COMPUTER TECHNOLOGY

Pleiades: Real-time-sharing control
in the behavioral science laboratory*

JOE L. LEWISt
University of Washington, Seattle, Washington 98192

and

G. W.0SGOOD and J. J. HEBERT
University of Oregon, Eugene, Oregon 97403

Pleiades, a seven-user, real-time-sharing executive was
developed on a PDP-15 computer for control of
psychological experiments. The goal of the system
development was to provide millisecond timing accuracy
for all users and to permit easy computer utilization for
the novice user. Two modes of operation are available:
the standard language approach and the experiment
writer approach. The system is discussed from the user’s
viewpoint, and a brief description of the details of
system design is given. The system has been operating
successfully for several months,

The availability of computers in the behavioral science
laboratory has increased considerably in the past few
years. The technological achievements in computer
hardware have been remarkable. Unfortunately, the
software development required to permit easy
implementation of computer control in the laboratory
environment has not kept pace with the hardware
development. Consequently, psychologists who do not
wish to become computer programmers may resist using
a computer even when it is available. A desirable goal
would be to provide sophisticated computer capability
to the novice programmer or nonprogrammer without
requiring that he undergo a long training period. The
problem is to provide an interface between the language
of the psychologist and that of the computer. There are
several possible approaches: (1) Use a standard computer
language such as FORTRAN. Standard subroutines must
be supplied to perform special-purpose functions or
control special devices (see Lewis, Boies, & Osgood,
1971). (2)Provide a special language that is easily
learned by the E. Examples of these are PSYCHOL
(McLean, 1969), developed at Carnegie-Mellon, and

*This research was supported by the Advanced Research
Projects Agency of the United States Department of Defense,
monitored by the United States Air Force Office of Scientific
Research under Contract F44640-67-C-0099 (while the senior
author was at the University of Oregon), and by the United
States Air Force Office of Scientific Research, Air Systems
Command, under Grant 70-1944, to the University of
Washington,

+The authors wish to acknowledge the contributions of
Stephen Boies, Manard Stewart, and Nancy Frost, Without their
many ideas, contributed through many hours of discussion, the
system would not be at its present state of development. Allen
Murphy was responsible for the technical details of the hardware
design and modification.

Behav. Res. Meth. & Instru., 1973, Vol. 5 (4)

SCAT (Grason-Stadler, 1968), which is currently being
extended at the University of Colorado (Polson, 1971).
(3) Provide the computer with a subset of the E’s
language, so that the E can communicate more or less
directly with the machine. This approach requires that
the computer interpret the E’s language rather than that
the E learn to use the computer’s language. It is similar
to the second approach, except that it attempts to
include experimental design language as well as English.

The particular computer configuration (both
hardware and software) that is desirable depends on the
particular usage anticipated. Some of the important
considerations include: (a)cost of hardware and
software development, (b) time (delay) required to fully
implement the system, (c) range of experiments that
the researcher wishes to control with the computer, and
(d) range of the user’s computer skills.

If the number of users is small and the experimental
paradigm is relatively constant, one or more small
dedicated application computers may be desirable. This
is particularly true now, with the low cost of central
processors and memory. If the number of users is large
and the variety of experimental procedues is great, an
in-house general-purpose time-sharing system may be
desirable. The purpose of the present paper is to describe
one implementation of the latter approach. The
general-purpose real-time-sharing system we describe
here is operating on a PDP-15 computer at the Center
for Cognitive and Perceptual Studies at the University of
Oregon.

GOALS OF SYSTEM DEVELOPMENT

The goals established for development of the system
were as follows: (1) The time-sharing part of the system
was to be designed so that the user would be unable to
detect that he did not have complete control of the
machine; timing accuracy had to be maintained, displays
had to remain constant, and errors in one user’s program
could not interfere with other users or “crash” the
system. (2) Sufficient space and system support would
have to be available for each user, so that the program
development, debugging, and execution of real-time
programs could be possible in the time-sharing mode
without requiring a dedicated system. (3) The novice
programmer and the nonprogrammer would have to have
reasonable access to the computer capabilities without
extensive training.

The initial version of the system was written to
accommodate two users. Only minor modification
would be required (primarily changing constants) to

365



expand the system to a maximum of seven users.

