterion
used by the observer (k):

k = wka + (1 2 w)k r , (4)

where ka is the decision criterion that maximizes ex-
pected accuracy (i.e., the equal likelihood decision cri-
terion), k r is the decision criterion used by the observer
to maximize expected reward, and w is the importance
(or weight) given to expected accuracy maximization (see
Figure 3). We began by developing four models, each of
which makes different assumptions about the k r and w
values. The nested structure of the models is presented in
Figure 11. The number of free parameters (in addition to
the two noise parameters described above) is presented in
parentheses. The arrows point to the more general model.
Models at the same level have the same number of free
parameters.

The flat-maxima(stp)model instantiatesthe flat-maxima
hypothesis, but not the COBRA hypothesis. Specifically,
it assumes that the decision criterion used by the ob-
server to maximize expected reward (k r) is determined
by the steepness of the ORF. A single steepness param-
eter (stp) is estimated from the data. This single steepness
parameter determines a distinct decision criterion value
for each of the d ¢ conditions (see Figure 2B). Because the
decision criterion values are determined from the ORF,
this model is constrained to predict that the decision cri-
terion will be closest to optimal in the d ¢ = 2.2 condition,
relative to the d ¢ = 1.0 condition. In addition, this model
assumes that there is no effect of optimal versus objective
feedback, thus assuming the same decision criterion in
both cases. Finally, this model assumes that there is no
competitionbetween accuracy and reward maximization
(i.e., w = 0).

The COBRA(w) model instantiates the COBRA hy-
pothesis, but not the flat-maxima hypothesis. Specifi-
cally, it assumes that the decision criterion used by the
observer to maximize expected reward is the optimal de-
cision criterion (i.e., k r = ko) but allows for a competition
between reward and accuracy maximization by estimat-
ing the Equation 4 w parameter from the data. This model
assumes no effect of optimal versus objective feedback
and estimates a single w parameter.

The flat-maxima(stpopt;stpobj ) model generalizes the
flat-maxima(stp) model by assuming that the decision cri-
terion used by the observer to maximize expected reward
(k r) is different in the optimal and the objective feedback
conditions. This model is constrained to predict that the
decision criterion will be closest to optimal in the d ¢ = 2.2
condition, relative to the d ¢ = 1.0 condition, but it allows
for differences across feedback conditions by estimating

Figure 8. (A) Percentage of optimal points, (B) percentage of
optimal accuracy, and (C) deviation from optimal decision crite-
rion, averaged across observers, for the objective and optimal
classifier feedback conditions from Experiment 2. Standard
error bars are included.
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two steepness parameters (stpopt ; stpobj ). This model as-
sumes no competitionbetween reward and accuracy (i.e.,
w = 0) and contains the flat-maxima(stp) model as a spe-
cial case.

The COBRA(wopt ;wobj ) model generalizes the CO-
BRA(w) model by assuming that the weight placed on
accuracy maximization is different in the optimal (wopt)

and the objective (wobj) feedback conditions. It does not
instantiate the flat-maxima hypothesis and, instead, as-
sumes that the decision criterion used by the observer to
maximize expected reward is the optimal decision crite-
rion (i.e., k r = ko). This model contains the COBRA(w)
model as a special case.

Each of these models has problems from a psycholog-
ical standpoint. For example, the flat-maxima(stp) and
COBRA(w) models both assumed no feedback effect,
when one was observed. The COBRA(wopt ;wobj ) model
has the potential to account for the feedback effect by as-
suming different accuracy weights across feedback con-
ditions, but the model has no way to account for the d ¢ ef-
fect. The flat-maxima(stpopt;stpobj ) model appears most
reasonable on the surface, since it predicts more nearly
optimal decision criterion placement for d ¢ = 2.2 relative
to d ¢ = 1.0, as was observed, and it has the potential to
account for the feedback effect by assuming that the na-
ture of the feedback affects the steepness associated with
the stopping point on the ORF. Even so, the flat-maxima
hypothesisderives from the nature of the objective reward
function, which is best thought of as a hypothesis about
how the observer learns the decision criterion that max-
imizes long-run reward, k r. It is unclear why the location
of the stopping point on the ORF would be affected by
the nature of the feedback.

