
Behavior Research Methods, Instruments, & Computers
1995,27 (4),496-501

Bit-plane layering for high-resolution EGA and
VGA graphics on the IBM PC/XT/AT

FRANK D. BOKHORST
University of Cape Town, Rondebosch, South Africa

Each page of video memory comprises four parallel planes that can be manipulated and displayed
independently or in combination. Atechnique is described that involves programming the video hard­
ware to achieve this. The utility of well-known video programming technology, such as the tachisto­
scope display, is thereby extended. Assembly language code is included, and a demonstration pro­
gram is described.

The present paper describes a technique that can sub­
stantially increase the usefulness of the IBM PC/XT/AT
video display in behavioral research. Bit-plane layering
(Wilton, 1987) involves the deployment of up to four
distinct graphics images that can be displayed in rapid se­
quence or together in any combination. Possible applica­
tions are the tachistoscope, animated displays, and com­
posite images requiring manipulation of the parts. For
example, the spacing of a grid superimposed on a com­
plex image could be altered without affecting the under­
lying image.

Consider the video-based tachistoscope. A recent re­
view by Haussmann (1992) has given what appears to be
a definitive exposition of its implementation on currently
available video hardware for the IBM PC/XT/ATand PS/2
family ofcomputers. Its potential and limitations are well
documented, and software for its application has been
made widely available. Yetthe technique ofbit-plane lay­
ering is overlooked, and there appears to be no accessi­
ble exposition of this technique in the context ofbehav­
ioral research methods. One reason for the oversight may
be that bit-plane layering is applicable only to the newer
EGA and VGA systems. Also, the degree of complexity
the programmer encounters when dealing with EGA and
VGA hardware may possibly account for the lacuna. Tech­
niques are required that are not applicable to the older
CGA, Hercules, and MCGA (PS/2) systems.

The video tachistoscope can display an almost unlim­
ited number of fields. However, this applies only to dis­
plays lasting hundreds of milliseconds or to very simple
text (e.g., a single word in nongraphics mode). Standard
EGA and VGA technology does not allow the generation
of complex graphics displays at a tachistoscopic rate
(Creeger, Millar, & Paredes, 1990). For this reason, mul­
tiple fields that are to be displayed in rapid succession
must be generated off-line and stored in separate areas
ready for activation. A conventional technique in this sit­
uation is the use ofseveral "virtual pages" in video RAM

Correspondence should be addressed to F.D. Bokhorst, Department
of Psychology, University of Cape Town, Rondebosch 7700, South
Africa (e-mail: bokkie@psipsy.uct.ac.za).

(Segalowitz, 1987), and all IBM PC/XT/AT video sys­
tems have this capability in text-only modes. Given suf­
ficient video RAM, the Hercules, MCGA, EGA, and
VGA systems can do this in graphics modes as well. Bit­
plane layering extends this technology in two ways: In
EGA and VGA systems, each page of video RAM actu­
ally consists of four independent planes. Since each
plane holds a full-screen image, the number of images
that can be deployed is quadrupled. Furthermore, the
four planes can be displayed simultaneously in any com­
bination, whereas the video RAM pages cannot.

The increased potential of EGA and VGA systems
over CGA, Hercules, and MCGA systems derives from a
radical innovation in the design of EGA and VGA hard­
ware. The older systems were based on a linear mapping
between video memory and physical display; in EGA
and VGA systems, video memory is arranged in four
planes that are mapped in parallel to the display. The pri­
mary purpose ofthis arrangement relates to the increased
flexibility it affords in programming elaborate color dis­
plays. Essentially, each plane represents one color (for
this reason, the term color planes is sometimes used). At
the cost of reduced flexibility in color display, however,
the presence of four parallel planes in video memory
quadruples the number of independent monochrome im­
ages available. With two pages of video memory, one
thus has eight display fields. The limitation is that each
field represents only one color against a common back­
ground color. This is not very serious, and mixing ofcol­
ors by showing two-or more fields simultaneously is not
excluded.

In what follows, only EGA and VGA graphics mode
systems are dealt with. For simplicity, display modes
other than "native resolutions" of640 X 350 pixels in the
EGA and 640 X 480 pixels in the VGA are omitted.
CGA, Hercules, and MCGA systems are referred to only
when drawing out contrasts.