The PDP-15 computer on which the system is
implemented has 12k of 18-bit words of memory, with
an 800-nsec cycle time. The central processing unit
(CPU) contains hardware arithumetic, a real-time clock,
and a modified memory protection containing two
protection bounds and an instruction trap. Interaction
with the computer is through one of three Teletypes, the
high-speed paper-tape reader-punch, or the three-drive
DECtape mass-storage system. Both the software and the
peripherals can be logically divided into components
dedicated to the system and to components dedicated to
each user.

The system components consist of one 4k page of
core memory, in which the system executive and
ie-entrant sysiem routines reside, the computer console,
a console Teletype, and one of the DECtape drives
(there is no disk). Each user’s components consist of one
4k page of memory, one DECtape drive, a Teletype, and
a S station. Each S station includes a CRT display, a
10-bit inpur switching network accepting keyboard or
relay closure information, and a 12-bit output switching
network for manipulating external devices (e.g., tape
recorders, lights, etc.). In addition, a white-noise
generator, a waveform generator. and the paper-tape
reader-punch are available in common for the users.

A larger number of re-entrant device handlers and
special experiment control subroutines reside in the
system page. The handlers permit asynchronous
input/output (I/O) on all of the peripherals. The
subroutines provide special functions. such as
randomization, timing of events, recording of response
times, plotting on a CRT, control of special-purpose
apparatus, as well as dynamic space allocation and task
scheduling.

USER-SYSTEM INTERACTION

The user initiates interaction with the system by
typing control characters on his Teletype. (The control
key is represented by 1.) The system page contains a
permanently resident command interpreter that decodes
the control characters and initiates transfer of
appropriate programs from the system DECtape into the
user’s 4k page of memory. Two approaches are
implemented to permit the wuser to set up a
computer-controlled experiment. Both are intended to
require minimal training in computer science. The first
to be described requires about 20-30 h of training for a
novice; only a few hours are required if the user has
programming experience.

STANDARD LANGUAGE APPROACH
The standard language approach requires the user to
learn a subset of FORTRAN or a subset of PDP-15
assembly language to control the sequence of events and
to call the special subroutines available in the system
page. Most of the controlling program consists of calls to
subroutines with the associated arguments. Therefore, a

366

substantial part of the novice’s training is spent
becoming familiar with the operation of available
routines. Useful subroutines include graphics control.
response and event timing, and task scheduling. For
example, a FORTRAN WRITE statement can be used to
display any information on the CRT that could be
written on a Teletype or line pringter using the WRITE.
However, the CRT is not restricted by type size or
character set. Available character sets include both
upper- and lowercase letters, numbers, Hebrew letters,
Gibson figures, special characters, and user-defined
character sets. Four type sizes are available and four
levels of gray (brightness) can be used with any CRT
display. A CALL statement can be used to plot any
figure that can be constructed by using points. Response
timing can also be initiated with a CALL statemeni. The
S’s keypress causes the reaction time (RT) to be passed
to the user’s argument list. Finally, task scheduling is
carried out by using the subroutine DEFER. DEFER
requires two arguments: the time delay in milliseconds
and a subroutine name. The CALL to DEFER does not
cause immediate transfer of control to the named
subroutine. It retrieves the arguments and returns
control immediately to the next executable statement in
the user’s program. After the delay, control (along with
arguments) is passed to the named subroutine. RETURN
from the subroutine returns control to the user at the
location being executed at the end of the delay. DEFER
is a re-entrant routine, so that multiple CALLS with
different delays and subroutine names may be initiated
in rapid succession. This techniaue permits easy
scheduling of multiple events, all of which are timed
relative to some reference time (e.g., the beginning of
the trial). The power of the subroutine set may be
illustrated by noting that only a few statements are
required to display a geometric figure, to rotate it in real
time, to display a letter of the alphabet beside it at some
randomly determined rotation, and to record the S’s RT
to the letter. Only a few additional statements would be
necessary to monitor the S’s simultaneous tracking of
the figure with his other hand. Because users’ programs
are usually not very large, the 4k user page of memory
provides plenty of space. In fact, users can generally run
larger programs with the 4k page than they can using
vendor-supplied software in an 8k dedicated machine.
The general procedure using standard language is to
create the program in a file on DECtape, using a text
editor. The user must then assemble or compile the
program, load it, and debug. Program development
normally begins by typing tE on the Teletype. The
executive will respond by transferring the text editor
into the user’s 4k page. When the editor is loaded, it
signals its readiness to accept commands by typing
EDITOR on the Teletype. A variety of commands are
recognized. Files may be created, modified, and
searched. All of the vendor-supplied PDP-15 editor line
mode commands are accepted as well as some additional
features, such as multiple search functions. After the

