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Reaction time as a measure of
inter- and intraobject visual similarity:
Letters of the alphabet

PETER PODGORNY and W. R. GARNER
Yale University, New Haven, Connecticut 06520

Interobject visual similarity is often measured by the time that subjects require to say that
two objects are not identical, with long RTs indicating high similarity. In Experiment 1,
using a complete set of uppercase alphabetic stimuli, we show: (1) RTs correlate strongly with
direct ratings of visual similarity. (2) Stimuli that are similar as measured by RT or by direct
judgment have the same profile of similarity to all other stimuli in the set as measured by
correlational analysis. (3) The order in which the stimuli are compared has only a small effect
on measured similarity. All of these results indicate desirable properties of any measure of
similarity. Intraobject similarity is a concept pertinent to the relation of an object to itself.
In Experiments 1 and 2 we show: (1) All letters are not equally similar to themselves, since RT
for the ‘‘same’ response is different for different letters. (2) The relation between RT and in-
traobject similarity is opposite to that for interobject similarity, with short RTs indicating
high intraobject similarity. (3) Even though intraobject similarities differ, each letter is more
similar to itself than to any other letter in the set. We discuss the implications of these

results in terms of assumed proximity constraints underlying similarity data.

Confusability as a Measure of Similarity

There are many different ways of defining the
visual similarity between a pair of objects. Psychol-
ogists concerned with developing performance-based
theories of pattern perception, as well as with ex-
plaining possible misperception, have often relied on
a ‘“‘confusion’’ or ‘“‘substitution’’ measure of simi-
larity. Pairs of objects whose members are frequently
confused with, and hence substituted for, one
another would receive high values of similarity by
such a measure, whereas pairs whose members are
not elicited by their counterparts would receive lower
values. Absolute judgment or identification of ob-
jects under degraded viewing conditions is the most
commonly used technique for generating such con-
fusions, but studies of stimulus generalization in
learning and of selective adaptation to repeated
stimuli—studies which can be performed readily on
infrahuman and nonadult populations—also are
based on a variant of the confusion-substitution
paradigm.

The rationale behind a definition of similarity in
terms of confusability is quite simple. In the lab-
oratory as well as in real life, an object is most
often ‘‘confused” with itselff—which is to say the
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object is not confused or misidentified at all. An
object’s similarity to itself, then, is the maximal value
of similarity that the object, as a member of a
pair, can possibly receive. Adopting the relation of
identity as the relation of maximal similarity requires
that nonmaximal values of similarity be allocated in
graded fashion as a function of the frequency with
which an observer misidentifies a nonexistent relation
of identity. Such an assignment of nonmaximal
values of similarity is reasonable given that all
nonidentical objects are not equally confused with
one another.

Reaction Time as a Measure of Confusability

In binary-choice tasks, a type of confusion error
is committed that typically has an experimentally
useful concou. .tant, If asked to respond whether or
not two stimuli are the ‘‘same’” or ‘‘different,”” a
subject will generally answer correctly (for nonde-
manding discriminations) but will occasionally make
an error either by calling two identical stimuli ‘‘dif-
ferent”’ or by calling two nonidentical stimuli the
‘““same.”” The latter type of error is directly anal-
ogous to the confusion errors discussed above for
tasks using absolute judgment or identification, since
two nonidentical objects are classified as being iden-
tical. The interesting covariant of this type of error
is reaction time (RT). The pairs of objects that lead
to incorrect responses of ‘‘same’ are usually re-
sponded to more slowly by the subject. For this
reason, choice RT in tasks requiring visual discrim-
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ination has proven to be an extremely useful and
popular measure of confusability and, therefore, of
similarity (see Shepard & Podgorny, 1978, for a
recent review).

