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An algorithm is described that computes relative
frequencies of occurrence of all arbitrarily long
substrings of sequential data, such as are obtained from
experiments in learning/memory and verbal interaction.
The algorithm offers high speed and provides
systematization for the computation of empirical
conditional probabilities. Use of this algorithm allows
application of probabilistic and information theoretic
disciplines to reveal dependencies between events
separated arbitrarily in time.

Behavioral experiments often produce data
sequentially in time. For example, experiments designed
to examine learning and memory processes are often
presented trial by trial and produce time sequences of
parameters which describe stimulus-response events at
each trial. Another sequential data sequence may be
produced by experiments in natural interaction, in
which utterances and signs are sequentially coded in
time. In these cases, since the observed data is
characteristically sequential, the E may wish to account
for the time properties of the data in conjunction with
other forms of data analysis.

The purpose of this paper is to specify an algorithm
that allows the complete tabulation of empirical
probabilities of occurrence of any particular substring of
the data, given that some substring of arbitrary length
has just preceded it. This probabilistic approach to the
analysis of sequential data reveals dependencies of the
present observation on past observations, allows direct
application of information theory concepts, and
generally systematizes the analysis of sequence
information in the data.

The algorithm processes one arbitrarily long sequence
of data under the assumption of stationarity. The
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stationarity assumption is reasonable from a
computational point of view, since to assume otherwise
would require such tight controls on data acquisition
that data could not be obtained practically. This
procedure provides a probabilistic state description of
the data stream, whether the data is stationary or not. If
knowledge of positional information about the data
sequences is desirable, the E should examine substrings
over intervals short enough to intuitively ensure
stationarity but long enough for statistical validity.

The algorithm does not describe a Markov chain (MC)
analysis of the data. The user of the present probabilistic
analysis reveals Markov properties if they exist, but to
assume Markov properties is to assume a more tightly
constrained form of dependence than may be required.
The difference between MC analysis and the present
method is that the former assumes that sequences
occurring far enough in the past have no effect on the
pre sen1. The exis t ence of this past-influence
"truncation" property may be estimated by probabilistic
analysis.

NOTAnON AND DEFINITIONS
Suppose the experiment consists of N trials (or

observations) (Dr.:)kI=l occurring consecutively at times
I, 2, "', N. Here, each Dr.: stands for the values of a
describing set of variables for each trial. Let

(1)

be the descriptor for Trial k. Since quantization of a
continuous variable can be made fine enough to ensure
no loss of accuracy, it may be assumed that each dki
takes only discrete values.

Assume each Dr.: can take up to ro different values.
On anyone trial k, ro can be an enormous number of
combinations of variables dki , and the assessment of
dependences between trials can become extremely
complex. In order to systematize the search for
multiple-trial influences, let

Pr(Dr.: I Dr.:-M' "', Dk-d =the probability that on
trial k descriptor Dr.:
equals some particular
allowable n-tuple, given
the occurrence of M
pre ceding specific
consecutive n-tuple
descriptors.

(2)
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is

where for any k ~ 2

(3)

stands for any string of K consecutive symbols. In the
algorithm, K varies from 0 [yielding Pr(x)] to M.
Length M is the largest depth backward in time
(maximum "memory"). Furthermore, it can be shown
{Billingley, 1961; Anderson & Goodman, 1957) th~t

PK(x) is a maximum likelihood estimator for PK(x), If,
in fact, X is a Markov chain. Since we observe only a
finite sequence X, it is computationally simpler to ignore
the endpoint condition wherein, for example, ZK occurs
only as the last K observed symbols. Here, 1)(ZK) = 1
and 1)(ZKX) is undefined; no symbol is observed to
follow ZK' Rather than checking for this case, it is
simpler to let

If ZKjO does not occur, 1)(ZKjO) is defined to be O. This
deviation from the maximum likelihood estimator will
not cause significant differences in the result. The direct
approach to compute Eq.3 requires that 1)(ZKX) be
evaluated by counting the occurrences of ZKx for each
of the rK+ I possible values of ZKX, This amount of
computation is intolerable for values of rand K of
reasonable interest. Instead, the method used here
simply counts the occurrences of each sequence of
Length K that appears at least once in X, yet does not
look for particular sequences which may not appear.

Time Observed Data Indexed
Index Data

k ~ = (dkl dJt2 dk3) xk

I 0 0 2 0
2 0 I 2 1
3 1 0 0 2
4 2 0 1 4
5 1 1 2 3
6 1 1 2 3
7 1 1 2 3
8 2 0 1 4
9 0 0 2 0

10 0 1 2 1
11 1 0 0 2

Fig. 1. Example of recoding the observed data.

Knowledge of all r~ +I possible probabilities for each k,
1~ k ~ N, defines the sense in which is understood the
effect at Time k of the previous M events.

The defined conditional probability indicates a
relationship among whole descriptors, ~. But the effect
due to an individual variable dkj may also be desired.
This may be obtained by suitable applications of the
rules of marginal probability and Bayes's theorem.

This systematic approach is independent of the
number of previous trials M which may be considered. In
fact. the effects of the "memory" M may be elicited by
the same technique. However, these computations
require the measurement of the necessary probabilities.

Even though each ~ can theoretically take up to ro
different values, in any given data set (Dk:lk'=I, the usual
case is that there are only r < ro different values that the
descriptors actually take on. Therefore, we index each
~ so that it may be referred to by its index in the set J
= (0, 1. "', r - 1). Figure 1 shows an example of an
observed data set and its indexed data set. Each variable
may take the values 0, 1, or 2. Notice that five different
ob~erved 3-tuples occur, although 27 possibilities exist.
Therefore, each observed ~ gets a label from 0 to 4.
This is an obvious, but immediate and simplifying,
recoding of the data for computational purposes.