Behav. Res. Meth. & Instru., 1973, Vol. 5 (4)



program s created on DECtape, the user calls for the
assembler! or FORTRAN compiler. The assembler or
compiler accepts the file created by the editor and
generates the appropriate relocatable binary code in
another file on the user’s DECtape. If errors are
detected, it returns to the editor for modification.
Otherwise, the linking loader is requested. The linking
loader loads the wuser’s binary program from his
DECtape. It then searches the DECtape for local
subroutines and loads them as needed. Finally, it
searches the library file on the system DECtape for the
remaining required routines. The system library contains
the routines necessary to link to the permanently
resident special subroutines as well as the infrequently
used subroutines (e.g., some floating point arithmetic
functions).

The standard language approach permits maximum
power in control of experiments. All of the system
capabilities are available to the user. Its disadvantages
include the unavailability of the FORTRAN compiler in
the time-shared mode and the relatively long training
(20-30 h) necessary for the novice.

THE EXPERIMENT WRITER APPROACH

The experiment writer is an attempt to provide the
computer with the language of the E. It permits a very
large subset of possible experiments using the standard
language approach, and requires only about 2h of
training.

The basic approach is to define stimulus and response
sets and to specify the procedure for trial and block
definition. The constraints, of course, are that stimulus
and response files, trial definition, and block definition
must be specifiable by using the procedures available in
the experiment writer.

FILE DEFINITION

Files are created on the DECtape by using the editor.
The experiment writer is graphics oriented so that the
stimulus file is frequently a definition of characters or
patterns that will be displayed on the CRT. All of the
character sets available using the standard language
approach are available to the experiment writer. The
stimulus file may be a list of letters, words, or sentences.
They may be in a variety of type sizes or character sets.
They may be positioned anywhere on the CRT screen
and may be displayed in four levels of gray. Patterns
may also be defined as a stimulus file. Currently, they
are defined by specifying coordinates for the points to
be displayed. Vector-generation software is under
development to permit the specification of key points in
a display along with a function to be used to connect
them.

Response files may also be created for use by the
experiment writer. The response file is used to link the
appropriate response with each stimulus in order to
determine if S’s response is correct. The first type of
response file defines the correct response for a given trial

Behav. Res. Meth. & Instru., 1973, Vol. 5 (4)

type. The second uses the stimulus number in the
stimulus file as an index to locate the corresponding
response item in the response file. Feedback concerning
the correctness of the response, as well as the response
latency, is thus made available for the S. In addition,
incorrect responses may be identified and deleted in
calculating the summary statistics that are available at
the end of cach block of trials. Special apparatus, as
available with the standard language approach, may also
be used. However, they do not usually require file
definition.

TRIAL DEFINITION

A trial is defined by using a combination of 10
commands (key words) recognized by the experiment
writer. The commands fall into three categories: display
onset and offset, timing, and conditional.

The display onset commands are SHOW, ON, and
FEED. SHOW, followed by a file name, instructs the
experiment writer to display an item from a file on
DECtape specified by the name. Special characters typed
after the file name indicate whether the items in the file
should be presented in order or permuted randomly.
Special characters are also used to indicate the type of
linkage that should be made with response files and to
indicate whether the stimulus item should be saved in
the data file. The second command, ON, is used to turn
on apparatus connected to the output switching
network. Any apparatus can be used that can be
controlled by switch closures. The FEED command is
used to display the S’s reaction time and a + or —,
indicating whether the response was correct or not. The
display offset commands are DELETE and OFF.
DELETE is used to turn off CRT displays; OFF turns
off the switches.