The fact that RT and number of errors are cor-
related in a binary-choice task provides protection
against any extreme °‘‘speed-accuracy tradeoff”’
(Pachella, 1974). Moreover, RT as an experimental
measure offers significant advantages over most con-
fusion measures, since, in order for subjects to com-
mit a sufficiently large number of confusion errors to
permit analysis, experimenters must degrade the
viewing conditions under which subjects operate.
Typical methods of producing such degradation are
by briefly exposing the stimuli, by reducing the con-
trast between figure and ground, and by masking
the stimuli with patterned noise. Since different
types of degradation are known to produce different
patterns of confusions (Garner & Haun, 1978), the
resulting similarity structure is going to depend on
the type of degradation chosen. In addition, even
when the average probability of a confusion error is
fixed at some high value (say, 50%), there are still
likely to be many cells in the resuiting confusion
matrix that have an entry of zero. In contrast, choice
RT can be obtained with sets of stimuli that are
not visually degraded, and every cell of the resulting
RT matrix is guaranteed to contain an informative
experimental observation.

Outline of this Paper

In the present paper, we investigate some conse-
quences of adopting discriminative RT as a measure
of visual similarity:

First, we attempt to validate the RT measure as
a measure of visual similarity by testing for a com-
parable similarity structure between an RT matrix
based on speeded choice judgments and an inde-
pendent matrix based on subjects’ direct judgments
of ‘““how visually similar’’ two objects are.

Second, we explore the extent to which the RT
measures conform to three general *‘proximity con-
straints’’ for any similarity data (Shepard, 1962).
Briefly, these constraints require that: (1) The simi-
larity of an object to itself is greater than the simi-
larity of that object to any other object (the iden-
tity condition). (2) The similarity between two ob-
jects does not depend on the order in which the
objects are compared (the symmetry condition).
(3) Two objects that are maximally similar without
being identical should be approximately equal in
similarity to any third object (the common profile
condition).

Since the frequency with which a subject says that
an object is identical to a reference object is a rea-
sonable measure of the similarity of that object to
the reference, the first proximity constraint codifies

the rationale for using measures of confusion as
measures of similarity. The next two proximity con-
straints appear to exemplify certain of our intuitions
about similarity, but these constraints are not man-
dated by our choice of confusion as the prototypical
measure of similarity and, instead, require more
elaborate assumptions about the model alleged to
underlie a similarity structure (see, e.g., Beals,
Krantz, & Tversky, 1968).

In fact, there is no guarantee that all pairs of
identical objects will be evaluated as equally similar.
From what has been said above about confusion
data, we can conclude only that a given object should
be more similar to itself than to any other object,
but not that every object must be equally similar
to itself. In terms of an n by n similarity matrix,
for which the value in cell (i,j) represents the simi-
larity of row object i to column object j, the di-
agonal cells (i,i) need not be equal for all i. Rather,
the fundamental constraint is that for a given ob-
ject i, cell (i,i) must be greater than both cell (i,j)
and cell (j,i) for all j. Under the above assumption,
it is theoretically possible for cell (i,i) to be less than
cell (j,k)—a result whose interpretation would mean
that object i is less similar to itself than object j
is to object k.

Third, our ultimate objective is to analyze and to
discuss the similarity structure of the particular set
of stimuli we have chosen to study: the uppercase
English alphabet. Such an analysis and discussion
should throw light on possible modes of internally
representing letters and on possible operations in-
volved in the process of internal representation. In
particular, we would like to know whether ‘‘same’’
RTs and ‘“different’’ RTs are pointing to a common
similarity structure and to common principles of
operation within that structure or whether the times
for these separate judgments implicate the im-
portance of different structural principles and
processes.

EXPERIMENT 1

In this experiment, we collected two independent
26 by 26 similarity matrices for the uppercase
alphabet. One such matrix is derived from choice
RT data and is a complete matrix. The other ma-
trix is derived from direct ratings of visual simi-
larity and does not contain diagonal entries.

Method
Subjects
Thirty students and staff at Yale University, 15 men and
15 women, participated as experimental subjects either for pay
or for course credit.

Equipment
Each subject interacted with a Digital Equipment Corpora-
tion VT-50 video terminal that was operated from an adjoining



room by a PDP-11 computer. Each of these terminals was in
a separate noise-shielded booth.

Stimuli

The uppercase English letters of the VT-50 terminal were used
as stimuli. To produce each letter, a subset of cells within a 7
by 5 matrix was illuminated. The size of this matrix was 5 mm
in height X 2.7 mm in width. Every letter except *I’’ touched
the four sides of this imaginary 7 by 5 matrix (see Figure 1).

