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A two-stage detection model applied to
skilled visual search by radiologists
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The model treats the detection of targets in a visual search task as a concatenation of
two serial detection stages. Preattentive visual mechanisms in the initial stage function as
a filter, selecting specific features of a visual pattern for the observer’s explicit attention
and final cognitive evaluation. The model uses bivariate normal distributions to represent
the decision variables for the two serial stages, assuming different parameters for the target
and nontarget features in a test set. The model is applied to the detection performance of
radiologists interpreting chest x-rays under various conditions of search. It accounts for the
substantial improvement in radiologists’ ability to distinguish between target and nontarget
test features when they had to search the x-ray images, compared to their performance
without visual search. A change in the ROC curve between two different search tasks could
be interpreted as a shift in the selection cutoff used by the preattentive filter.

Visual search tasks performed by skilled human
observers often need to be treated as complex prob-
lems in signal detection. As an example, consider the
detection problem confronted by a radiologist in
interpreting a chest radiograph, the most common
type of x-ray examination. The radiologist must
search the pattern of silhouettes formed by the x-ray
attenuations of many superimposed anatomical
structures for any of a large and heterogeneous set
of potentially abnormal features (targets). An indi-
vidual image is a highly complex pattern that always
contains a great many normal (nontarget) features,
and may include several coexisting target abnormal-
ities. Since variations in normal x-ray patterns may
mimic characteristics of actual pathological condi-
tions, the radiologist often cannot be certain whether
or not a particular radiographic feature represents
an actual target.

The detection process in such a complex task
involves at least two logically sequential stages. To
report a target, a radiologist must consider a specific
pattern feature and decide that it cannot be inter-
preted as part of the normal anatomy. This final
decision stage must logically follow some earlier
stage of visual search, during which that particular
feature of the pattern was selected for attention and
specific consideration. A distinction between sepa-
rate perceptual-recognition and decision-making
stages in radiographic interpretation has also been
suggested by analyses of eye movements and fixa-
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tion latencies, recorded while observers searched
radiographic images (Kundel, Nodine, & Carmody,
1978). These serial stages of processing recall Neisser’s
(1967) theoretical distinction between ‘‘preattentive’’
and ‘‘focal attention’’ processes in visual search.
They are also closely related to the familiar concept
of hierarchically organized ‘‘feature detection’’ and
““feature classification’’ processes in perception.
Several recent formal models have applied similar
concepts to obtain predictions about latency and
accuracy of search for targets in displays of symbolic
visual material (Harris, Shaw, & Bates, 1979;
Hoffman, 1978).

The model for visual search proposed here assumes
that a skilled observer has developed an efficient
set of automatic visual mechanisms for searching
familiar types of visual patterns. These visual
mechanisms are assumed to function ‘‘in parallel’’
as an initial filter, which selects a subset of the
features in a particular pattern for the observer’s
attention and specific consideration. Each selected
feature receives an explicit evaluation by a cognitive
process which determines whether (and at what level
of confidence) that feature will be reported as a
target.

The next section uses concepts of signal detection
theory to formalize these ideas as a model for a two-
stage detection system. The model postulates a con-
catenation of two serial decision processes, in which
the output of the first process (the preattentive filter)
provides the input to the second (the cognitive
evaluation). The model’s parameters, which specify
the detection performance of this two-stage system,
characterize the detection capabilities of the separate
search and evaluation stages and the dependence
between these stages. In general, the two stages of
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detection will not be independent, because the
physical characteristics used to select pattern features
for visual attention in a particular situation are likely
to overlap those used to evaluate how closely a
selected feature resembles a target upon specific con-
sideration. The model’s free parameters can be
reduced by specific assumptions and estimated from
independent sets of data collected in several different
experimental conditions. The model’s application is
illustrated by its fit to data from two separate series
of experiments that studied the interpretation of
chest radiographs by skilled radiologists.