In light of these problems, we developedand tested two
additionalhybrid models that instantiatedsimultaneously
the important components of both the flat-maxima and
the COBRA hypotheses. Both hybrid models instanti-
ated the flat-maxima hypothesis by estimating a single
steepness parameter (stp) that determined the decision cri-
terion used by the observer to maximize expected reward
(k r). The two models differed only in their assumptions
regarding COBRA.

The hybrid(stp;w) model allows for a competition
between reward and accuracy maximization by estimat-
ing the Equation 4 w parameter from the data. However,
this model assumes that there is no effect of optimal ver-
sus objective feedback on the value of the w parameter.
Note that this model contains both the flat-maxima(stp)
model and the COBRA(w) model as a special case (see
Figure 11).

The hybrid( stp; wopt ;wobj ) model generalizes the
hybrid(stp;w) model by estimating separate accuracy
weights for the optimal and the objective feedback con-
ditions. This model contains the hybrid(stp;w), flat-
maxima(stp), COBRA(w), and COBRA(wopt ;wobj ) mod-
els as special cases (see Figure 11).

The model parameters were estimated using maxi-
mum likelihood (Ashby, 1992b; Wickens, 1982) and the
goodness-of-fit statistic was

AIC = 2r 2 2lnL,

where r is the number of free parameters and L is the
likelihood of the model given the data (Akaike, 1974;
Takane & Shibayama, 1992). The AIC statistic penalizes
a model for extra free parameters in such a way that the

Figure 9. (A) Percentage of optimal points, (B) percentage of
optimal accuracy, and (C) deviation from optimal decision crite-
rion, averaged across observers, for the four blocks of trials from
Experiment 2. Standard error bars are included.
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smaller the AIC, the closer a model is to the “true model,”
regardless of the number of free parameters. Thus, to
find the best model among a given set of competitors, one
simply computesan AIC value for each model and chooses

the model associatedwith the smallest AIC value. Table 4
presents the best-fitting model by observer and block.
Several comments are in order. First, during the first two
blocks of trials, the flat-maxima models provided the best

Figure 10. (A) Percentage of optimal points, (B) percentage of optimal accuracy, and
(C) deviation from optimal decision criterion, averaged across observers, for the objec-
tive and optimal classifier feedback conditions by category discriminability from Exper-
iment 2. Standard error bars are included.
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account of the data in 9 of 16 (8 observers 3 2 blocks)
cases. Both the hybrid and the COBRA models per-
formed poorly, accounting best for 4 and 3 data sets, re-
spectively. Second, during the last two blocks of trials
the hybrid models dominated, accounting for 12 of 16
cases. Importantly, this was due mainly to the superiority
of the Hybrid(stp; wopt ;wobj ) model, which provided the
best account for 4 of 8 observers during Block 3 and 6 of
8 observers during the final block. Third, a common pat-
tern within observers (e.g., Observers 1, 3, 7, and 8) was
for the flat-maxima(stpopt; stpobj) model to perform best
early in learning and for the hybrid(stp;wopt ;wobj ) model
to perform best late in learning. Finally, the COBRA
models generally performed poorly. Taken together, the
model-based analyses suggest that the flat-maxima model
in isolation can account reasonably well for early learning.
However, a hybrid model that assumes that the reward-
maximizingdecisioncriterion is driven by the flat-maxima
hypothesis and that COBRA accounts for the differen-
tial weight placed on accuracy maximization in objective
and optimal classifier feedback conditionswas necessary
to account for decision criterion learningwith experience.

Because the models were applied separately to each
block of trials, we can examine the parameter values to
determine how they changed as the observers gained ex-
perience with the task. Of particular interest is to exam-
ine the accuracy weights from the hybrid(stp;wopt ;wobj )
model. Figure 12 plots the wopt and wobj values for each
block averaged across observers. A two-way ANOVA
was conducted on the accuracy weights. The main effect
of feedback condition was significant [F(1,7) = 11.535,
p , .05], whereas the main effect of block and the feed-
back 3 block interaction were both nonsignificant (p .
.05). Although the interaction was nonsignificant, we
decided to conduct separate one-way ANOVAs on the
accuracy weights for the two feedback conditions. In the
objective classifier condition, the block effect was non-
significant (p . .05), suggesting that the weight allo-

cated to accuracy maximization was relatively constant
across learning, although the general trend was toward
increasing weights. In the optimal classifier condition,
on the other hand, the block effect was marginally sig-
nificant [F(3,21) = 2.775, p = .067]. Post hoc analyses
revealed that the weight declined significantly from
Blocks 1 to 2, then remained relatively constant.