There are three timing commands, one for intervals
and two for responses. The WAIT FOR or FOR
command inserts a delay in the trial. It requires one
argument indicating the time in milliseconds to delay.
The next event specified does not occur until the time
has elapsed. The TILL command is also used to insert a
delay in the trial. However, the argument indicates a
keypress to end the delay. The ALLOW command is
used in combination with a display onset or offset
command to start timing the S’s reaction time. One
argument specifies which keys are enabled for the

response.
The remaining command, WHEN, permits
response-contingent action. It has one argument

indicating the response expected. It also accepts any of
the display onset or offset commands. When the
response is detected, the display command is executed.
It is useful for specifying a secondary task in the trial
definition.

In general, the arguments associated with the above
commands may be constants or literals, file names, or
variable names. If a variable name is used, it is defined at
run time. Thus, the same experiment may be run under a

367



variety of parameter specifications.

An example will be given to illustrate the trial
definition. The example defines a “different” trial in the
Posner (Posner et al, 1969) letier-matching experiment.
SHOW LET!S :Show a randomly drawn (without

replacement) letter from the file
LET.

' Insert a delay in the trial. MSEC must
be defined at run time.

WAIT FOR MSEC

SHOW LET'S / Show a second letter from the file
LET.

ALLOW ]2 [/ Start timing S's RT.

WAIT TILL 1-28= / Wait for S’s keypress.

DELETE LET ! Delete both letters when the response

is made.

/ Display the S§°s RT for 1 sec.

. Wait for an interval to be defined at
run time.

FEED DIF FOR 1000
WAIT FOR ITI

A letter is displayed for MSEC milliseconds until it is
joined by a second letter. Both go off when the S
responds. The RT is displayed on the CRT for 1 sec
followed by an intertrial interval defined by ITI. The
stimulus numbers, the RT, and the response number are
stored on tape for later analysis.

A given experiment may have only one trial type or it
may have several. A particular type of trial will occur as
specified in the block definition.

BLOCK DEFINITION

The block definition establishes the sequencing of
trial types. The simplest case is the one-trial type. The
block definition simply designates the number of trials
per block. Several trial types may be used in a block, and
-they may be arranged in a variety of ways. An E may
wish to have 10 learning trials followed by a single test
trial to define a block, or he may wish to alternate trial
types. The foregoing are all iliustrations of fixed trial
order.

Permuted trial sequences may also be defined. For
example, 20 “different” trials (as illustrated in the
previous trial definition) may be mixed randomly with
20 ““same” trials to form a block of 40 trials. Of course,
restrictions may be imposed on the randomization. For
example, one may define a block of 40 trials as four sets
of 5 *“same” trials mixed with 5 “different” trials. The
block definition is not restrictive: 10 or more trial types
could be used in a variety of combinations.

Several data-handling features of the experiment
writer are available. (The RT feedback has already been
mentioned.) Raw data is normally output onto DECtape
for later analysis. Special characters in the trial
definitions are used to mark data or stimulus
information for permanent storage. In addition,
summary statistics are available at the user’s Teletype at
the end of each trial block. Consequently, one may
examine errors or RTs for a given trial type at the end of
each block to determine parameter values to be used for
the next block.

368

GENERAL OPERATION
OF THE EXPERIMENT WRITER

To create an experiment, both the editor and the
experiment writer are used. The editor is used to
establish stimulus and response files and, if desired, trial
definition files. The experiment writer is used to
establish trial definition (or retrieve trial definition files)
and for block definition. It is designed to permit interim
output as well as the completed experiment to be put
onto DECtape for permanent storage. The experiment
writer is set up with a full set of error-handling routines
to inform the user of his mistakes and to attempt to
restore control to a point just prior to the error. If
interim output is stored, it is not necessary to start from
the beginning in case of an error. When the experiment is
set up, the experiment writer generates executable
machine code and establishes links with the subroutines
in the system page. The binary code is then dumped
onto DECtape for immediate use at run time. To run the
experiment, one need only retrieve the page from
DECtape, type in values for variable names, provide
starting numbers for any random number operations,
and specify the number of blocks to be run.

Activating an experiment usually takes only an hour
or two. Modifications to an existing experiment can
often be made in a few minutes. Not all studies that can
be generated using standard language can be done with
the experiment writer. For example, if the nature of a
trial depends on the S’s response to a previous trial, it
cannot be used. And sophisticated rule definition
procedures are unavailable. Nonetheless, the experiment
writer represents the quickest way for the novice to
make productive use of the computer. For many
experiments, the experiment writer is the best tool,
regardless of the programmer’s sophistication.