THE GENERAL SEARCH MODEL

To be formally explicit, the model assumes the
existence of some ‘‘test set’’ composed of specific
target and nontarget features within a sample of
visual patterns of a type familiar to the observer.
The model further assumes that each individual fea-
ture in the test set can be characterized by the value
of two random variables, X and Y, for a given
observer. The variable X represents the feature’s
“‘salience,”’ as measured by the observer’s preattentive
filter, and Y represents the decision variable mea-
sured by his cognitive evaluation stage. In a search
task, the observer is assumed to establish a salience
criterion (C) for his preattentive filter, such that a
given feature is selected for attention only if X > C.
The final decision output for each selected feature
depends upon the value of Y. The model assumes the
observer uses an ordered set of decision cutoffs,
Ry, ..., Ry, to classify each selected feature into one
of m+ 1 reporting categories, such that the feature is
assigned to Category 0 (not reported) if Y < Ry, to
Category jG = 1,...,m-1)if R; <Y < Ry, and
to Category m (highest confidence target) if Y > R,.
Thus, a given test feature will be reported at or above
the jth confidence category only if both X > C and
Y > R; for that feature.

The performance of any detection system can be
described by its receiver operating characteristic
(ROC) curve (Green & Swets, 1974). The ROC curve
indicates how 1—p§ and a, the probabilities of true
and false detections (conditional on target and
nontarget events), covary from near zero to near
unity as the criterion for making a detection decision
changes from very stringent to very lax. The theoreti-
cal form of the ROC curve depends upon the distribu-
tions assumed to represent the underlying decision
variable produced by the target and nontarget events.
A common assumption, often theoretically or
empirically justifiable, is that these decision variables
are normally distributed. Then the ROC curve
becomes a linear function in normal-deviate coor-
dinates—i.e., when the true and false detection rates
are each represented by the deviate of the standard

normal distribution that yields a lower-tail area equal
to the given probability. Under these distributional
assumptions, the slope and location parameters of
empirically generated ROC curves can be estimated,
by using a maximum-likelihood fitting procedure
(Dorfman & Alf, 1969; Grey & Morgan, 1972;
Sandor & Swensson, 1978).

The performance predicted by the present model
is defined as the joint probability that X > C and
Y > R;, given the sets of target and nontarget test
features. To represent the dependence between these
two decision variables as simply as possible, the
model assumes that X and Y are jointly distributed as
a bivariate normal random variable with different
parameters for the subsets of target and nontarget
test features. There is no generality lost in assuming
that the arbitrary scales of X and Y are each adjusted
to produce a zero mean and unit standard deviation
for the nontarget test features.' Then X and Y
have a standard bivariate normal distribution among
nontargets, with correlation parameter r,. The five
parameters of the bivariate normal distribution for
target test features are the means (Ax and Ay) and
standard deviations (ox and oy) of the two marginal
normal distributions of X and Y, and the correlation
parameter r.

The pairs of parameters, (Ay,0x) and (Ay,0y), spe-
cify the linear (marginal) ROC curves that would
be produced in normal-deviate coordinates if only
the preattentive filter or only the cognitive evaluation
were used to discriminate between the target and
nontarget test features, under various settings for
their respective decision cutoffs. The means, A, and
Ay, are the location parameters of the linear ROC
curves for the two separate processes; each represents
the absolute value of the normal deviate for the
false-positive rate at the point when 50% of the
target features would be detected by that process.
The linear slopes of these marginal ROC curves
would be given by (1/0x) and (1/0y) for the filter
and evaluation processes, respectively.

The, true and false detection rates predicted by the
model can be obtained for any values of C and R;
as follows. Let U and V have a standard bivariate
normal distribution (each marginally normal with
zero mean and unit standard deviation) and correla-
tion parameter r. Then L(h,k,r), the joint probability
that U > hand V > K, is given by:

L(h,k,r) = Q()Q(K) + g O | oy )
n=0 (n+1)!

where Q(h) and Q(k) are the upper-tail areas of the
standard univariate normal distribution above the
respective deviates h and k, and where f(n)(h) and
fn)(k) are the nth derivatives of the standard normal



density function evaluated at h and k, respectively
(Zelen & Severo, 1968, Equation 26.3.29). Since X
and Y are defined to have a standard bivariate
normal distribution for nontarget features, the
false positive rate (e) is obtained by setting h=C,
k=R;, and r=r,. The true positive rate (1 —f) is
obtained by setting r=r; and rescaling the two
decision cutoffs as standardized deviates of the
bivariate distribution of X and Y for the set of
target features: h=(C-Ay)/0y and k=(R;—A4y)/oy.

