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A comparison of six methods to estimate
thresholds from psychometric functions

TREFFORDLEE SIMPSON
University of Waterloo, Waterloo, Ontario, Canada

There are many ways in which to estimate thresholds from psychometric functions. However, al­
most nothing is known about the relationships between these estimates. In the present experiment,
Monte Carlo techniques were used to compare psychometric thresholds obtained using six methods.
Three psychometric functions were simulated using Naka-Rushton and Weibull functions and a
probit/logit function combination. Thresholds were estimated using probit, logit, and normit analy­
ses and least-squares regressions of untransformed or z-score and logit-transformed probabilities
versus stimulus strength. Histograms were derived from 100 thresholds using each of the six meth­
ods for various sampling strategies of each psychometric function. Thresholds from probit, logit, and
normit analyses were remarkably similar. Thresholds from z-score- and legit-transformed regres­
sions were more variable, and linear regression produced biased threshold estimates under some cir­
cumstances. Considering the similarity of thresholds, the speed of computation, and the ease of im­
plementation, legit and normit analyses provide effective alternatives to the current "goldstandard"­
probit analysis-for the estimation of psychometric thresholds.

Researchers and clinicians have a variety of ways in
which to estimate thresholds from data comprising psy­
chometric functions. A particular problem arises because
the relationship between the dependent probability vari­
able and the independent stimulus-strength variable is
nonlinear and usually sigmoidal. Solutions range from es­
timating a threshold from a curve fitted by eye to nonlin­
ear curve-fitting procedures (e.g., Bliss, 1935). Although
the formal underpinnings of some of the latter procedures
have been examined, little is known about the relation­
ships between the estimates obtained using these methods.

The "gold standard" appears to be the maximum­
likelihood procedure, probit analysis (Finney, 1971).
Probability levels are converted to probits {z score
[p(correct)] + 5}, weighted by the variance expected
(assuming a binomial distribution), and a threshold is
obtained from the straight line fitted to these weighted
scores and the independent variable. This procedure is
repeated until the fit has converged to its maximum like­
lihood. Twoother rigorous (and quite similar) procedures
are based on minimizing the chi-square: Normit analy­
sis I (Berkson, 1955) assumes that probability is lin­
earized with a z-score transformation, and logit analysis
(Berkson, 1944, 1953) assumes that it is linearized with
a legit? transformation. These two procedures have the
major computational advantage of being noniterative.
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There are, in addition, computationally simpler least­
squares regression procedures that may be performed to
analyze the psychometric-function data. Probability can
be linearized with either a z-score transformation or a
logit transformation (e.g., Gescheider, 1985), and the
threshold calculated using the linear least-squares re­
gression equation obtained from the transformed de­
pendent and independent variables. This corresponds
approximately ro plotting probabilities in z-score space
(on probability paper) or in logit space and fitting a
straight line to this function. It is also possible to esti­
mate a threshold using a linear least-squares regression
equation from the untransformed probabilities and the
independent variable.'

Each of the procedures described carries with it the
baggage of theoretical assumptions about the nature of
the data. For probit and normit analyses, a list of these
assumptions would include (1) the distribution of the
underlying instantaneous thresholds being Gaussian,
(2) the responses being quanta I and binary (e.g., seen/
invisible), and (3) the variability of responses at a spe­
cific stimulus strength being binomial (Berkson, 1955;
Finney, 1971). A similar list for logit analysis would in­
clude (2) and (3) above, as well as the distribution of the
underlying responses being the derivative of a logistic
function (Berkson, 1944, 1953). Performing a linear re­
gression of the z score of p(correct) versus stimulus
strength would require an assumption of a Gaussian un­
derlying distribution, so that taking the z score ofp(cor­
rect) would linearize the psychometric function. Ifa lin­
ear regression of p(correct) versus stimulus strength
were being conducted because ofsome theoretical belief
that the responses were in accord with neural quantum
theory (Stevens, 1972), this would require an assump­
tion of quantal underlying responses. There are addi-
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Figure 1. The relationship between intensity (x, the abscissa) and
performance [p(correct), the ordinate] for two psychometric func­
tions. The solid line is a Weibull function; the dotted line is a Naka­
Rushton function.

simulated by calculating p( correct) at five, seven, and nine inten­
sity levels on the psychometric function, symmetrically distrib­
uted aroundp(correct) = .5. Second, the effect of asymmetrically
sampling the psychometric function was examined by truncating
the sampling at the lower or upper end. Seven intensity levels were
compared, with the points symmetrical about p( correct) = .5, or
with four above and two below or four below and two above p(cor­
rect) = .5.