ALGORITHM FOR EMPIRICAL COMPUTATION
OF CONDITIONAL PROBABILITIES

Suppose we have the sequence of numbers X =(x.,
X2, X3, "', XN), where each x.eI for some integer r ~ 2.
The symbols (Xi) will sometimes be referred to as
r-digits. If the position in the sequence, k, has no effect
upon the probabilities in Eq.2, then we say X is a
stationary sequence. Since we assume for computational
simplicity that X is stationary, no account of k is made.
Finite sequence X is the only data observed. Let 1)(Xk+I,
.. " Xk +K) be the number of times sequence Xk +I. "',
Xk+K occurs in the observed data vector X
independently of starting position k + 1. The sequence
Xk+ I, .... Xk+ K is simply an arbitrary substring of
Length K, of the observed data, X. An intuitive
estimator for

METHOD
Let AG,k) equal the decimal representation for the

sequence of j r-digits of X which begins in Position k of
X, l~k~N-j+l, l~j~M. These r-digits are
assumed right-adjusted. (Figure 2 shows the construction
of an A array.) The jth row of A contains the decimal
values of the sequences of Length j formed by
sequentially scanning X. Observe that

1)(ZKX)
Pr]x I ZKl = ----

r-I
~ 1)(ZKm)

m=O
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observed sequence X
position number

DI
1 2

=rr
k

IT
k+j -1

==rr-
N+l-j

IJ
N

I+- j positions "'1 \+- j positions ...1
I s j s M

"window' of length j moves from xl to x
N

+
I_ j

' The window contains a sequence of

j r-digits, right adjusted. The last po si t i on for a j-window to start is N+l-j.

Fig. 2. Construction of A Array.

M [ (M-I)]
j~l (N + I - j) =M N - -2- ,,;;; MNwords.

The number of operations required to fill up the A array
is also proportioned to this quantity. In addition, the A
array must be sorted, requiring a number of operations
proportional to MN log, MN. One pass through the A
array counts the number of equal entries that require a
number of operations proportional to MN.

Since, in practice, the number of different
subsequences of length K M is much less than MN, one
might be tempted to count the equal subsequences as
they are found. Here one could use a dynamic list to
store all different subsequences as they are encountered
in the search along with the number of occurrences of
each subsequence. Using this method, the total time

COMPUTER TIME AND
MEMORY REQUIREMENTS

The computer time and memory requirements are, to
a large degree, dependent on the maximum sequence
memory length, M,and the length of the input string, N.
In fact, for fixed M and N, the A array is the only
varying item among the program variables. Its size is:

any number a. The computation for Pr(x IZK) can be
considerably speeded up by capitalizing on the fact that
column information in A is irrelevant. Hence,
individually sort each row of A keyed on its columns to
bring all values together in a row in sections. Figure 3
shows a typical sorted row of A.

Pr[x I ZKl = ---

where LaJ = integer part of a =largest integer K a, for

Pr [x = vjqMOD(r) I ZK = lVjrqJ] = Ln
j:

jm
'

mEJK

where I..j different numbers appear in Row j of A, and vjl
is one of them, I";;; i ,,;;; I..j. The number of times Vji
appears in Row j of A is nji' With IZK I = j - I,
PR(x I ZK) "* 0 implies that in Base r, the right r-digit of
Vjq is x for some q, I ,,;;; q ,,;;; I..j and the left j - I r-digits
ofvjq (Base r) form ZK' Then

where jK = (m: left j - I r-digits of Vjm form ZK)' In
particular, qeJ.

In other words,

If V(ZKm) equals the decimal representation for the
right-adjusted r-digits ZKm, then if IZKm I =K + I =j,
T/(ZKn) equals the number of times V(ZKm) appears in
Row j of A. The position information contained in the
column index of A does not affect this counting (see
below). From A, compute the following sequence of
pairs for each Row j, I ";;;j";;; M:

Vj 1 vj 1 ... vj 1 vj 2 vj 2 ... Vj 2 v . v , ... V. V. V. ... v .
j m Jm Jm , J Lj Jlj J Lj

~ -",..--" ~ v
,

nj 1 nj2 n , n.
Jm J Lj

A (j, k) = V ••
JI

for
i-I

r
m=l

n , + 1
Jm

s k s r
m=l

1 s

Fig. 3. Typical row of the sorted A Array.
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required to search the list is proportional to:

where J.1 is the number of unique strings found. Since
this time could become intolerably large, we would have
to resort to some kind of direct-access table whose size
must be L] =2J.1 words. If a hash table is used for
purposes of computational efficiency, we must allocate
at least ~ =1.33 L] words (see Morris, 1968). If we
assign J.1 at its upper bound, we obtain

r., >MNwords,

and no memory saving is achieved.
The use of a hash table. although more expensive in

terms of memory, will save some computation time.
Here, the number of operations required will be
proportional to:
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where k.. k2 , k, are constants of proportionality. for
generation of subsequences, insertion into hash table,
and gathering the elements from the table, respectively.
This procedure will not output the subsequences in
sorted order, as will the method presented in this paper.

Given these considerations, our method of
com put at ion and memory management appears
appropriate. These algorithms have been implemented as
a series of FORTRAN programs for a 360-91 computer
installation, and have been applied to behavioral data
from monkeys performing in a delayed matching from
sample task.
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