Procedure

Three independent groups of 10 subjects were formed. We re-
corded the choice RTs of two of these groups, and we collected
similarity ratings from the third. For all groups, a useful distinc-
tion can be made between the two letters that were compared
on every trial. The farget is the letter that occurred first (or,
in the case of one-half of the subjects who rated similarity, the
top letter). The display is the letter that occurred second (or the
bottom letter). In the RT conditions, if the target and display
letters matched, the subject was asked to make an ‘‘identity”’
or ‘‘same’’ response; if the letters differed, the subject was asked
to give a ‘‘nonidentity’’ or ‘‘different’’ response. (In the case of
similarity ratings, only nonidentical pairs of letters were presented,
and subjects were told to rate the degree of similarity between
members of a pair.)

RT: Fixed-target condition. This condition was characterized
by the target’s being kept fixed or unchanged for a long block
of trials. In effect, the subject compared the fixed target letter
in memory with each display letter. The 10 subjects in this con-
dition were divided into two subgroups of 5. For one subgroup,
the probability of a ‘‘same’’ trial was equal to that of a ‘‘dif-
ferent” trial (.50 vs. .50), whereas for the other subgroup a
‘“‘same’’ trial was only half as likely as a ‘‘different” (.33 vs.
.66). Aside from this shift in the probability of the two types
of trials, the two subgroups were treated identically.

The subject sat in front of the video terminal and placed his
or her middle and index fingers of the right hand on the “k”’
and “‘§>’ keys, respectively, of the terminal’s keyboard. The
computer announced on the screen that the next block was
number x, where x ranged successively from 0 to 26. (The zeroth
block was a practice block.) The computer also announced a
target letter for the upcoming block. The target for a given block
was chosen randomly from the complete set of alphabetic charac-
ters for Block 0, was again chosen randomly (after replacement)
for Block 1, and was thereafter chosen randomly (without re-
placement) for all remaining blocks.

When prepared to begin a block of trials, the subject pressed
the “‘return”’ key, and 4 sec later a letter appeared in the center
of the screen. The subject was instructed to press the ‘‘j’’ key
if the two letters—the target held in memory and the display on
the screen-—were identical, and to press the ‘‘k’’ key if they were
nonidentical. The subject’s response terminated the visual charac-
ter, stopped a clock that measured the amount of time the charac-
ter was displayed, and began an intertrial interval that varied
randomly within the range of 1,000 to 1,500 msec. At the end
of this random interval, another display character appeared, and
so on until the end of the block. For an entire block, these
display characters were the 235 letters of the alphabet not identical
to the target (and these appeared either once or twice in the
block depending upon whether the probability of a *‘same’’ trial
was .50 or .33, respectively) plus 25 letters that were identical
to the target. The order of these 50 (or 75) display characters
was randomly permuted anew for each subject and for each block.

The subject rested Y2 min between all blocks except Blocks
13 and 14, between which blocks there was a 5-min break. Errors
were monitored by the computer; and if the subject committed
an error, the computer issued a ‘‘buzz’’ noise. Also, if the sub-
ject took more than 1,000 msec to make a response, the computer
buzzed. Both of these types of trials (actual errors and long laten-
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Figure 1. The 26 alphabetic stimuli that were used in the ex-
periments, The dots appeared as illuminated cells of a CRT.

cies) were considered errors and were repeated later in the block
until an error-free time was collected. Subjects were paid an
amount inversely related to the number of ‘‘buzz errors’’ they
caused, so subjects were encouraged to reach a compromise be-
tween speed and accuracy.

Subjects in the 50/50-probability subcondition completed the
above design in about 1 h. They then repeated the above design
in a second session of 1 h. Subjects in the 33/66-probability sub-
condition completed their version of the above design in about
1.5 h. These subjects did not repeat the design in a second session
since, due to the change in probability, both subgroups now had
equal numbers of entries in the off-diagonal cells of the resulting
RT matrix.

RT: Varied-target condition. This condition was characterized
by the target’s being changed randomly from trial to trial within
a block of trials. Unlike in the previous condition, the subjects
in this condition actually saw both the target and display on
every trial and did not have to remember the target for a long
block of trials. This condition was very similar to the 33/66-
probability subcondition just discussed, since the probability of a
‘‘same”’ trial was .33 in both. Only the procedural differences
between this condition and the aforementioned subcondition will
be listed here.

