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Pitfalls in computing and interpreting
randomization test p values: A commentary
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Chen and Dunlap (1993) added to the growing list of
papers promoting the use of randomization tests in sta-
tistical testing. Their particular contribution was an SAS
program that could bring computation of these tests to a
wider audience. The present paper points to several prob-
lems with the presentation of Chen and Dunlap and pro-
vides solutions to these problems. It is concluded that ran-
domization tests deserve more attention, but that they are
best computed by programs written in a low-level pro-
gramming language o, if using SAS on a mainframe, by
using the MULTTEST procedure.

Chen and Dunlap (1993) presented an SAS program
that could serve as a template for testing hypotheses
using an approximate randomization test (ART). They
included SAS code for an ART, testing the equality of
two means, testing the significance of correlation, and
testing the equality of more than two means.

We acknowledge that Chen and Dunlap (1993)
brought these powerful and versatile statistical tests to
the fore, realizing that their use would remain limited as
long as the popular statistical computer packages do not
provide user-friendly routines, but we also want to com-
ment on several features of their approach that may be
problematic in practice. Our comments concern (1) the
computation of p values, (2) one-tailed versus two-tailed
randomization tests, (3) the number of pseudosamples,
(4) computing time and memory requirements, (5) the
SAS MULTTEST procedure, (6) approximate versus
exact randomization tests, and (7) power and Type I error
rate. In each comment, a potential problem is identified
and a solution is suggested.

1. The Computation of p Values
A small technical problem could be that the Chen and
Dunlap (1993) SAS implementations do not perform tests
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that provide exact Type [ error rate control. Their pro-
grams generate 1,000 pseudosamples (number of pseudo-
samples, or NOP), compute 1,000 pseudostatistics in ad-
dition to the original statistic, count the number of
pseudostatistics that are equal to or more extreme than the
original statistic (number of significant cases, or NOS),
and compute the ratio NOS/NOP to get the p value. In
order to have a valid ART, however, the original statistic
has to be among the pseudostatistics—that is, the p value
can never be smaller than 1/NOP (Edgington, 1987,
pp. 43-45; Manly, 1991, pp. 15-16; Noreen, 1989, p. 17).

This small deviation of the Chen and Dunlap (1993)
programs can be inferred from scrutinizing their algo-
rithm or can be demonstrated by running a simulation
study to determine the Type I error rate. More directly,
the implications of their approach can be shown with a
dataset where the scores for Treatment A are all larger
than for Treatment B and running their Program 1. If the
dataset is large enough, it is very likely that all pseudo-
statistics are smaller than the original statistic. Conse-
quently a p value of zero, which should be an impossi-
ble value, is obtained.

With a modification of the Chen and Dunlap (1993)
program, however, valid tests can be obtained. In this
modification, one should ensure that 999 pseudosam-
ples are generated and that the p value is computed as
(NOS+1)/(NOP+1).

2. One-Tailed ART With Unequal Group Sizes

Chen and Dunlap (1993) recommended their pro-
grams for equal as well as unequal group sizes and com-
puted the p value of a one-tailed ART by dividing the
two-tailed p value by two. The division of the two-tailed
p value by two, however, provides a valid one-tailed
ART only if the group sizes are equal (Edgington, 1987,
p. 82). If the group sizes are unequal, the randomization
distribution of the ¢ statistic (or an equivalent) may be
nonsymmetric and the absolute value statistic |¢| cannot
capture this nonsymmetry.

For example, suppose the following data are observed:
7,5, 5 for Treatment A and 4, 4, 3, 3, 2 for Treatment B.
In this case, a one-tailed exact randomization test (with
f as a test statistic) gives a p value that is equal to the
p value given by a two-tailed exact randomization test
(with |7| as a test statistic)—namely, p = 1/56. The
Chen and Dunlap (1993) method would yield a value
around 1/112 for a one-tailed ART.