In general, this model requires seven parameters to
specify the ROC curve: three for the preattentive
filter (Ax, ox, and C), two for the cognitive evaluation
(Ay and oy), and the two correlations (r; and rp)
between these processes for the target and nontarget
test features. The predicted ROC curve is generated
from the pairs of true and false positive detection
rates obtained for various values of R;. These values
can be calculated from Equation 1 by a computer
program that uses polynomial approximations for
Q(h) and Q(k) and a finite series of terms to approxi-
mate the infinite sum.?

EMPIRICAL CONSIDERATIONS

To make the model empirically useful, the number
of its free parameters must be reduced, either by
direct assumption or by using independent procedures
for estimating some parameters. One obvious con-
straint to impose is that r; = r, = r, which assumes
that the two decision stages are related in the same
way for both target and nontarget test features.
Other constraints correspond to specific assumed
values for certain of the model’s parameters. Because
the bivariate normal representation uses only a single
parameter to characterize the dependence between X
and Y for each type of test feature, the assumption
that r, = 0 or r, = 0 (or both) is equivalent to
assuming that the two detection stages are inde-
pendent for those test features, and considerably
simplifies Eq. 1. The assumption that o, = 1.0 or
oy = 1.0 implies that the particular decision variable
(X or Y) has the same standard deviation for both
target and nontarget test features, leading to a single-
parameter representation for that marginal ROC
curve: dy = Ay or dy = Ay.

Another approach to constraining the model’s
parameters is to measure performance for the same
test set in several different experimental conditions,
designed to bypass the observer’s perceptual filter or
to vary its selection cutoff. Independent estimates of
the parameters Ay and oy could be obtained by fitting
the ROC curve produced by an application of the
final cognitive-evaluation stage alone. This requires
making the assumption that the information gener-
ated within the process of evaluation (Y) does not
depend upon how the feature gets selected for atten-
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tion, whether by the observer’s own preattentive pro-
cesses (X > C) or by some independent method of
specification. Under this assumption, the ROC curve
for the final evaluation stage can be estimated from
within a separate ‘‘nonsearch’’ condition that by-
passes the filter and specifies each individual target
and nontarget test feature for an explicit evaluation
by the observer.

If it can be assumed that the observer reports all
features selected by his perceptual filter (i.e., that
R, —), then the only unreported target and
nontarget test features are those for which X < C.
This means that the highest point on the model’s pre-
dicted ROC curve, corresponding to the distinction
between reported and not-reported test features, also
represents a point on the marginal ROC curve for the
perceptual filter. For this point, Equation 1 simplifies
to the single term L(h, —o, r) = Q(h), where a=
Q(c) and 1 - = Q[(C—Ay)/04]. Since each search
condition estimates only a single point on the margi-
nal ROC curve for the filter stage, data from a single
condition would be sufficient to specify this curve
only if o, were known or assumed to have some fixed
value (e.g., ox = 1.0). However, both A, and oy
could be estimated using the data obtained from two
separate search conditions, provided that: (1) all test
features selected by the filter were reported in both
conditions, and (2) the value of C changed sufficiently
between conditions. Under these assumptions, the
four parameters, Ay, oy, C,, and C,, would be speci-
fied by the four independent equations for the
predicted detection probabilities.

APPLICATION OF THE MODEL

This section illustrates the application of the two-
stage search model to data from two series of experi-
ments that studied the detection performance of
radiologists interpreting chest radiographs under
various conditions of search. The two series of
experiments used different groups of radiologists and
measured their detection performance with respect to
different types of test sets of target and nontarget
features on selected x-ray films.