The probit analysis algorithm used was from Finney (1971). It
consisted essentially ofusing a least-squares regression ofz scores
versus stimulus strength to obtain a provisional estimation of the
relationship between probits and stimulus strength. The expected
probits for each stimulus strength were then computed, and these
were used to derive weights used to perform a weighted linear re­
gression. This weighted regression was in turn used to re-estimate
expected probits, and the process was repeated until successive
differences in estimates differed by very little.

The norm it and logit analysis algorithms used are very similar,
both originating from Berkson (1955 and 1953, respectively).
Each is a weighted linear regression, the weights being derived
fromp(correct), l-p(correct), and either the z score [p(correct)]
or logit [p(correct)] for norrnit and logit analysis, respectively.
Details of the methods, as well as computed examples, were pro­
vided in Berkson's papers.

x
Figure 2. The relationship between intensity (x, the abscissa) and

performance {z score or logit [p(correct)l, the ordinate} for the third
psychometric function (the solid line).

Three different psychometric functions were simulated. The
first two were used because they are expressions of plausible
transducer functions at some level in the visual system. The first
was a Weibull function (Quick, 1974; Weibull, 1951), probability
ofa correct response [p(correct)] = 1 - 2-x2. The second was a
Naka-Rushton function (Naka & Rushton, 1966), p(correct) =

x2/(1 +x2 ) . For each ofthese, illustrated in Figure 1, when x = 1.0,
p(correct) = .5 (the threshold as defined in this study).

The third psychometric function was a combination of probit
and logit functions. Probit analysis is based on the underlying dis­
tribution of responses being Gaussian. Similarly, in logit analysis,
it is assumed that the underlying responses form a derivative of a
logistic distribution. Generating a psychometric function from ei­
ther a cumulative Gaussian or logistic distribution would therefore
bias the estimates in favor of the threshold-estimation procedure
with the simulated psychometric function most like the expected
underlying distribution. To counteract this problem, a simulated
psychometric function was generated which was a combination of
a cumulative Gaussian distribution and a logistic distribution. In
transformed space, the equation was either z scorep or logitp = x,
with z scorep or logitp determined randomly. The consequence of
this was that a probability for each dependent variable level could
usually take on two values. If, for example, x = + 1.0, using the z­
score equation,p(correct) = .84, whereas using the logit equation,
p(correct) = .73. Nevertheless, when x = 0.0, p(correct) = .5
using either equation. Figure 2 depicts this simulated psychomet­
ric function.

For the Weibull and Naka-Rushton psychometric functions,
variability in the responses was mimicked by jittering the x values
randomly, whereas for the logit/probit function, the transformed
p values were jittered. Thresholds were obtained from the former
two psychometric functions using log(x) versus p(correct), and
from the latter using x versus p(correct), and were defined as
p(correct) = .5.

In addition to the effect of the shape of the psychometric func­
tion on calculated thresholds, two questions were examined. First,
the effect of the number of levels of the dependent variable was

METHOD

tional assumptions about the statistical procedures con­
ducted. For example, using the least-squares method to
derive a linear regression equation to estimate a thresh­
old would necessitate assumptions of linear regression
such as homoscedastic, Gaussian distributions of the de­
pendent variable [p(correct) or z score ofp(correct)] for
each fixed stimulus strength (e.g., Kleinbaum, Kupper,
& Miller, 1988).

Any comparison between the thresholds obtained
using the various procedures, therefore, is in a sense a
question about what happens when these assumptions
are, at best, ignored and, at worst, violated. The results of
such a comparison are ofvalue, however, because if com­
putationally simpler procedures produce unbiased thresh­
olds, these might be used instead of the more cumber­
some ones. The simpler methods could, for example, be
incorporated into adaptive psychophysics and easily used
in widely available computer tools such as spreadsheets.

A Monte Carlo study was therefore carried out to ex­
amine the relationships between six threshold-estimate
methods, including probit analysis. The effects of the
shape of the psychometric function, the number of data
points sampled, and the position of those samples were
evaluated.
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RESULTS

The data were summarized in two ways. First, the
thresholds estimated by each procedure were binned and
histograms were derived. These histograms were fitted
with the Gaussian function

The software was written in Modula-2 (Version 4.1, Metro­
Werks, Hudson Heights, Canada) on a Macintosh SE and Macin­
tosh Powerbook. The probit, logit, and norm it procedures were
tested with examples from Finney (1971), Berkson (1944,1953),
and Lieberman (1983), as well as with ideal psychometric func­
tions that were linear in z-score or logit space. The z-score trans­
forms and inverse transforms were approximations obtained from
Abromawitz and Stegun (1964).