The Hardware
The video system comprises at least eight full-screen

images in up to eight foreground colors in any sequence
and with up to four foreground colors combined in any

Copyright 1995 Psychonomic Society, Inc. 496

manner. The hardware that makes this possible will ap­
pear complex to the newcomer. A simplified presenta­
tion follows, dealing only with components relevant to
the bit-plane layering technique.

The most important components are the video buffer
in RAM, which stores data for video display, the CRT
controller chip comprising a system of programmable
subcomponents responsible for displaying video RAM
on the monitor, and the CPU, which provides data to
modify the contents of video RAM. The CRT controller
is also involved in how the CPU interacts with video
RAM, as will be explained shortly.

As already mentioned, video RAM is arranged in four
planes. These planes are arranged in parallel and appear
to occupy the same address space in RAM. Consecutive
pixels are arranged in a linear fashion (i.e., no interleav­
ing as in CGA and Hercules) with eight pixels to a byte.
The pixel, although it appears as only one bit, can take
any of 16 values because it is derived from all four bit
planes stacked in parallel at that address. For example, if
the four planes contain, respectively, 1, 0, I, and 0, then
the pixel value is 5 (i.e., 0101 in binary).

How video RAM is displayed is determined by a sub­
component of the CRT controller called the attribute con­
troller. This comprises a set of data registers, and one of
these, called the color plane enable (CPE) register, can be
loaded with a numeric value determining which one, or
which combination, of the four bit-planes is actually
shown on the monitor. For example, the binary value
000 I stored in the CPE register will cause only the first
bit-plane to be displayed, whereas a value of 1010 would
cause the second and fourth bit-planes to be displayed si­
multaneously. This takes effect immediately, in the same
manner as page-swapping (and must therefore be prop­
erly synchronized, as discussed below in the Demonstra­
tion Software and Performance Validation section). A bit­
plane excluded from the display by the CPE register does
not contribute to the pixel value, regardless of the value
actually in the bit-plane. So, ifthe bit-planes contain 0, I,
0, 1, and ifthe first plane is excluded, then the pixel value
would be 4 (i.e., 0100 binary).

In EGA and VGA graphics modes, video RAM cannot
be accessed directly by the CPU. Instead, all CPU access
to and from this space is mediated by four latches (a
latch is merely a type of data register). Each latch holds
8 bits. Therefore, during read and write operations, 32
bits are actually transferred to and from RAM. The CPU
is only indirectly involved in this transfer. Two compo­
nents of the CRT controller, called the graphics con­
troller and the sequencer, mediate data transfers be­
tween latches and RAM or between the CPU data
registers and the latches. There is even a mode of opera­
tion in which the CPU data registers are not at all in­
volved. However, only the sequencer concerns us here:
The map mask register in the sequencer holds a numeric
value that determines CPU data access to the latches

BIT-PLANE LAYERING 497

and, hence, the bit-planes. For example, if the sequencer
map mask register is loaded with a binary value of0001,
then latches 2, 3, and 4 are excluded from CPU updates
to video RAM. On the other hand, the binary value 1I 11
enables updates to all four latches and, hence, to all four
bit-planes. In this way, the four bit-planes can be selec­
tively modified prior to display.

There is one other aspect of the hardware relevant to
bit-plane layering-namely, the palette registers. The
four-bit value of each pixel determines the actual color
ofeach pixel on the screen indirectly through the palette
registers. Four bits in all combinations yield the values
0-15, and each of these values points to I of 16 palette
registers. The content ofeach register determines the final
pixel color, so there can be 16 different colors. In the
case of VGA, this is a little more complicated, because
the palette register value is converted to an analog color
signal, but details of this do not concern the bit-plane
layering technique.

In summary then, bit-plane layering involves two key
components of the CRT controller: the sequencer map
mask register and the attribute controller CPE register.
Data stored in these registers determine, respectively,
which bit-plane can be updated and which bit-plane con­
tributes to the display. Finally, the pixel value derived
from whichever bit-planes are enabled is used to select 1
of 16 palette registers, and the value stored there deter­
mines the display color. General methods suitable for
programming .the CRT controller and palette registers
are presented next.