Experimental Methods

General radiographic detection. One series of experiments
(Swensson, Hessel, & Herman, 1977, Note 1) studied the detection
of a heterogeneous test set of chest abnormalities. The abnormal
test features comprised a wide range of chest pathology on 27
selected radiographs: 47 subtle, but significant, conditions that
would affect the individual patient’s health or treatment. The 82
nontarget features in the test set were artifacts, normal variants,
and superimposed normal structures, selected because they resem-
bled significant abnormal conditions of various types. Eight
radiologists interpreted the films in each of three separate con-
ditions. In the free-search task, the observer reported all the
abnormal findings he detected on each radiograph. In the
focused-search task, he reported only the abnormal findings
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within certain designated areas of each radiograph, which included
all 129 test features. In the nonsearch task, he evaluated each
feature in the test set (targets and nontargets), specified by the
nature of the alleged abnormality and its precise location on the
radiograph. Every test feature was assigned to one of four
categories in the search tasks (reported with high, medium, or low
confidence, or ‘‘not reported’’) and to one of six categories in
the nonsearch task (‘‘target’’ or ‘‘nontarget’’ with high, medium,
or low confidence).

Detection of pulmonary nodules. Another series of experiments
(Swensson, Hessel, & Herman, 1979) studied the detection of pul-
monary nodules, a single homogeneous type of target abnormality.
The target features in the test set were 48 simulated pulmonary
nodules, produced by superimposing the density distributions of
spherical objects at selected locations in the lung fields of 48
different normal and abnormal chest radiographs. The nontarget
test features were defined by 222 specific locations in the lung
fields of these same 48 radiographs, which contained superimposed
normal structures that resembled pulmonary nodules.

Six radiologists interpreted each radiograph twice, once with
and once without the simulated nodule, in each of two separate
search tasks. The initial free-search task disguised any particular
concern with pulmonary nodules by mixing the 96 test-film pre-
sentations with an additional 48 radiographs containing other
types of pathology and by having the observers report all
abnormal findings on each film. In addition to giving a confi-
dence rating for each reported finding, the observer specified the
position of each localized finding (including nodules) on a super-
imposable grid. In the nodule-search task, the observers reported
only pulmonary nodules, omitting all other pathology on the
radiographs; they sought to avoid missing any nodules by
reporting even low-confidence possibilities. In a final nonsearch
condition, each target and nontarget feature in the test set was
specified by its location on the radiograph; the observer rated
his confidence that each test location contained a target (nodule).

Fits of the Search Model

The confidence ratings that the observers assigned
to the target and nontarget features of the relevant
test set yielded an ROC curve for each experimental
condition. This paper presents only the group ROC
curves, generated from the pooled ratings of all
observers, which were reasonably representative of
ROC curves for the individual radiologists in these
experiments, Figures 1 and 2 show the observed data
points on the group ROC curves for each of the two
series of experiments, plotted in normal-deviate coor-
dinates. Notice that the discrimination between
target and nontarget test features was considerably
better in the search tasks (circular points) than in the
corresponding nonsearch condition (triangular
points). This difference was consistent for all indi-
vidual radiologists in both series of experiments.
With the heterogeneous test set (Figure 1), the group
detection performance was similar in the free-search
and focused-search conditions, and individual radi-
ologists displayed no consistent differences between
the two conditions. In the experiments with the
homogeneous nodule test set, both group and indi-
vidual performances were better when the radiol-
ogists searched for any abnormal conditions (free
search) than when they searched only for pulmonary
nodules (nodule search).

In fitting the search model, the nonsearch condi-
tions were assumed to bypass the radiologists’ initial,

preattentive filter without affecting the explicit cog-
nitive evaluation of each test feature. Thus, the ROC
curve in the nonsearch condition measured the mar-
ginal ability of this final stage to discriminate between
the target and nontarget test features. Estimates of .
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Figure 1. ROC curves for group ratings of the heterogeneous
test set by eight radiologists in three separate conditions, plotted
in normal-deviate coordinates. The lower broken line shows the
maximum-likelihood linear fit to data from the nonsearch condi-
tion, assumed to estimate the marginal ROC curve of the model’s
final evaluation stage. The upper broken line with unit slope
represents the marginal ROC curve assumed for the model’s initial
filter stage (d, = 2.0). The solid curves show the model’s predicted
search ROC curves for C = 1.25and r = 0, .2, .4, .6, and .8.
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Figure 2. ROC curves for ratings of the pulmonary-nodule test
set by six radiologists in three different conditions, plotted in
normal-deviate coordinates. The lower broken line shows the
maximum-likelihood linear fit to data from the nonsearch condi-
tion, assumed to estimate the marginal performance of the model’s
final evaluation stage. The upper broken line is defined by two
separate points (given by the specified values of 1- and a),
close to the group free-search and nodule-search performance
obtained for all reported test locations. These two points were
assumed to estimate the probabilities that target and nontarget test
features would be selected by the model’s initial filter in each con-
dition, which then defined the filter’s marginal ROC curve (4,
= 2.25, o, = 3.0) Solid curves assume that r; = r, = r and show
the model’s predictions within each search condition (C = 1.95
and C = 1.20) forr = 0andr = .2,