Because the probabilities were transformed to z scores or logits,
each of which extends from -00 [p(correct) = .0] to +00 [p(cor­
rect) = 1.0], explicit methods were used to deal with this problem.
The probit analysis algorithm disregarded the data points at ::'::00

for the first iteration (as outlined in Finney, 1971). Logit and nor­
mit analyses and the z-score and logit regression algorithms in­
corporated the method suggested by Berkson (1955). The proba­
bilities atp(correct) = 1.0 became (2n-I)/2n, and atp(correct) =
.0 became l/2n. It was assumed that n (the number of trials) =

100.

where nmax = number at peak of function, ~ = mean of
function, and V = variance of function.

Second, because the yardstick used for comparison
was probit analysis, correlations between thresholds ob­
tained using this and each of the other five procedures
were derived, and these were illustrated in scatterplots.

Figures 3, 4, and 5 are histograms showing the distri­
butions of log thresholds obtained from Weibull and
Naka-Rushton psychometric functions and thresholds
estimated from the logit/probit psychometric function,
respectively. The smooth curves are the best-fitting
Gaussian functions (Equation I). Figure 6 contains scat­
terplots showing the relationships between thresholds
obtained using probit analysis and the other methods
from Weibull, Naka-Rushton, and logit/probit psycho-'
metric functions, respectively.

The histograms illustrate that the threshold estimates
were generally similar, regardless of the methods used.
The differences between the peaks of the Gaussians of
the z-score or logit regression data and the probit data in
Figure 3 do, however, suggest that there were biases in
the threshold estimates from asymmetrical psychomet­
ric functions (0.07 and 0.09 log units for z-score and
logit regression, respectively). This bias is also evident
in the separation of the z-score and logit regression data
from the equality line in the top graph in Figure 6. The
data in Figures 3-6 were obtained using five intensity
levels on the psychometric function, symmetrical around
p(correct) = .5. Figure 7 contains scatterplots similar to
Figure 6 obtained after sampling the psychometric func­
tions using nine points. The vertical distance between
the dashed and continuous lines on the upper two scat-

terplots illustrates the biased thresholds estimated using
linear regression.

In Figure 8, the scatterplots show the relationships be­
tween thresholds estimated using probit analysis and the
other procedures using data from five-, seven-, and nine­
point Weibull psychometric functions. Sampling at the
extreme ranges of the independent variable did little to
increase the precision of the threshold computations, and
in the case oflinear regressions, introduced large biases.
The histograms in Figure 9 illustrate that using nine­
point psychometric functions decreased the precision of
the estimates in comparison with using five and seven
points. This reduction in precision as more extreme
points were sampled was obtained regardless of the pro­
cedure. The upper half of Figure 9 illustrates the differ­
ence using estimates from z-score regressions, and the
lower half illustrates the difference using probit analysis.
Of note also are the similarities of the positions of the
peaks of the z-score regression and probit analysis his­
tograms. Figure 10 shows similar histograms obtained
from logit/probit psychometric functions. The data in
Figure 10 suggest that the reduction in precision revealed
in Figure 9 was a characteristic of the (asymmetrical)
Weibull psychometric functions that was not reflected in
the threshold estimates obtained from the (symmetrical)
logit/probit psychometric functions. The histograms of
Figure 10 show that thresholds were similar regardless of
the number of points defining the logit/probit psycho­
metric function and the method used to estimate them.

The effect of tfie position of the samples was also de­
pendent on the nature of the underlying psychometric
function. When thresholds were estimated using logitl
probit psychometric functions, there were no differences
between methods, regardless of whether the samples
were taken from around p(correct) = .5 symmetrically. A
similar conclusion for probit, logit, and normit analysis
applied when a Weibull psychometric function was used
(Figure 11, top, illustrating the probit analysis results).
Similar, although somewhat more dispersed, distribu­
tions of threshold estimates were obtained with logit or z­
score regressions (Figure 11, middle, illustrating the
logit-regression results). If, however, linear regression
were used to estimate thresholds, the histogram (Fig­
ure 11, bottom) illustrates that biased thresholds were
obtained, with the bias depending on whether the sample
was primarily from abovep(correct) = .5 or below it. The
average bias (illustrated by the separation ofthe means of
the histograms) was approximately 0.05 log units.