Therefore, it is necessary to restrict the use of their
programs to two-tailed ARTs or to one-tailed ARTSs with
equal group sizes. One-tailed tests with unequal group
sizes can be performed after changing the test statistic in
the program. A straightforward change is the removal of
the absolute value SAS function ABS on the 11th and
41st line of their Program 1 to obtain a signed difference
between means.
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3. The Number of Pseudosamples

In the Chen and Dunlap (1993) programs, 1,000
pseudosamples are generated. Although 1,000 is a rea-
sonable number to demonstrate the procedure (and effi-
cient at the 5% level of significance), it is important to
add (1) that the reliability of the p value increases with
increasing NOP, and (2) that the reasonable minimum
NOP depends on the level of significance. For example,
Efron and Tibshirani (1993, p. 211), Manly (1991, p. 35),
and Westfall and Young (1993, p. 39) recommended use
of 5,000 to 10,000 pseudosamples, especially if the test
is performed at a level of significance smaller than 5%.
This is important to realize because the Chen and Dun-
lap (1993) programs print out confidence levels for the
1% significance level.

The influence of NOP on the reliability of the p value
can be demonstrated with the sample data for Program 1
used by Chen and Dunlap (1993, p. 408). They obtained
a p value of 33/1,000 = .033 with their program, while
an ART with NOP = 10,000 gave a p value of
256/10,000 = .0256 and the exact randomization test
p value is 4,790/184,756 = .02593 (calculated with
NPStat 3.7, May, Hunter, & Masson, 1993; May, Mas-
son, & Hunter, 1989).

Again, a small modification of the Chen and Dun-
lap (1993) programs, increasing the NOP value, per-
forms more reliable tests. This increase, however, may
make the computing time and memory requirements
prohibitive. Therefore, for several applications it might
be recommended to use another SAS program or an-
other programming language for ARTs (see next two
problems).

4, Computing Time and Memory
Requirements on a PC

We checked the computing time of the SAS programs
on two PCs, five numbers of observations, and two val-
ues of NOP. The PCs were an IBM PC/AT with 640K
RAM running at 8 MHz under DOS 3.2 and an IBM
PC/80486 with 4 Mb RAM running at 50 MHz under
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DOS 5.0. The numbers of observations (N) were 10, 20,
50, 100, and 200, with equal group sizes. The NOPs were
1,000 and 10,000. Table 1 shows the CPU time for each
of the combinations, compared with the CPU time for
the ART that is included in the Single-Case Randomiza-
tion Test (SCRT) software package, which was pro-
grammed in Pascal (Onghena & Van Damme, 1994;
Van Damme & Onghena, 1993).

The computing times for the Chen and Dunlap (1993)
programs are very large relative to the computing times
for the SCRT program. Furthermore, insufficient mem-
ory was available on the PCs to work with 10,000 pseudo-
samples. This outcome follows from saving all the pseudo-
samples and all the pseudostatistics: NOP * (N—1) * 3
values have to be stored in the SHUFFLE dataset, and
NOP * 3 % 5 values have to be stored in the PSEUDO
dataset. The programs appear to be feasible only on a
mainframe (see Section 5 below).

Although it is true that the SAS tools, such as the
PROBBETA function, make the user-written code sim-
ple, the price to pay in computing time for using a high-
level programming language appears to be too high.
Therefore, we would prefer to use a low-level program-
ming language and compiler for computer-intensive
tests, even on a mainframe. A software library, such as
NAG’s (Numerical Algorithms Group, 1990), could be
used to provide the ready-made statistical functions.