The major such difference was that instead of blocking the total
set of 1,950 trials (per subject) by target letter, we instead ran-
domly permuted these 1,950 trials, added 50 practice trials, and
broke this whole series into 20 (arbitrary) blocks of 100 trials
each. Since now the subject did not hold the same target in
memory for a block of trials, we presented the target on each
trial just before we presented the display letter. The sequence for
an individual trial was as follows: The target appeared in the
center of the screen for 300 msec and was succeeded by a 500-msec
blank interstimulus interval. Then the display letter occurred in
the center of the screen and stayed there until the subject’s choice
response. The subject’s ‘‘same”’ or ‘‘different’’ response initiated
an intertrial interval of 1,000 msec. As in the last condition, a
clock timed the interval during which the display was present.

Each of the 10 subjects in this condition took a little over 2 h
to complete the above design. There was a 5-min break between
Blocks 10 and 11; between other blocks there was a ¥2-min rest.
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Similarity-rating condition. The 10 subjects in this condition
were asked to give visual-spatial similarity ratings for all possible
permutations of two different alphabetic characters (i.e., 650 pairs).
These subjects were divided into two subgroups according to the
method by which stimuli were presented. For one subgroup, the
method of presenting letters was like that used in the fixed-target
condition discussed above. That is, while holding a target in
memory, subjects witnessed a series of display letters that were
to be judged with respect to the fixed target. For the other sub-
group, the letters were also blocked by target; but in this sub-
condition, the fixed target actually appeared along with the dis-
play. That is, on each trial, the target was presented directly above
the display, and approximately 10 mm separated the two letters
in the vertical direction.

In each subcondition, there were 26 blocks with 25 trials per
block. There was no practice block. For each block of trials,
a particular letter of the alphabet—chosen randomly and without
replacement—was deemed the target against which the 25 display
letters in the block were to be compared. After the subject gave
a rating to a particular target-display combination, a 1,000-msec
intertrial interval began.

The target and display were always nonidentical, and the
subject’s task was to rate, on a 5-point scale (I = very similar;
5 = very dissimilar), how visually-spatially similar the two letters
were. The subjects were urged to use all rating categories and
to confine their judgments to properties of the letters as depicted
in the typography of the VT-50 terminal. Since the numeric keys
1-5 on the terminal’s keyboard are at the upper-left of the key-
board, the placement of letters was changed from the center of the
screen to a position above those keys being used to respond.

If subjects forgot either what the target was or how the scale
worked, they could at any time in a block press the ‘‘t*’ key,
for “‘target,” or the ‘s’ key, for “‘scale,”” and the computer
reminded them of these facts. RT was not measured in this con-
dition and errors were undefined, so the computer issued a
‘‘buzz” only if the subject gave a response that did not exist
within the predefined scale. If a buzz occurred, the computer
asked the subject to rate the current pair of letters again. The
subjects took a little less than 1 h to complete the above design.

Results and Discussion
Mean correct RTs for the combined fixed- and
varied-target conditions are shown in Table 1. Mean
ratings of similarity for the similarity-rating condi-
tion are shown in Table 2. In both of these tables,
rows represent targets and columns represent dis-
plays. The marginals for rows and columns, ex-
cluding the diagonal entries, have also been provided
in the tables. Error data for the two RT conditions
will be treated later in this section and in the General
Discussion. Before addressing substantive questions
concerning any of these data, we present preliminary
analyses that justify collapsing the two RT conditions—
and the two subconditions within fixed-target—into
a single RT matrix, as well as collapsing the two

subconditions of the rating condition.