Because in many of the simulations thresholds were
similar, other yardsticks such as size and speed might
provide information with which to decide on the advan­
tage of one procedure over another. There should be cau­
tion in comparing software that has not been optimized
because differences in performance might reflect the
programmer's style more than they reflect the benefits of
a particular algorithm. This danger was minimized in
this study because all of the procedures compared were
linear regressions. The maximum-likelihood and mini-

(I)

_ (X~J.')2

2Vn = nmaxe
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Figure 3. Histograms of thresholds estimated from 5-point Weibull psychometric functions obtained using six procedures. The ordinates
are thresholds and the abscissas are counts. The solid lines are best-fitting Gaussians, and the means (J.1.) and standard deviations (sd) are in
the upper right comer of each graph.

mum chi-square methods were weighted linear regres­
sions and the others were least-squares linear regres­
sions. The basic algorithms were therefore very similar.
The source-code file sizes (including the curve-fitting
and input-output modules) were 21K, 14K, 14K, 5K,
6K, and 6K for probit, logit, normit, linear-regression,
z-score-regression, and logit-regression modules, re­
spectively. Because the file sizes are relatively small,
procedure speed might be a more important criterion. To
quantify this, the time to calculate 100 thresholds was

measured for each of the threshold computation mod­
ules, accurate to :::t::: 17 msec (using a Macintosh "Tick­
Count"). The upper graph in Figure 12 shows that the
fastest was the linear-regression module, with each of
the other regressions and logit analysis slightly slower.
The lower graph in Figure 12 shows the relative speed of
the modules, normalized to linear regression. As is ap­
parent, probit analysis is approximately 7-14 times slower
than linear regression, logit analysis, and logit regres­
sion. Probit analysis is about 4 times slower than normit
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Figure 4. Histograms ofthe thresholds estimated from Naka-Rushton psychometric functions obtained using six procedures. The ordinates
are thresholds and the abscissas are counts. The solid lines are best-fitting Gaussians, and the means (/L) and standard deviations (sd) are in
the upper right comer of each graph.

analysis, and between 4 and 7 times slower than z-score
regression.

DISCUSSION

The simulations showed that there were remarkable
similarities between thresholds estimated using probit,
logit, and norm it analyses. The correlation coefficients
between these three procedures were always greater than

.95 and, as is illustrated by these data clustering along
the equality lines in the scatterplots, the logit and norm it
thresholds were unbiased and very similar to the probit
thresholds. Perhaps the similarity ofestimates of thresh­
olds should not be surprising, since each procedure was
derived using asymptotic theory, although probit analy­
sis is a maximum-likelihood procedure, whereas in logit
and normit analysis, the chi-square is minimized. Be­
cause the minimum chi-square procedures provide sim-
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Figure 5. Histograms ofthresholds estimated from logitlprobit psychometric functions using six procedures. The ordinates are thresholds
and the abscissas are counts. The solid lines are best-fitting Gaussians, and the means (JL)and standard deviations (sd) are in the upper right
comer of each graph.

ilar thresholds to probit analysis, will always converge
on an estimate of threshold (something not true for pro­
bit analysis), and are faster, much can be gained by using
them in time-critical situations (such as while running an
experiment). In addition, because these two procedures
are simple weighted linear regressions, they may also be
more easily implemented on spreadsheets or other tools
that can compute linear regression.

A decision about the relative advantage of logit analy­
sis over norm it analysis appears to be based mainly on
time. As implemented in these simulations, logit analysis
was about twice as fast. This may have arisen because of
a nonoptimal p(correct)-to-z-score algorithm. An indica­
tion that this was the case is in the comparison between
the time taken to compute thresholds using logit and z­
score regression. All aspects of these modules were iden-
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Regressions using z-score- and logit-transformed
probabilities were also used to derive thresholds. Gener­
ally these estimates were more variable than probit, logit,
or normit analysis, but were highly correlated with each
other (Figure 13). Considering that the threshold esti­
mations were generally unbiased, these procedures pro-
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Figure 6. Scatterplots showing the relationships between thresh­
olds estimated using probit analysis (abscissas) and logit analysis (cir­
cles),normit analysis (squares), linear regression (diamonds), z-score
regression (triangles), and logit regression (crosses). The upper, mid­
dle, and lower graphs show data derived using 5 points from, respec­
tively,Weibull, Naka-Rushton, and logit/probit psychometric func­
tions. The oblique solid lines on each graph are lines of equality.
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tical except for the z-score- or logit-transform procedures,
and yet the logit-regression thresholds were still com­
puted more quickly. The relative slowness of the p(cor­
rect)-to-z-score algorithm might be overcome, thereby re­
ducing the difference in speed between logit and normit
analysis, by, for example, using look-up tables in order to
perform the transformations. Similar look-up tables
might also be used to further speed up logit analysis.