EXECUTIVE FUNCTIONS AVAILABLE

The user may execute and debug his program under
the real-time-sharing executive. With the program loaded
into the user’s page, one may search for particular
instructions or address references, examine desired
locations, and alter those locations. One can insert
breakpoints to monitor the program flow and restart the
program after modification to try the run again. Changes
can be made permanent by dumping the corrected
version onto DECtape for retrieval at run time,

The executive also has several DECtape
file-management capabilities. The DECtape directory can
be listed or cleared; files on the DECtape can be
renamed, deleted, or listed on the Teletype. Blocks of
information on DECtape can be accessed directly
(without reference to the file name) for listing on the
Teletype or for direct permanent modification.

REAL-TIME-SHARING SYSTEM DESIGN
Both the hardware and software designs were
important in the successful implementation of the
time-sharing system. The basis for the hardware design

Behav. Res. Meth. & Instru., 1973, Vol. 5 (4)



has been presented elsewhere (see Boies, lewis, &
Murphy, 1970); an example is the use of a direct
memory access-type CRT controller. With this type of
controller, it is necessary only for the CPU to start the
plotting function. Otherwise, all plotting goes on
asynchronously, requiring very little system overhead to
maintain displays.

The system provides substantial user capability and
can be implemented within a reasonable time period. It
is not, however, the ultimate in computer science
sophistication. Basic to the design is a fixed core
partition (4k) for the system and for each user. The
executive allocates a 2-msec time slice, rotating control
to each user. Consequently, if the system is expanded to
its maximum capacity (seven users), each user would
have a maximum delay of 12 msec between time slices.
However, the actual system operation is such that a user
would rarely wait for the maximum delay. Since the
user’s program is largely a series of CALLS to
subroutines for timing and event manipulation, the
computer is usually executing system routines.

The system is designed so that all input and output is
asynchronous. Whenever one user is waiting for an event
(probably 95% of the time in a typical experiment), the
system automatically passes control to the next user in
rotation. In addition, all system routines are written in
such a way as to guarantee high-priority interrupt
handling within about 100 usec. Interval timing for all
events can be accomplished by using the DEFER
subroutine. With DEFER, interval timing is also done at
the interrupt level and millisecond accuracy for intervals
can be guaranteed. The 2-msec time slice may seem small
in light of the larger intervals usually used in
time-sharing systems. However, in an experimental
control and program development environment, as
opposed to “number crunching”, 2 msec is sufficient for
a large percentage of the typical user’s job. It requires
about 120 usec to perform the swapping, or 6% system
overhead for a 2-msec time slice.

The asynchronous 1/O management is facilitated by
two hardware features: a four-level priority interrupt
system and a memory protection, instruction trap
facility. The priority interrupt system permits
high-priority devices (e.g., the DECtape or response
system) to interrupt the handling of lower priority
devices (e.g., Teletype). Low-priority devices wait in a
queue until high-priority devices are finished. The
memory protection facility provides a high and low
boundary? that can be set under executive control. It is
used to limit the memory that is addressable by each
user. The system and users are protected from each
other. If a user tries to read and write in memory outside
of his own page, control is automatically passed to an
executive routine which checks the legality of the
memory access. Control is also passed to the executive if
a user tries to use certain restricted instructions such as
1/O transfers or a system halt.

Several other features have been included in the

Behav. Res. Méth. & Instru., 1973, Vol. 5 (4)

system design to increase throughput and reduce user
interaction. Space required for temporary storage, such
as for 1/O buffers (e.g., to store points for CRT
plotting), are dynamically allocated by the system. Thus,
sequential tasks do not require separate array storage
areas. The CRT displays are refreshed asynchronously by
using a direct memory access controller. The refresh is
also clocked at a constant interval rather than carried
out continuously. Therefore, variations in the system
load do not influence the brightness of the CRTs.

The system has one potential bottleneck. There is
only one controller for all DECtape drives. If one
DECtape drive is in use, then the others are tocked out
until the current block transfer is complete. The
DECtape handler was written to use a dynamic multiple
buffering scheme to insure that data are not lost or that
the user is not delayed by the DECtape hardware.
Modification of the handler is under way to incorporate
a priority-handling system. Users performing
low-priority tasks (e.g., program development) will be
delayed at the expense of high-priority tasks (e.g.,
experiment control).