Preliminary Condensation of Data

The two subconditions of fixed-target. These two
subconditions were distinguished by a difference in
the probability of same-different trials. The major
effect of changing the probability of a ‘‘same’’ trial
from .50 in one subcondition to .33 in the other
was to produce a response bias for saying ‘‘same”’

or ‘‘different’’ that influenced the absolute RT of
these two responses. When ‘‘same”’ trials occurred
with a probability of .50, the ‘‘same’’ response was
an average of 26 msec faster than the ‘‘different”
response, whereas when this probability was reduced
to .33, the ‘“different’’ response was 27 msec faster
than the ‘‘same’’ response. The statistical reliability
of this result was established by the following analy-
sis of variance: For each of the 10 subjects, a mean
‘‘same’’ time and a mean ‘‘different’’ time were
calculated for each of the 26 target letters. The sub-
jects factor was then treated as a random effect and
was nested within subconditions. The above interac-
tion between subconditions and same-different
response was significant [F(1,8) = 7.40, p < .05].

In addition, this analysis revealed that the factor
of letters was a significant source of variation
[F(25,200) = 2.18, p < .01], indicating that all letters
were not equally good at playing the role of target.
However, most important for present purposes is the
observation that the letters factor did not interact
with subconditions [F(25,200) = 1.14], nor was the
Letters by Response by Subconditions interaction
significant [F(25,200) = .79]. The lack of interaction
is our primary justification for collapsing these two
subconditions. The consistency of several correla-
tional analyses to be reported later also supports
the decision to collapse.

Fixed-target vs. varied-target. The question to be
answered here is whether the varied-target condition
can be considered, for all practical purposes, a
‘“‘replication’’ of the data obtained in the fixed-target
condition. An estimate of the reliability of the 325
off-diagonal cells (collapsed across the principal di-
agonal) from the fixed-target condition—an estimate
computed by correlating the collapsed half-matrices
of the two subconditions and then by correcting this
correlation for the effect of averaging the two sets
of numbers by using the Spearman-Brown formula
(Cronbach, 1970)—is r = .597. This is the product-
moment correlation coefficient we would expect to
obtain by repeating the fixed-target condition a
second time with 10 new subjects and by then
correlating this new set of data (the collapsed half-
matrix) with the old set. If, instead, we assume that
the varied-target condition is the new set of data to
be considered for purposes of replication, and if we
then correlate this set with the set from the fixed-
target condition, we obtain r = .605, a value that
corresponds nicely to the value predicted by straight
replication.

Moreover, if we compare the similarity struc-
tures of these respective data sets by using nonmetric
multidimensional scaling as our structure-finding
technique (Kruskal, 1964; Shepard, 1962), we achieve
good correspondence. The method used to make this
comparison (and many additional comparisons to be
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Table 2
Mean Ratings of Visual Similarity for the Similarity-Rating Condition of Experiment 1

Display

B

C

E

F

G

H

I

L M N O P

Q R S T U V W X

31
39
35
32
32
36
18
41
41
33
40
33
34
30
30
35
25
39
40
26
27
33
36
36
42
CM 35

NIYELCHRRIOTOZICrR-"ZOQATHODOW>

30

28
16
19
22
29
22
41
38
29
36
40
40
26
13
28
15
25
40
36
41
40
38
43
40
32

40
34

13
25
36
10
45
42
24
41
33
46
44
10
30
13
38
24
40
24
32
44
46
44
43
34

37
13
29
32

10
38
26
27
44
27
19
36
35
43
29
45
31
40
22
43
44
34
37
42
32
34

35
25
38
37
10

42
25
23
42
31
26
37
40
43
12
44
24
38
19
45
44
37
35
37
38
34

37
29
14
28
30
33

40
43
35
41
34
42
45
21
33
17
35
27
40
32
43
46
44
45
42
36

13
23
43
37
28
24
40

31
41
23
30
18
18
41
35
41
32
42
32
32
33
22
24
31
33
32

40
38
37
37
30
25
43
21

19
32
11
35
35
44
28
45
39
46
11
43
37
38
40
27
42
35

42
32
32
31
16
26

35
43
46
40
38
40
47
19
36
47
26
37

15
42
44
47
35
45
39
40
35
12
28
28
30
37

35 34 31 39 30 39 41 36 32
41 32 12 35 16 26 38 35
42 10 36 20 35 30 45 23 29
40 10 21 22 28 40 42 21 28 41
42 27 45 32 37 27 46 42
44 25 45 24 44 39
20 38 16 37 35 44 29 41
33 45 34 34 37
47 10 39 41
32 16 26
43 33 43 38 35 17 33 32 35
20 34
40 35 32 10 33 36 37 37
28 39 41 37 36 17
47 14 19
40 25 35 10 31 29 37
44 10 31 32 35 45 21 31
10 40 38 41
44