Figure 7. Scatterplots showing the relationships between thresh­
olds estimated using probit analysis (abscissas) and logitanalysis (cir­
cles),normit analysis (squares), linear regression (diamonds),z-score
regression (triangles), and logit regression (crosses). The upper, mid­
dle, and lower graphs show data derived using 9 points from, respec­
tively,Weibull, Naka-Rushton, and logit/probit psychometric func­
tions. The oblique solid lines on each graph are lines of equality and
the dashed lines are the least-squares fits to the linear-regression
thresholds.
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thresholds (e.g., negative luminance) and/or stimulus
levels associated with impossible probabilities (i.e., .0 >
p > 1.0; Collett, 1991). In addition, the simulations
showed that extremely biased thresholds were estimated
from some psychometric functions and that somewhat
less biased estimates were obtained when the points on
the psychometric functions were not symmetrical
around p(correct) = .5. The former point is particularly
germane because it appears that the some psychometric
functions obtained in vision experiments are asymmet­
rical and "Weibull-like" (e.g., Harvey, 1986).

Nevertheless, the linear-regression algorithm per­
formed well in many simulations, especially in compar­
ison with z-score or logit regression. There are a num­
ber of reasons why this might be so. As is illustrated in
Figure 14, the central portion of the z-score- and logit­
transformed p(correct) function is linear (although the
range of this linearity differs for logit and z-score trans­
formations). Therefore, comparisons between thresh­
olds from untransformed and transformed modules
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Figure 8. Scatterplots showing the relationships between thresh­
olds estimated using probit analysis (abscissas) and logit analysis (cir­
cles), normit analysis (squares), linear regression (diamonds), z-score
regression (triangles), and logit regression (crosses). The upper, mid­
dle, and lower graphs show data derived using, respectively, 5, 7, and
9 points from a Weibull psychometric function. The oblique solid
lines on each graph are lines ofequality and the dashed lines are the
least-squares fits to the linear-regression data.

vide practical alternatives particularly because they can
be easily implemented-for example, using the hard­
ware and software available in many pocket calculators.

Simple linear regression was examined because it was
the equivalent offitting a straight psychometric function
by eye and using this to obtain a threshold. This method
potentially presents many problems. For example, a
straight-line fit to probabilities can produce impossible

Figure 9. Histograms showing the distributions ofthresholds esti­
mated using 5 points (circles, dotted line), 7 points (squares, solid
line), and 9 points (diamonds, dashed line) from a Weibull psycho­
metric function. The abscissas are thresholds and the ordinates are
counts. The upper and lower panels depict thresholds estimated
using, respectively, z-score regression and probit analysis. The smooth
curves are best-fitting Gaussians.
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It should be noted that the relatively good perfor­
mance of linear regression was partially a consequence
of having defined threshold as p(correct) = .5. This
value would serve as a point around which the inappro­
priate linear function could pivot, thereby providing rea­
sonable threshold estimates. Under circumstances in
which this did not apply, the linear-regression thresholds

Weibull Psychometric Function
Truncated logit regression

Weibull Psychometric Function
Truncated Probit Analysis

Figure 11. Histograms showing the distributions of thresholds es­
timated using 7 points from the middle (squares, solid line), upper
(circles, dotted line), and lower (diamonds, dashed line) positions of
a Weibull psychometric function. The abscissas are thresholds and
the ordinates are counts. The upper, middle, and lower graphs depict
thresholds estimated using probit analysis, z-score regression, and
linear regression, respectively. The smooth curves are best-fitting
Gaussians.
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Figure 10. Histograms showing the distributions ofthresholds es­
timated using 5 points (circles, dotted line), 7 points (squares, solid
line), and 9 points (diamonds, dashed line) from logitlprobit psycho­
metric functions. The abscissas are thresholds and the ordinates are
counts. The upper and lower panels depict thresholds estimated
using z-score regression and probit analysis, respectively. The smooth
curves are best-fitting Gaussians.