SYSTEM PERFORMANCE

At the present time, the computer operates under the
time-sharing executive about 8 h per day. It operates
under a single-user system during the remaining time.
The percentage of time under the time-sharing executive
should increase when the assembler is finished.

In general, errors made by a user are handled by the
executive without affecting the other users or the
integrity of the system. When an error is detected, it is
analyzed and one of more than 40 error messages is
printed on the user’s Teletype. A special hardware
diagnostic routine is also available to each user. He may
load the test routine into his page and quickly check the
operation of his CRT, input switches, and output
switches. Debugging time can be minimized when, in
fact, there is a hardware failure. The ideal goal of system
reliability is to never have a failure which cannot be
explained. Unfortunately, that goal has not been
reached. Currently, there is about one unexplained
system ‘‘crash’ about every 2 weeks.

It has been claimed that the system should provide
millisecond timing accuracy for all users. Fortunately,
the actual system performance can be monitored. The
PDP-15 is connected through a direct link
(interprocesser buffer) to a PDP.9 computer in the same
laboratory. The operation of the PDP-15 has been
monitored by the PDP-9, using a variety of job mixes.
Timing error for both intervals and responses has in
every case been less than 1 msec. It must be noted that
the system is currently operating with only two users.
However, in making the evaluation, no attempt was
made to guarantee timing accuracy (e.g.. by using only
programs which use DEFER for task scheduling).

The system will soon be expanded by two additional

369



users. The additional memory. Teletypes. DECtape
drives. etc.. have already been ordered. When the
hardware is installed. the system conversion to four users
should require only a few hours of work. Evaluation of
the expanded system using the PDP-9 for monitoring
will be continued.

The development of the system to its present state
was done over a period of about 22 months from the
time of the computer delivery. However, the
programming was carried out on a part-time basis. Most
of the computer’s time during the period of
development was devoted to single-user experiment
control. The actual development time is estimated at 9
man-months for the time-sharing executive and system
subroutines and 4 man-months for the experiment
writer. None of the vendor-supplied software was used
intact, except the FORTRAN library routines. All the
handlers. the editor, loader. etc., were written from
scratch. It is definitely a major programming effort to
write a time-sharing system with the capabilities that
were desired. However, we feel that the end product is
well worth the effort and the time expended. It should
also be noted that the development time compares more
than favorably with other approaches that have been
completed or are under development elsewhere.

The system development is an ongoing project. As
noted, the assembler and vector routines are currently
under development: a FORTRAN compiler to create

370

assembier code is currently under study. The system has
not been evaluated sufficiently at present to indicate
where it should be modified or expanded.3

REFERENCES

Boies, S. J., Lewis, J. L., & Murphy, A. R. Hardware design for a
multiprogramming system for a medium scale computer. In
Decus Proceedings, Spring 1970,

Grason-Stadler The SCAT primer. West Concord, Massachusetts:
Grason-Stadler Company, 1968,

Lewis, J. L., Boies, §. J., & Osgood, G. W. Zoroaster: A
multiprogramming system for psychological research.
Behavior Research Methods & Instrumentation, 1971, 3,
106-107.

McLean, R. S. Psvchol: A
experimentation. Behavior
Instrumentation, 1969, 1, 323-328.

Polson, P. G. Extended state algorithm translator reference
manual, CLIPR Publication Series, No. 2, University of
Colorado, Boulder, 1971.

Posner, M. 1., Boies, S. J., Eichelman, W, H., & Taylor, R. L.
Retention of visual and name codes of single letters. Journal
of Experimental Psvchology Monograph, 1969, 79, 1-16.

computer language for
Research Methods &

NOTES

1. At the time of this writing, the assembler is unavailable in
the time-shared mode of operation. It should be completed
before this paper appears in print. The FORTRAN compiler
must be used on the dedicated computer. A 4k compiler is not
scheduled at the present time, It is unclear that the payoff would
be worth the work involved.

2. The standard memory protection available for the PDP-15
provides only one boundary check. The hardware was modified
to provide the second boundary.

3. Copies of the software and documentation of all hardware
modifications are available from the authors.

(Received for publication January 19, 1973;
revision received March 29. 1973.)

Behav. Res. Meth. & Instru., 1973, Vol. 5 (4)