Programming the Hardware
for Bit-Plane Layering

It is not within the scope of this presentation to deal
with general techniques of graphics programming. It is
assumed that software is already available so that graph­
ics images of the required complexity can be generated.
Fortunately, control of the hardware involved in bit­
plane layering is quite simple. The components are all
accessible as hardware ports, and the data registers can
be modified by writing to the relevant port addresses.
Alternatively, the system BIOS software can be used to
do this indirectly.

The color plane enable (CPE) register.Consider a sim­
ple example in which three disks colored red, green, and
blue are superimposed to produce white against a black
background. In a sense, this is what the video system ac­
tually does when you create a circle filled in white. Pixels
making up the white area on the screen would all have the
value 0 I 1Ib (decimal 7). For the black area, pixel values
ofOOOOb would be stored, meaning zero in all bit-planes.
Now, since each bit in the value 01 l lb is stored in a sep­
arate plane, it is possible to "deconstruct" the white into
red, green, and blue components. The following steps
(shown here in pseudocode) would produce a white disk,
followed by blue, green, and red disks in succession:

498 BOKHORST

draw circle;
fill white;
pause;
repeat;
CPE register <- OOOlb;
pause;
CPE register <- 00 lOb;
pause;
CPE register <- 0 100b;
pause;
end repeat;

To load the CPE register with a particular value
(stored in location CpeDat), execute the following code,
here in assembler language, to call the BIOS video ser­
vice:

CPE register <- 1000b; /* Display only plane 4
while doing this */

sequencer map mask <- OOOlb;
draw circle;
sequencer map mask <- 00 lOb;
draw square;
sequencer map mask <. 0 I OOb;
draw triangle;

As shown above, it is possible to prepare these images
while the three bit-planes are not visible-for example,
by enabling bit-plane 4 for display through the CPE reg­
ister, or by enabling video RAM page 1 for display while
writing to page 2. To program the sequencer map mask
register with a particular value (stored in location Map­
Dat), execute the following assembler code:

The palette registers. The code shown above produces
a different color for each bit-plane that is enabled. This
is because the bit-planes are used to represent different
colors indirectly through the palette registers (and hence
the alternative name color planes). To see the relation
between the bit-plane numbers and palette registers, re­
member that the palette register numbers I, 2, 4, and 8
correspond to binary pixel values of 0001, 0010, 0 I00,
and 1000, respectively. The 1 in the first bit position from
the right is stored in the first bit-plane, the second bit
comes from the second bit-plane, and so forth. So, ifbit­
planes 1-3 are disabled, a 1 in plane 4 will cause only the
color value in palette register 8 to appear on the screen.

When using bit-plane layering, it may be necessary
that the four planes all have the same color. In this event,
the contents of the palette registers must be modified to
reflect this. Suppose, for example, that four red images
must appear in rapid succession with no overlap, against
a blue background, and that each image is stored in one
bit-plane. To achieve this, the color value for red must be
stored in palette registers I, 2, 4, and 8, and the color
value for blue in palette register O. Assuming the color
value is stored in ColorVal, and the palette register num­
ber is stored in PalReg, the following assembly language
code shows how to set a palette register using the BIOS
video services:

mov ah, IOh ; BIOS video service 10h
mov al,OO ; Function to update palette register
mov bh,ColorVal ; Color value
mov bl,PalReg ; Palette register number
int 10h ; Call BIOS service

The default color values in EGAIVGA 16 color modes
are 1 for midintensity blue and 4 for midintensity red.
Assembly language code is shown here, but most high­
level programming environments would include simpler
ways to do the same thing.

Consider finally a more complex example, where the
images in the four planes are allowed to overlap. In this
event, it may be necessary also to control the color of the
overlapping areas. For example, areas where bit-planes 1
and 2 overlap would show as midintensity cyan (i.e.,
color value 00 11b) unless the value in palette register 3
is modified. The simplest.case would be to load the same
color value in palettes 1-15, and the background color in
register 0, so that only two colors appear on the screen.
On the other hand, if the value 60 were put in all regis­
ters except 0, 1, 2, 4, and 8, then any overlapping areas
would appear in high-intensity red.