38 37 39

Note—Mean ratings multipled by ten. Hence, 10 = very similar and 50 = very dissimilar. RM = row marginals, CM = column marginals.

discussed shortly) can be described as follows. The
collapsed half-matrix from the fixed-target condi-
tion and the analogous half-matrix from the varied-
target condition were each separately scaled by the
nonmetric scaling program KYST2. Nonmetric
multidimensional scaling seeks to represent the simi-
larities between objects as distances in a low-dimen-
sional metric space. The regression function relating
similarity to distance is constrained only to be mono-
tonically decreasing, and therefore only the nonmetric
or ordinal properties of the original similarity data
are used in fitting this function. The “‘stress’’ of a
scaling solution is a measure of how poorly the re-
gression function fits the similarity data. Hence,
“‘low stress’’ means ‘‘good fit.”’ For all the scaling
applications reported in this paper, we have selected
as options in the KYST2 program (1) the Euclidean
distance formula, (2) stress formula 1, and (3)
Kruskal’s ‘‘primary approach’’ to ties.

We obtained scaling solutions in four, three, and
two dimensions for the fixed- and varied-target con-
ditions. The two-dimensional solutions were then
rotated into maximal congruence by a Procrustean
rotation program, CONGRU, developed for this
purpose by Olivier (Note 1). As a measure of how
well the two rotated solutions overlapped, we chose
the product-moment correlation coefficient that can

be computed between the coordinates of the corre-
sponding letters in the two solutions. This coeffi-
cient for these 52 pairs of numbers—two coor-
dinates for each of the 26 letters in each of the two
solutions—was r = .860. This high correlation co-
efficient means that corresponding letters in the two
sets of data occupied relatively similar spatial
positions as points in the scaling solutions.

Finally, if we consider the ‘‘same’’ responses or
diagonal entries, we obtain a product-moment cor-
relation coefficient between the 26 letters in the two
conditions of r = .636. This correlation, then, sug-
gests that the diagonal entries—as well as the off-
diagonal entries tested above—were fairly comparable.

The two subconditions of the similarity-rating con-
dition. These subconditions were distinguished
by the target’s either being held in memory or
being visually present on every trial. The com-
parability of the two subconditions is easily estab-
lished by noting an extremely high product-moment
correlation between the collapsed half-matrix of one
subcondition and that of the other subcondition:
r = .899. Hence, a reliability estimate for the com-
bined half-matrices is r = .947. In effect, we can
conclude not only that these subconditions are com-
parable, but that the rating data are more reliable
than the RT data. Many more RT observations per



cell would need to be collected in order to bring
their reliability up to that of the rating data. Whether
the two types of data—RTs and similarity ratings—
are providing the same information will be treated
next.

Validation of Off-Diagonal RT as a
Measure of Interobject Similarity

Does discriminative RT, as assumed in the intro-
duction, provide a measure of interobject similarity
or confusability? The answer to this question is con-
tained in a comparison of the data in Table 1 with
those in Table 2. If the similarity structures—the pat-
tern of high and low numbers in the matrices—are
comparable for RT and for direct similarity ratings,
then we will answer affirmatively. One way of com-
paring these two matrices is to correlate them
directly. A product-moment correlation between the
off-diagonal collapsed half-matrix of Table 1 and the
analogous half-matrix of Table 2 gives a coefficient
of r = —.588. The negative sign indicates that
high similarity ratings (low scale values) are related
to long RTs.

A better way of comparing the similarity structures
in these two half-matrices is to use the technique
described earlier in which multidimensional scaling
solutions are obtained for each collapsed half-matrix
separately and are then rotated into approximate,
but “‘best,’”’ congruence., If we perform these oper-
ations, we get the results portrayed in Figure 2.
The vector connecting identical letters is directed
toward the point whose position was established by
the similarity-rating matrix (stress = .213) and is
directed away from the point whose position was
determined by the RT matrix (stress = .265). The
product-moment correlation coefficient between the
coordinates of corresponding points in the two solu-
tionsisr = .788.