GENERAL DISCUSSION

This article reports the results of two experiments that
examined the effects of different types of feedback on
cost–benefit learning in a perceptual categorization task.
A major focus was to identify feedback conditions that
would increase the salience of information important for
reward maximization and decrease the salience of infor-
mation important for accuracy maximization. Because
some measure of accuracy must be sacrificed to maxi-
mize reward when costs and benefits are unequal, feed-
back conditionsthat meet these requirements should lead
to superior performance. In Experiment 1, two types of
feedback manipulations, immediate/delay and objective/
optimal classifier, were combined factorially with two
levels of category discriminability (d ¢ = 1.0 or 2.2). In
the immediate feedback conditions, feedback was pro-
vided on each trial, whereas feedback was provided fol-
lowing every fifth trial in the delayed feedback condi-
tions. In the objective classifier conditions, the feedback
contained information regarding the number of points
earned for an “objectively”correct response. In the optimal
classifier conditions, the feedback contained information
regarding the number of points earned by the optimal clas-
sifier. Importantly, the optimal classifier makes errors
but makes more errors for the low cost–benefit category,
thus using a decision strategy that maximizes long-run
reward. Each observer completed several blocks of trials
in one of the eight resulting conditions. Accuracy rates,
point totals, and the theoretically motivated decision crite-

Figure 11. Nested relationship among the decision bound models applied simultaneously to the data from all
the experimental conditions. The arrows point to a more general model (see the text for details). Note: All mod-
els assume two noise parameters.
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rion index from signal detection theory (Green & Swets,
1966; Macmillan & Creelman, 1991) were examined
with an ANOVA. Performance improved across blocks
and was superior for more discriminable categories. Per-
formance was generally superior in the delayed feedback
conditionsand in the optimal classifier conditions,but nei-
ther effect reached statistical significance. However, the
nature of the feedback (objectivevs. optimal classifier) in-
teracted with the level of experience.Specifically, whereas
performance was nearly identical for the objective and
the optimal classifier feedback conditionsduring the first
block of trials, as the observer gained experience with the

task, performance diverged for the two conditions, with
superior performance being shown in the optimal classi-
fier conditions (see Figure 7).

In Experiment 2, the nature of the feedback (objective
vs. optimal classifier) was combined factorially with two
levels of category discriminability (d ¢ = 1.0 or 2.2), and
each observer completed several blocks of trials in all four
conditions. In line with the results from Experiment 1,
performance improved over blocks and was superior when
feedback was based on the optimal classifier. In addition,
the feedback effect was much larger for the low category
discriminability condition than for the high category dis-

Table 4
Best-Fitting Model by Observer and Block

Block

Observer 1 2 3 4

1 flat-maxima flat-maxima hybrid hybrid
(stpopt ; stpobj ) (stp) (stp;w) (stp; wopt ;wobj )

2 hybrid COBRA hybrid hybrid
(stp;w) (w) (stp; wopt ;wobj ) (stp;wopt ; wobj )

3 flat-maxima hybrid hybrid hybrid
(stpopt ; stpobj ) (stp;wopt;wobj ) (stp;w) (stp;wopt ;wobj )

4 hybrid hybrid hybrid hybrid
(stp;wopt ; wobj ) (stp;wopt;wobj ) (stp;wopt ;wobj ) (stp;wopt ; wobj )

5 COBRA COBRA flat-maxima flat-maxima
(w) (w) (stpopt ; stpobj ) (stpopt ; stpobj )

6 flat-maxima flat-maxima flat-maxima COBRA
(stp) (stp) (stp) (wopt ;wobj )

7 flat-maxima flat-maxima hybrid hybrid
(stpopt ; stpobj ) (stpopt ; stpobj ) (stp;wopt ; wobj ) (stp;wopt ;wobj )

8 flat-maxima flat-maxima hybrid hybrid
(stpopt ; stpobj ) (stpopt ; stpobj ) (stp;wopt ; wobj ) (stp;wopt ;wobj )