4

would be quite similar, provided that the psychometric
functions were sampled from points closer to the middle.
The biased linear-regression estimates occurred when
points were sampled closer to the asymptotes, where the
psychometric functions were nonlinear.

As was previously stated, linear-regression thresholds
were especially impressive in comparison with z-score
and/or logit regressions. This probably occurred because
the maximum-likelihood and minimum chi-squared pro­
cedures weighted probabilities closer to the asymptotes
progressively less often. On the other hand, the z-score
and logit regressions effectively weighted these points
more because the transformed probabilities increased!
decreased greatly as the asymptotes were approached.
Because linear regression weighted all of the points
equally, the thresholds obtained in many instances were
closer to those obtained using probit, logit, or normit
analysis than were the other regression procedures.
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three points, two ofwhich were atp(correct) = 1.0 and/or
p(correct) = .0, the method outlined by Finney (1971) to
obtain a threshold using probit analysis could not be per­
formed because to obtain a provisional line, p(correct) =
1.0 and p(correct) = .0 would be disregarded. As unde­
sirable as it might be, a threshold with these three data
points may be derived using logit and normit analysis.
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Figure 12.Graphs illustrating the amount of time to compute 100
thresholds (ordinate) using the various methods (abscissas). In the
upper graph, the ordinate is in seconds and on the lower graph, it is
time relative to linear regression. The dark, intermediate, and light
bars in the upper graph and the circles, squares, and triangles in the
lower graph represent time taken using data from, respectively,9­
point Naka-Rushton, 5-point Naka-Rushton, and 9-point logitlpro­
bit psychometric functions.

z-score vs logit regressions
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Figure 13. Scatterplots showing the relationships between thresh­
olds estimated using z-score regressions (abscissas) and logit regres­
sions(ordinates). The upper graph depicts thresholds estimated from
five-pointWeibull psychometric functions, the middle graph depicts
thresholds estimated from 7-point Naka-Rushton psychometric
functions, and the lower graph depicts thresholds estimated from 9­
point logitlprobit psychometric functions. The oblique solid lines on
each graph are lines of equality.

were biased (e.g., with Naka-Rushton and Weibull psy­
chometric functions and when points were sampled from
the upper and lower psychometric functions). The gen­
erally good performance of the linear regression re­
ported here would therefore most likely not apply to
thresholds defined at different probability levels, such as
p(correct) = .8 (e.g., Flom, 1966).

Although not directly addressed, the simulations re­
ported here provide support for the empirical suggestion
by Berkson (1955) of dealing with ::too. As was outlined
in the Method section, Berkson suggested that an arbi­
trary probability level based on the number of trials be
assigned to p(correct) = 1.0 or .0. This was used in nor­
mit and logit analyses, but not in probit analysis. Despite
this, the thresholds were consistently similar, even
though in some ofthe simulations, as many as 50% ofthe
simulated psychometric functions included points with
p(correct) = 1.0 or .0. This result illustrates another po­
tential advantage oflogit and normit analysis over probit
analysis. If a psychometric function consisted of just
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I. Normit is an abbreviation of normal deviate. and is a synonym
ofz score. A normit is therefore a probit - 5.0.

2. Logits are transformed probabilities. where logitp = loge
[p/(I-p)].

3. For brevity, z-scorc- and logit-transformed probability least­
squares regressions and linear probability regression will be referred
to simply as a-score regressions, logit regressions, and linear regres­
sions, respectively.
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Figure 14. The relationships between the untransformed and
transformed probabilities (ordinate and abscissa, respectively) for
logit (solid line) and probit (dotted line) functions.

The question as to whether to include points at p(cor­
rect) = 1.0 andp(correct) = .0 (and if so, how many) is
an empirical one not addressed here.

The results of this series of simulations showed that,
with the exception of linear regression, the methods
were generally immune to peculiarities of the psycho­
metric functions (e.g., truncated sampling). This is not
a trivial observation, since these types of peculiar psy­
chometric functions may be obtained especially when
dealing with clinical patients and when the luxury ofre­
peated measurements is unavailable. It remains to be de­
termined whether the different threshold methods used
in the simulations provide similar threshold estimates
using real data, particularly data from clinical subjects.

In conclusion, the different methods provided similar es­
timates of thresholds, except for linear regression, which
produced biased thresholds under certain circumstances.
The thresholds obtained using probit, logit, and normit
analyses were nearly identical, and because probit analysis
was substantially slower, the logitlnormit algorithms seem
particularly useful, especially in time-critical situations.
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