5. The Use of the SAS MULTTEST Procedure
to Perform ARTs

As a means of reducing computing time and memory
requirements, it may also be interesting to consider
using the MULTTEST procedure, which is included in
SAS from Version 6.07 on and which has PERMUTA-
TION as one of its options (SAS Institute Inc., 1992;
Westfall & Young, 1993). The MULTTEST procedure is
designed to address the multiple testing problem by
adjusting the p values from a family of hypothesis tests,
but it can easily be put at the service of the ART. The
following SAS program is a simple alternative to Chen

Table 1
CPU Time Needed to Perform an Approximate Randomization Test Using
the SAS (Version 6.04) Program 1 of Chen and Dunlap (1993) and the
SCRT (Version 1.1) Program of Van Damme and Onghena (1993)

SAS 6.04 SCRT 1.1*

AT286 (8 MHz) 80486 (50 MHz) AT286 (8 MHz) 80486 (50 MHz)

N 1,000 10,000t 1,000 10,000t 1,000 10,000 1,000 10,000
10 12m13s — 1m02s — 24s 4m03s 1s 9s
20 18m09s — 1m23s — 33s 5m37s 2s 23s
50 29m49s — 2m28s 1m02s 10m26s 3s 29s
100 52m08s — 4m2ls — 1m50s 18m30s Ss 45s
200 96m15s — 7m57s — 3m25s  34m2ls 9s 1m28s

Note—The CPU time was assessed on an IBM PC/AT with 640K RAM running at 8 MHz under DOS 3.2
and on an IBM PC/80486 with 4 Mb RAM running at 50 MHz under DOS 5.0, with different numbers of

observations (V) equally divided among two groups, for 1,000 and 10,000 pseudosamples.
tInsufficient memory for 10,000 pseudosamples.

calculated in fast mode (updating only timer).

*CPU time



410 ONGHENA AND MAY

and Dunlap’s (1993} Program [ using the MULTTEST
procedure:

DATA edging95;
INPUT x y @@;
CARDS;
1.331.271.441.281.451.551.441.761.591 .01
2.28280237221.1621.002.6321.142.332.262 .63
RUN;
PROC MULTTEST PERM NSAMPLE=10000;
CLASS x;
TEST MEAN(y);
CONTRAST ’art’ [ -1;
RUN;

This alternative SAS program has the advantage of being
simpler and, as shown in Table 2, more than 10 times
faster. An SAS data step with the PROBBETA function
may be added to obtain the confidence levels, as in the
Chen and Dunlap (1993) program.

Unfortunately, with the MULTTEST procedure, it is
also easy to elicit an adjusted p value (4D.J_ P) of zero,
indicating that the observed raw p value is not counted
among the pseudovalues (see Section 1). Consequently,
to have a valid ART, the final p value should be com-
puted as [(ADJ_P * NSAMPLE) + 1]/(NSAMPLE + 1).
For reasons of efficiency, it is recommended that
a(NSAMPLE + 1) be an integer (Noreen, 1989, pp. 50—
53). For example, NSAMPLE = 9,999 satisfies this con-
dition for a = .01, .05, and .10, and is large enough to
have reliable p values (see Section 3). It should be re-

marked that the MULTTEST procedure is not available -

in the PC-DOS version of SAS.

6. The Exact Randomization Test

Chen and Dunlap (1993, p. 408) asserted that their
program can be used for all group sizes. However, one
should not encourage the use of the program for small
numbers of observations (N not larger than 12 for equal
group sizes, or, more general, if the number of possible
permutations is smaller than NOP). The exact random-
ization test is not only more efficient in terms of number
of permutations to be generated (as Chen and Dunlap,

Table 2
CPU Time Needed to Perform an Approximate
Randomization Test Using the SAS (Version 6.08)
Program 1 of Chen and Dunlap (1993) and the
SAS (Version 6.08) MULTTEST Procedure on an
IBM 3090/600e VF Mainframe Running Under
the TSO Operating System

Chen & Dunlap MULTTEST
N 1,000 10,000 1,600 10,000
10 3.15s 28.60s 0.28s 2.08s
20 4.17s 30.34s 0.34s 2.89s
50 6.98s 48.45s 0.65s 5.84s
100 12.52s 1m27.61s 1.44s 13.74s
200 24.73s 2m47.19s 4.13s 40.39s

Note-—The CPU time was assessed with different numbers of obser-
vations (N) equally divided among two groups, for 1,000 and 10,000
pseudosamples.