the linear parameters Ay and oy, assumed to specify
this marginal performance for each test set, were
obtained using a maximum-likelihood procedure;
these marginal ROC curves are shown by the broken
straight lines fit to the triangular data points in
Figures 1 and 2.

The solid curves in Figure 1 show the ROC curves
predicted by the model for various values of the cor-
relation parameter r; = r, = r, when the preattentive
filter is assumed to be characterized by the single
parameter d; = 2.0 (i.e., ox = 1.0) and operating at
the selection cutoff C = 1.25.% The shape of the pre-
dicted curve depends upon r; it becomes more concave
as r increases, approaching the assumed marginal
performance of the cognitive evaluation stage faster
as the final evaluation rejects more and more of the
originally selected features. The predicted curves for
all values of r end at the same point on the mar-
ginal ROC curve assumed for the filter, which cor-
responds to the probabilities that X > C for both
target and nontarget test features. A change in C
slides this end-point along the filter’s assumed ROC
curve, shifting the search ROC curve predicted for a
given d; and r without much effect on its shape.
Although various assumed combinations of dy and C
would predict virtually indistinguishable ROC
curves, the search data in Figure 1 require the model
to assume that dy > 1.8, C < 1.4, and r > .4 for this
particular test set.

The model’s predicted ROC curves in Figure 2
assume that: (1) virtually all test features selected by
the radiologists’ ‘‘nodule filter”” were reported at
some level of confidence, and (2) the filter’s selection
criterion (C) became more lax in the nodule-search
task. The upper broken line shows the filter’s mar-
ginal ROC curve, as inferred from two assumed
points (specified by the values of 1 —f§ and a given in
Figure 2) that are close to the total proportions of
reported target and nontarget test locations in each
search task. Given the observed level of performance
in the nonsearch task and the constraint that r,=r,,
the search ROC curves have slopes that are too
shallow to be closely fit by the model, particularly
within the nodule-search condition. Figure 2 shows
that (assuming r, = r, = r) the model’s fit is best
under the assumption of independence (r = 0).* This
would mean that the physical characteristics impor-
tant in searching radiographs for the locations of
potential nodules were quite different from those the
radiologists used in evaluating how much an individ-
ual test feature resembled a pulmonary nodule upon
specific consideration.

DISCUSSION
The model presented here formalizes the idea

that skilled observers can develop and apply visual
.stra’tegies which avoid the need for an exhaustive
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evaluation of every pattern feature that might repre-
sent a target. The major function of an initial screen-
ing procedure (or ‘‘preattentive filter’’) would be to
reduce the observer’s search time by limiting the
number of features that required an individual, time-
consuming evaluation. This property of a two-stage
search procedure would often prove useful, even if
the initial filter provided relatively poor differentia-
tion between target and nontarget features. When-
ever the final evaluation discriminates better than the
filter, its marginal ROC curve lies above the filter’s,
and the system’s detection performance improves as
more and more features receive an explicit evaluation.
Such a system might make relatively few false-positive
detections; a stringent setting for the filter’s selection
cutoff would speed the process of search, but would
reduce its accuracy by increasing the rate of omission
errors. This pattern of results is typically found in
speeded search tasks that use symbolic visual mate-
rial—that is, the types of tasks for which sequential
stages of visual search have been proposed (Harris,
Shaw, & Bates, 1979; Hoffman, 1978; Neisser, 1967).