Figure 12. Weight allocated to accuracy maximization for the objective and optimal classifier conditions
averaged across observer from the hybrid (stp; wopt ;wobj) model separately for each block of trials. Stan-
dard error bars are included.
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criminabilitycondition.This is reasonable, since the mag-
nitude of the sacrifice in accuracy necessary to maximize
reward increases as category discriminability decreases.
Because a within-subjects design was utilized, a series of
models, derived from decision bound theory, were ap-
plied simultaneously to the data from all four conditions
separately for each observer and block. These model-
based analyses allowed a fine-grained analysis of each ob-
server’s performance and allowed us to instantiateand test
several hypotheses of theoretical importance. Two hy-
potheses were of particular importance. The first hypoth-
esis, the flat-maxima hypothesis, suggests that the ob-
server adjusts his or her decision criterion on the basis of
the change in the rate of reward of the objective reward
function.Because the ORF is steeper for d ¢ = 2.2 than for
d ¢ = 1.0, the flat-maxima hypothesis predicts that the re-
sulting decision criterion will be closer to the optimal
value for d ¢ = 2.2 than for d ¢ = 1.0. The second hypothe-
sis, the COBRA maximization hypothesis, suggests that
observers place some importance (or weight) on reward
and accuracy maximization. When both goals cannot
be achieved simultaneously, as in unequal cost–benefit
conditions, the competition leads to the use of a subop-
timal decision criterion. Model-based variants of the flat-
maxima and COBRA hypotheses, in isolation, and a hy-
brid model that instantiated important assumptions from
both hypotheses were applied to the data in an attempt to
account for decision criterion learning across d ¢ and feed-
back conditions.The flat-maxima model provideda good
account of performance early in learning, but a hybrid
model that assumed that the reward-maximizing decision
criterion was driven by the flat-maxima hypothesis and
that the feedback effect was on the weight placed on accu-
racy maximization in COBRA was necessary to account
for decision criterion learning with experience. The ac-
curacy weights from the hybrid model indicated that the
observer placed less importance on accuracy maximiza-
tion when the feedback was based on the optimal classifier,
as opposed to the objectiveclassifier. Although more ten-
tative, the importance placed on accuracy maximization
remained fairly constant (or increased slightly) with
learning in the objective feedback condition but showed
a large decline early, followed by relative stability later in
learning, in the optimal feedback condition (Figure 12).
If we extrapolatebeyond this single experimental session,
the results support the general conclusion that traditional
feedback (i.e., objective feedback) may never lead to op-
timal (or nearly optimal) levels of responding, whereas
optimal classifier feedback yields excellent performance
after only one session and may yield optimal (or nearly
optimal) performance with only a few hundred additional
trials.

This work has important implicationsfor many types of
real-world perceptual categorization or decision-making
problems, such as medical diagnosis. This work suggests
that training should not focus on correct trial-by-trial re-
sponding,something that even the optimal classifier can-

not attain, but rather should focus on training the novice
categorizer to emulate the optimal classifier. In this way,
the student can learn which types of error are less damag-
ing to overall reward maximization and which are more
damaging.

In conclusion, the present study provides useful infor-
mation about the types of feedback that lead to superior
cost–benefit learning. The results suggest that feedback
based on the optimal classifier leads to better performance
by decreasing the weight placed on accuracymaximization.
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NOTES

1. Categorization problems also differ in the prior probabilities (or
base rates) of each category. Base rates were equal in the present study
but have been studied extensively in the literature (Green & Swets,
1966; Healy & Kubovy, 1981; Maddox & Bohil, 1998a, 1998b, 2000).

2. Other weighting schemes are possible. For example, instead of
generating an intermediate decision criterion, it is possible that the two
decision criteria compete on each trial for the opportunity to generate
the categorization response (for related proposals, see Ashby, Alfonso-
Reese, Turken, & Waldron, 1998; Maddox & Estes, 1996). A rigorous
comparison of these alternatives is beyond the scope of this article.

3. For completeness we also estimated d ¢ from signal detection the-
ory and submitted these data to a 2 3 2 3 2 3 4 ANOVA. The only sig-
nificant effect was the main effect of category discriminability. These
data will not be discussed further.

4. As in Experiment 1, the d ¢ values from signal detection theory
were submitted to a 2 3 2 3 4 ANOVA. The only significant effect was
the main effect of category discriminability. These data will not be dis-
cussed further.

(Manuscript received June 22, 2000;
revision accepted for publication February 7, 2001.)
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