Demonstration Software and
Performance Validation

The design of tachistoscope and animation applica­
tions raises special considerations about timing (Hauss­
mann, 1992). There is a basic restriction on the flexibil­
ity of timing video displays arising from the hardware
itself: The minimum display duration depends on the
hardware vertical refresh rate, and increments in display

; Sequencer map mask register is #2
; Sequencer address register port
; Request register #2
; Data for map mask register
; Update map mask register

al,02
dx,3C4h
dx.al
al,MapDat
dx.al

bl,12h

al,OO

bh,CpeDat
10h

ah,IOh

mov
mov
out
mov
out

mov
int

mov

mov

mov

; AH=IOh to call BIOS video function to
; modify attribute controller
; AL=O requests action to set an
; attribute controller register
; BL contains attribute controller
; register number for CPE register
; BH contains data for the CPE register
; Call BIOS video service to update CPE
; register

If the repeat loop shown in pseudocode above is exe­
cuted without the pauses, the result would appear as a
flickering whitish disk. This well illustrates the first
basic principle of bit-plane layering, concerned with
control over the display using the CPE register in the at­
tribute controller.

The map mask register. The other basic principle is
concerned with generating separate images in each of the
four planes by manipulating the sequencer map mask. In
the previous example, all four bit-planes were updated in
parallel using the default write mode. Suppose you want
instead a circle in plane 1, a square in plane 2, and a trian­
gle in plane 3. The following pseudocode would suffice:

duration must be multiples of this minimum. Also, mod­
ifications to the display should occur only during the
vertical retrace period, when the electron beam is not
visible. Since the vertical retrace period lasts only about
1 msec, the question arises, is it possible to program the
attribute controller CPE register during this interval?
Unfortunately, given the code shown above using the
BIOS video services, this is not the case.

Empirical tests were done to determine the execution
time of various code fragments using the method de­
scribed in Sheppard (1987). On a 486 processor at
33 MHz with a 70-Hz refresh rate, it was found that it
takes about 14 msec on average to update the attribute
controller CPE register with a call to the video BIOS.
Clearly, this procedure could not switch between two bit­
planes during the vertical retrace interval. Instead, it
takes about one vertical display cycle to complete. For­
tunately, more efficient code is available for the same
purpose. Wilton (1987) suggests the technique used in
the assembly language listing presented in the Appendix.
The relevant part begins at location CPEnable and ends
at the point where interrupts are reset. This portion of
code was tested in the same way as for the BIOS call and
was found to execute in about half ofone millisecond on
average. It is therefore possible to coordinate events so
that the CPE register is modified while the vertical re­
trace is in effect and, thus, to display successive bit­
planes during each vertical screen refresh. The assembly
language code in the Appendix shows how this can be
done in the general case. Up to four bit-planes or com­
binations thereof can be displayed in sequence with a
minimum duration ofone screen refresh, or for any mul­
tiple thereof.

A demonstration program is available (see below) that
uses an assembly language module similar to that in the
Appendix to display successive red, blue, and green bit­
planes on the same screen location at variable rates. A vi­
sual test of this procedure at maximum speed shows a
homogeneous whitish field with slight flicker. The col­
ors can also be modified, and when the three bit-planes
are of the same color, there is no noticeable flicker. The
three bit-planes merge into one seemingly continuous
display.

BIT-PLANE LAYERING 499

Problems and Limitations
Only four bit-planes are available per video RAM

page, so sequences of more than four different images
based on the listing in the Appendix would need to per­
form page switching also. Obviously, this would be a
minor modification only. Some high-level graphics pro­
gramming systems may introduce a complication in that
bit-plane 4 would apparently not be available. This is be­
cause the high bit in the pixel value is often used as an
intensity bit. In this case, any data in bit-plane 4 are ig­
nored, and the programmer's efforts to create an image
in that plane are stymied. The solution to this might be
to intervene directly in the graphics controller register
settings. These details will not be discussed here (how­
ever, see Wilton, 1987). In the author's experience, it was
necessary to circumvent entirely the high-level graphics
drawing procedures when drawing on bit-plane 4, using
instead a custom-built pixel drawing procedure. The re­
strictions this imposes are serious only if complex graph­
ics images are plotted onto bit-plane 4.

