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This program provides two alternative Bayes solutions
to problems of classifying an individual into one of K
mutually exclusive populations on the basis of
measurements taken on p predictor variables. It is
assumed that the individual must have come from one of
the K populations and must be assigned to one of them.

Two simplifying assumptions are made. First, the p
measurements are assumed to have a multivariate normal
distribution in each of the populations.” Secondly, all
misclassification errors are considered equally costly.

The Bayes decision rule minimizes the total
probability of misclassification. In this procedure. an
individual is classified by means of “discriminant
scores,” one for each of the K populations, resulting in
the assignment of the individual to that population for
which he has the largest posterior probability. Such a
Bayes procedure requires the “prior probabilities™ that
an individual, drawn at random, belongs to a given
population. This procedure does not, however, require
that the covariance matrices of the K populations be
equal (homogeneous); a test of the homogeneity
assumption is made by the program. If they are equal,
the discriminant scores can be reduced to linear
functions of the predictor variables. They are therefore
called “linear discriminant scores.”” When the covariance
matrices are unequal, the discriminant scores are
quadratic functions and are called ‘“quadratic
discriminant scores.” Thus, the mathematical form of
the discriminant scores differentiates two types of Baye:
procedures—linear and quadratic—both of which are
provided by the program. For detailed discussions, see
Anderson (1958), Rao (1965), and Fulcomer (1970).

Method. (1) Notation. The following terms are used in
this program description: K = number of populations, p
= number of variables, X' = (x;, ***, Xp) = vector of
predictor scores, m, = prior probability of the kth
population, u, = mean vector of the kth population, 2y
= covariance matrix of the kth population, 1; = cost in
assigning an individual who actually belongs to the ith
population to the jth p;(x) = probability density at x for
the itb population, § = sample space of all potential
observations, w; = classification region for the ith
population. Carets (e.g., ;) indicate the use of sample
estimates for corresponding parameters.

(2) Decision Rule. The expected loss in applying a
decision rule for an individual from the itb population is

™M=

Ri(x)= Z [ rypi(x)dx.

=1 ™1

The total expected loss

K
R(x) = 2 mRy(x)
i=1

becomes

K
R(x)= Z [ — Sy(x)dx
i=1 “i

where

K
Si(x) = 721 7;13;p5(X)
j=

is the ith “discriminant score” of an individual with
measurements x. Rao (1965) shows that if the
classification regions w; of § are chosen such that xew;
- Si(x) 2 Si(x) for all j, the total expected loss is
minimized. Therefore, an optimal solution is one which
places an individual into that population for which his
discriminant score Si(x) is largest.

For a symmetric loss function (as used in this
program), r; =1 for i#j and r;; =0, the discriminant
score for the ith population becomes

K K
Si(x) = *‘.21 1Py (x) = *_21 ipy(X) + mipi(x)
i= i=

=mpi(x) + ¢ = S§{(x) +c,

where ¢ is a constant independent of i. The redefined
discriminant scores S;(x) are used for classification.
Since the posterior probability of the ith population is

K K
mpi(%) / = mpi(x) = S7(9 /31 pi(x)

and the denominator of this expression is a constant, an
individual’s largest discriminant score cogresponds to
that population for which he has the largest posterior
probability.

(3) Multivariate Normal Distributions. 1If the
distribution of x is p-variate multivariate normal in each
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of the K populations with mean vector uy and covariance
matrix Zy for k =1, -+, K, the density at x in the itk
population is

pi(x)
=(2a) /2 2 exp[—1/2(x — ) T (x — wy)]

Although the discriminant score is mpy(x), it is more
convenient to use the natural logarithm (In) of the
density and to omit the common factor (27)—P/2, The
classification decisions are invariant. under such a
monotonic transformation, since it preserves the order
relationships among the discriminant scores.
Consequently, the ith discriminant score may be
redefined as

Qi(x)
=—1/2[1n] Z;1] - 1/2(x ~ w) Z7 ' (x — ) + 1n(my).

Since this score is a quadratic function of x, it is called a
“quadratic discriminant score”; an individual is assigned
to that population for which his quadratic discriminant
score is largest.

(4) Equal Covariance Matrices. 1f the covariance
matrices are homogeneous (2, = *** = Zg = XZ), further
simplification of the discriminant scores results. The
terms —1/2[1n] Z;|] and —1/2[x'Z71x] are common
to all of the Qj(x) and may be omitted. Equivalent
discriminant scores are

Li(x) = —1/2Z ) + = "% + In(my)  j=1, -+ K

which are linear functions of the components of x and
are, therefore, called “linear discriminant scores.” L;(x)
is analogous to the linear discriminant function
originally derived by Fisher (1936). Although Li(x) is
more familiar, it is apparent from the above
developments that Qi(x) is more general since it is
unlikely that the covariance matrices would ever be
exactly homogeneous; one would expect quadratic
discriminant scores, in general, to result in more accurate
classification since they take such covariance matrix
differences into account.

(5) Sample Estimates. To compute these two types of
discriminant scores, it is necessary to know the prior
probabilities and the parameters of all K density
functions. In practice, these quantities will not be
known and estimates from initial samples whose
classifications are known must be used. It is assumed
that the density functions are multivariate normal and
that the population parameters may be replaced by
unbiased statistics. Thus, in the case of unequal
covariance matrices, an ‘“estimated quadratic
discriminant score” for the ith population would be
defined as

Qi(x)
=—1/2[1n| 211 = 1/2(x — )’ S7 1 (x — f15) + 1n(#)

and used in an approximate Bayes procedure. In a
similar fashion, if the covariance matrices are considered
equal, an “estimated equivalent linear discriminant
score,”

ii(x)
=—1/2[In| £1] — 1/2(x — ) S (x — ) + 1n(#)

i=1,-,K,

is used for classification. These equivalent linear
discriminant scores, rather than the linear discriminant
scores, are used by the program since the computations
for Qi(x) and Ly(x) are similar.