However, it is also possible to envision a two-stage
system whose initial filter has better detection capa-
bility than the evaluation stage that follows it. Such a
two-stage system would not only be faster than a
specific evaluation of all potential target features,
but would also achieve superior differentiation
between the target and nontarget features in any test
set. In this way, the present model can account for
the rather counterintuitive result that radiologists
detected abnormal features much better when they
had to search the radiographs than when no search
was required. The model must assume that the initial
(filter) stage of search provided better differentiation
between the target and nontarget features of each test
set than did the final evaluation stage, as measured
by the explicit ‘‘yes-no’’ judgments about each test
feature. Thus, according to the model, a major
component of the radiologist’s skill must reside in the
‘“‘preattentive’’ visual mechanisms which automati-
cally select particular features of a radiograph for his
explicit attention but which apparently cannot be
applied once attention is directed to a specific feature
of the radiograph.

Visual search is often an integral part of the radi-
ologist’s interpretation procedure, but the precise
search requirement varies considerably with the
specific clinical situation—i.e., the purpose of the
examination and the radiologist’s prior knowledge
about the patient. In many cases, the radiologist
needs to search the entire radiograph for any abnor-
malities present (free search); however, the clinical
situation may direct him to consider a specific
anatomical area (focuscd search), a more-narrow set
of target abnormalities (e.g., nodules), or simply cer-
tain prespecified features on the radiograph (non--
search). Search situations leave the radiologist free
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to decide which and how many of the features on a
particular radiograph he reports as abnormal. Non-
search situations severely constrain the alternatives
available to the radiologist, much as an observer’s
decisions are constrained in most laboratory percep-
tual tasks. The nonsearch tasks in the present experi-
ments, which required an explicit judgment about
each individual stimulus (test feature) in a set drawn
from two distinct populations (targets and nontargets),
used the same formal psychophysical procedure as a
‘‘yes-no’’ rating task. Nonsearch situations in clinical
radiology frequently arise from specific questions
posed during conferences or informal consultations
about particular cases. These situations apparently
place the radiologist at a disadvantage, at least in
judging whether or not the radiographic feature in
question represents actual pathology.

Although the model proposed in this paper is
motivated by the problem of skilled visual search and
applied to the detection of abnormal features on
radiographs, the actual formulation is much more
general. The formal detection model could be applied
to analyze the performance of any ‘‘functionally
serial’’ system that combines the decisions of two
correlated detectors (one restricted to binary output),
and makes a ‘‘positive’’ decision only if both sepa-
rate detectors yield positive outputs. The particular
simplifying assumptions and the methods used to
estimate the model’s parameters would depend upon
the details of the specific application. Pollack and
Madans (1964) considered a model defined by the
concatenation of two independent detectors, whose
decision variables were each represented by equal-
variance normal distributions. This can be treated as
a special case of the present model, in which r; = r,
= 0 and ox = oy = 1.0.® Even for two independent
detectors, Pollack and Madans show that the ROC
curve of the serial detection system lies in between the
separate ROC curves for the two detectors whenever
there is sufficient mismatch in their individual detec-
tion capabilities.
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NOTES

1. The variables X and Y are identifiable only to a linear
transformation. This technical assumption simply picks a scale for
X and Y that avoids introducing unnecessary parameters.

2. A Fortran IV program to generate the predicted ROC curve
for any specified combination of the model’s parameters is avail-
able from the author upon request. It approximates the infinite
sum in Equation 1 by the first eight terms and generates a
specified number of points over any designated range in R;.

3. The similarity in the observed ROC curves for the free-search
and focused-search conditions provides no basis for assuming that
the value of C changed between these two conditions. The
observed differences can be attributed to shifts in R;, which led to
more reported target and nontarget test features at each level of
confidence in the focused-search condition.

4. The fit could be improved by assuming that the correlation
between the filter and evaluation processes is higher for target
features than for nontarget features—e.g., r, > .7and r, € .2.

5. In this special case, the predicted ROC curve for the joint
detection system has only three parameters (A= dy, Ay=dy, and
C) and is specified by a highly simplified form of Equation 1:
L(h,k,0) = Q(h)Q(k).
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