Program Availability
A demonstration program may be obtained via elec­

tronic mail by request to the author at bokkie@psipsy.
uct.ac.za or bokkie@uctvax.uct.ac.za. To obtain the
demonstration on a DOS floppy disk, send $5 to the au­
thor, specifying the required disk size (3.5 or 5.25 in.)
and density (double or high).

REFERENCES

CREEGER, C. P., MILLAR, K. E, & PAREDES, D. R. (1990). Micro­
managing time: Measuring and controlling timing errors in computer­
controlled experiments. Behavior Research Methods, Instruments,
& Computers, 22, 34-79.

HAUSSMANN, R. E. (1992). Tachistoscopic presentation and millisec­
ond timing on the IBM PC/XT/AT and PS/2: A Turbo Pascal unit to
provide general-purpose routines for CGA, Hercules, EGA, and
VGA monitors. Behavior Research Methods, Instruments, & Com­
puters, 24, 303-310.

SEGALOWITZ, S. J. (1987). IBM PC Tachistoscope: Text stimuli.
Behavior Research Methods, Instruments, & Computers, 19,383-388.

SHE'PPARD, B. (1987, January). High performance software analysis on
the IBM rc. Byte, pp. 157-164.

WILTON, R. (1987). Programmers guide to PC and PS/2 video systems.
Redmond, WA: Microsoft Press,

APPENDIX
Assembly Language Listing

; Code fragment to program a sequence of bit planes for arbitrary
; display durations, synchronized with the vertical retrace signal.
; The EGAIVGA Attribute Controller color plane enable register is
; modified directly. Because the data and address registers share
; the same port at 3COh, to write to the address register, first
; do an I/O read to the CRT status register. This toggles the
; Attribute Controller to accept a register address with the next
; I/O write to port 3COh. A second write to port 3COh will send
; data to the register selected in this way.

; Inputs:

;BX
,
;DS

500 BOKHORST

APPENDIX (Continued)

; Plane4 four consecutive bytes to specify a sequence
of bit-planes for display.

; Count4 four consecutive words to specify the display
duration for each bit plane.
the number of bit planes to display, from 0-3,
to index Plane4 and Count4 as tables.
points to the segment where Plane4 and Count4
are located.

; Duration is a multiple of the vertical refresh rate with minimum
; of I for a single refresh cycle.
; Bit planes are numbered in sequence with binary values as follows:
;one = 0001; two = 0010; three = 0100; four = 1000

mov ax,40h
mov es,ax ; ES = BIOS Data Segment
mov dx,es:[63h] ; DX = 3B4 or 3D4
add dl,6 ; CRT status register address

;----- Synchronize with START of display refresh cycle
LOl:

L02:

III

test
jnz

al,dx
al,8
LOI

; Get status
; Test bit 3
; Loop while in vertical retrace

in al,dx
test al,8

jz L02 ; Loop while not in vertical retrace
;----- Enable a color plane during vertical retrace period

using code based on Wilton (1987).
CPEnable:

dx
al,dx
dx
dl,OCOh
al,20h
dx.al

cli

III al,dx
push dx
mov dl,OCOh
mov al,12h
out dx,al

jmp $+2

mov al,Plane4[bx]
out dx,al

pop
III

push
mov
mov
out
sti

; ----- End of Wilton's procedure
pop dx

; Clear interrupts

; Reset attribute controller flip-flop
; Keep status register port
; DX has address register port (3COh)
; Color plane enable register no.
; Write data to register
; Wait a while

; Color plane number from table
; Write to data register

; Get CRT status register port again
; Reset the flip-flop again

; DX has address register port (3COh)
; Restore register number
; Write to address register
; Enable interrupts

; ----- Timing loop to count vertical refresh cycles
mov cx,Count4[bx] ; CX = Timing counter

L03:

L04:

III

test
jnz

al,dx
al,8
L03

; Get status
; Test bit 3
; Loop if still in vertical retrace

III al,dx
test al,8

BIT-PLANE LAYERING 501

APPENDIX (Continued)

Exit:

jz
loop

test
jz

dec
jrnp

L04
L03

bX,OFh
Exit
bx
CPEnable

; Loop while not in vertical retrace
; Repeat until CX = 0

; BX= O?
; Done?
; Else, do next bit plane

(Manuscript received May 17, 1994;
revision accepted for publication August II, 1994.)