There are four major  parts to this program:
(1) estimation of the density functions parameters from
initial samples; (2)testing the assumption of equal
covariance matrices in the K populations;
(3) computation of discriminant scores and classification
of individuals in follow-up samples; and (4)the
summarization of the results for both quadratic and
linear cases by means of classification matrices. Initial
samples need not be the same as those (follow-up)
samples classified. The wuser can specify prior
probabilities if they differ from the observed relative
frequencies in K initial samples.

Output. The program provides the following output:
(a) Within covariance matrix for each initial sample;
(b) latent roots of all within covarance matrices;
(c) pooled (common) covariance matrix of the initial
samples; (d)latent roots of the pooled covariance
matrix; (¢) mean vector for each initial sample and the
overall mean vector for the initial samples;
(f) Eigenvectors for all within and pooled covariance
matrices; (g)value of the approximate chi-square
statistic to test the assumption of homogeneity of
covariance matrices; (h)degrees of freedom and
associated probability of the chi-square test; (i) sizes and
relative frequencies of the K initial samples; (j) quadratic
and linear discriminant scores for each individual
classified in the follow-up samples (optional);
(k) classification matrices for both the quadratic and
linear solutions, and these matrices expressed as relative
frequencies; (1) chi-square test statistic values, degrees of

freedom, and associated probabilities for the
classification matrices.
Limitations. The program has the following

limitations: (a) the number K of populations (groups)
must be less than 10, (b) the number of variables (p)
must be less than 9, (c) the product of p and k + 1 must
be less than 51, and (d) the number of individuals in



each group (either initial or follow-up) must be less than
501.

Computer and Language. The program is written in
FORTRANIV and employs several dimensionless
subroutines. Although developed for the IBM 7094,
versions of this program have also been adapted for use
on the IBM 360, IBM 370, CDC 6500, and CDC 6600.

Availability. A listing and/or copy of the source deck,
a manual for input instructions, and sample data may be
obtained at no cost from Mark C. Fulcomer, Department
of Psychology, New York University, 4 Washington

SICS: Short intradepartmental course scheduler

SALLY A. FLANIK and B. JAMES STARR
Howard University, Washington, D,C. 20001

The SICS program does within-department course
scheduling in instructional (e.g., university) settings.
Starting with lists of courses that are to be offered and
time slots available, the program matches both course
and time preferences expressed by the instructors. The
likelihood of obtaining desired course and time
selections is directly related to the order in which these
choices are entered. This system provides maximum
flexibility in that the ordering of this input may be
varied in accord with the wishes of the faculty. Thus,
some departments may wish to give priority to
instructors on the basis of rank and length of service,
while others may desire matches made either on a
first-come, first-served basis or in some other manner.

At the beginning of the process, three course choices
and three time selections are solicited from each
instructor for each of the number of courses for which
he is responsible. (To avoid scheduling more than one
course at a particular time for a specific instructor, it is
important to avoid overlap in the time choice list for any
instructor having more than one course scheduled on
any single computer run).

The program accepts a parameter indicating the
maximum number of classes to be scheduled at any one
time. SICS begins processing by reading in the time slots
which are available for courses and the courses and
sections to be taught for the semester involved. The
courses and sections are entered numerically in
ascending order of course number (and within courses of
section number). Next, the choices of one instructor (for
one of his course responsibilities) are processed. Course
choices have priority over time choices (ie., course
selections are matched first). When course and time are
processed (either by their assignment or via an indication
of inability to fill the options), the next instructor’s
selections are processed.
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Place, New York, New York 10003. The materials
desired and the computer to be used should be specified.
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While some scheduling may still be done by hand, use
of SICS has significantly reduced the amount of time
that faculty members must spend in course scheduling
within this department.

Limitations. Currently, the program operates with a
maximum of 100 course-section combinations and 100
time slots. Each instructor may have three choices for
course and for time. There is an option for declaring a
time slot as “required.” This allows only one course
(e.g., departmental seminar) to be scheduled at a
particular hour. The option is activated on a course card
and thus the program selects the time slot.

Computer and Language. Similar programs have been
prepared for and run on IBM 1620 and IBM 360-50
computers in FORTRANIV.

Input. Card input is composed of a number of
segments. First, a parameter card provides basic
information on days and day sequences for courses. A
second parameter card provides information on the
maximum number of classes which may be assigned
during any one time slot. A subsequent set of cards
provides information on the time slots available (to be
filled). This is followed by a set of cards indicating
courses to be offered. Finally, information in provided
regarding the instructors and their choices. Because
many of these pieces of information vary little from
term to term (for any department), sets of input cards
can often be prepared beforehand and revised and reused
as needed.

Output. Output consists of a schedule showing course,
section, days, time, and instructor. This is followed by a
list of instructors without courses (if any exist), and a
similar list of courses without instructors. SICS then
produces a list of time slots still available for use.

Availability. A program listing and documentation are
available from Sally A. Flanik, Department of
Psychology, Howard University, Washington, D.C.
20001. The program is available at a cost of $2 (to cover
postage and handling) for either a listing or a tape of the
program. The tape used may be standard or nonstandard
label, 9-track, 800 BPI. The tape will be written with
BCD code and should be supplied by the purchaser.
Please make checks payable to Sally A. Flanik.