1993, acknowledge) but, in general, also in terms of
power (Onghena, 1994). Furthermore, exact randomiza-
tion tests are easy to perform with NPSTAT (May et al.,
1993; May et al., 1989) or SCRT (Onghena & Van
Damme, 1994; Van Damme & Onghena, 1993).

7. Power and Type I Error Rates of the ART

After comparing randomization tests with their coun-
terpart parametric and nonparametric methods in a ran-
dom sampling model, Chen and Dunlap (1993, p. 407)
concluded: “In summary, the ART procedures can be
considered for hypothesis testing whenever the normal-
ity and/or the homoscedasticity assumptions appear to
be violated.” Although it is true that the ART procedures
perform well without invoking the assumption of nor-
mality, they are not robust to violations of the assump-
tion of equal variances. This is because nonparametric
tests, in general, do not test the null hypothesis of iden-
tical population means, but they do test the null hypoth-
esis of identical distributions. The nonrobustness of the
ART to heterogeneity of variances was shown empiri-
cally by Boik (1987), and the general rationale, applying
to all nonparametric tests, was pointed out explicitly by
Edgington (1965).

Furthermore, the power superiority of the ART to the
parametric and nonparametric competitors is not un-
equivocal. For example, Rasmussen (1986), Keller-
McNulty and Higgins'(1987), and van den Brink and
van den Brink (1989) have shown that, under various
non-normality conditions, the power curves of the ART
and the t test were similar and that the Wilcoxon rank
sum test had superior power.

In a random assignment model, power comparisons
might give different results (see Lehmann, 1975, 1986,
and May, Masson, & Hunter, 1990, for the distinction
between random sampling and random assignment mod-
els). For example, the results of Kempthorne and Doer-
fler (1969), mentioned by Chen and Dunlap (1993,
p. 407), were obtained under a random assignment model,
and Edgington (1987) discussed randomization tests
mainly from this perspective.

Conclusion

Several problems with performing ARTs using the
SAS programs of Chen and Dunlap (1993) were identi-
fied and solutions were offered. On the technical side, it
was pointed out that (1) the p value should be computed
as (NOS+1)/(NOP+1), (2) the test statistic should be
changed to the signed difference between means if one
wants to perform one-tailed ARTs in the case of unequal
group sizes, and (3) the number of pseudosamples
should be increased to at least 5,000 if one wants to test
at the 1% level of significance. On the practical side, the
programs take much time and resources in most appli-
cations, and some fast and economical alternatives (a
lower level programming language, ready-made PC soft-
ware packages for ART, and the SAS MULTTEST pro-
cedure) were suggested. Furthermore, for small group



sizes, the exact randomization test was proposed as a su-
perior test, and it was pointed out that, in random sam-
pling models with unequal population variances, the
ART should not be used to test the null hypothesis of
identical population means.

Our commentary on the Chen and Dunlap (1993) ar-
ticle does not imply that we question the ART procedure.
On the contrary, we believe that the ART is the method
of choice in many applied research situations, and we
appreciate the contribution made by Chen and Dunlap
(1993) to demonstrate how modern software can be used
to perform these tests. The strength of exact and ap-
proximate randomization tests is particularly evident in
situations where the random sampling assumption is not
appropriate, with uncommon randomized designs, or
with test statistics whose sampling distribution is un-
known (Onghena, 1992; Onghena & Edgington, 1994).
Furthermore, teaching statistical hypothesis testing from
the resampling perspective with a clear distinction be-
tween random sampling and random assignment models
may give students a better insight into the subject (May
& Hunter, 1988; Simon & Bruce, 1991).

Finally, it should be acknowledged that Chen and
Dunlap’s (1993) intention was probably not to develop
maximally efficient software. However, as access to
these procedures grows through efforts such as theirs,
there may be increasing concern about efficiency and
precision. We hope that our refinements and suggestions
make the ART appealing to a wider audience and that
further discussion of the merits and demerits of ARTs is
stimulated.
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