The rather close spatial correspondence between
analogous points in Figure 2 permits us to conclude
that the similarity structures inherent in Tables 1
and 2 have a strong common component that we can
attribute to the visual similarity of pairs of noniden-
tical letters. However, the two sets of data, strictly
speaking, are not telling us exactly the same thing.
That is, one set of data is not completely correlated
with, or redundant to, the other set. One way of
making this point is to remove from the RT data
that part of their variance that can be explained
by the rating data. Under the assumption of complete
redundancy, the RT residuals should be insignificant
and explainable in terms of error in measurement.
In fact, if we compute these residuals for the col-
lapsed half-matrix obtained from the fixed-target
condition and for the collapsed half-matrix obtained
from the varied-target condition, and if we then cor-
relate these two sets of residuals, we obtain a signif-
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icant positive correlation (r = .454, p < .01). In
other words, the residuals are reliable.

Off-Diagonal RT and the Proximity Coanstraints

It may seem peculiar or backward to have used
multidimensional scaling as a structure-finding data-
analytic technique when (1) this technique is based
on a metric version of the three proximity constraints
outlined in the introduction, and (2) a specific objec-
tive of this paper is to ascertain whether the RT data,
in particular, conform to the proximity constraints.
However, we as yet have offered no interpretation
of the scaled results and, instead, have used the
scaling technique only to confirm the presence of a
common pattern or similarity structure in two sets
of data. We now wish to show that, indeed, the RT
data (and the similarity ratings) appear to conform
to at least two of the three proximity constraints—
Constraints 2 and 3—if we are willing to grant the
reasonableness of Constraint 1, which states that an
object is most similar to itself. Of the three con-
straints, the first is the most readily justified in
terms of our definition of confusability as the proto-
typical similarity relation. _

Two objects that are very similar have approxi-
mately equal similarity to any third object. It is
easiest to think of this constraint in terms of two
extreme conditions in which two objects are either
maximally similar (without being identical) or maxi-
mally dissimilar. For the two extremely similar
objects, the above constraint says that knowing how
similar one of the two objects is to all other objects
should provide much information about how similar
the second object is to all other objects. That is,
if we define the ‘‘similarity profile’’ of an object
as the list of RTs or ratings for that object in com-

ﬂ / —
z \/ N \ \\\DG/

I'd
‘ L/L \BS
1—1
T< Ec//‘E

R P

Figure 2. Approximaie, but ‘‘best,”” spatial superposition of
two Euclidean, two-dimensional scaling solutions. The vector con-
necting corresponding points is directed away from the point
whose spatial location was derived from the RT data of Table 1
and is directed toward the point whose position was derived
from the rating data of Table 2.
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parison with every other object in the set, then the
similarity profiles of two similar objects should be
similar. For the two extremely dissimilar objects, the
above proximity constraint suggests that it is not
possible to find a common third object that is highly
similar to both objects; and, further, that if separate
similar objects are found for each of the two orig-
inal objects, these separate objects cannot them-
selves be highly similar. That is, except for certain
degenerate cases, the similarity profiles of dissimilar
objects should themselves be dissimilar.

One way of formulating this proximity constraint
in a testable fashion is to ask whether a particular
similarity structure, such as that derived by multi-
dimensional scaling, based on either the raw RTs
or raw similarity ratings of Tables 1 and 2 is com-
parable to an analogous similarity structure based on
some derived measure of similarity that takes into
account the profile similarity of an object’s RTs or
ratings over all objects. If common structures were
found, we could conclude that the raw similarity
measures conform to the above constraint, since they
yield the same structure as do the derived measures
that were designed to embody the properties of this
constraint. One possible derived measure of simi-
larity that takes into account an object’s similarity
profile is a correlation coefficient calculated between
every pair of rows (or columns) of a matrix. This
operation produces a new derived similarity matrix
in which cell (i,j) contains the correlation coefficient
(the ‘‘correlated row or column profile’’) between
row i and row j (or column i and column j).

If we attempt to perform this operation on Tables 1
and 2, we are confronted with a problem concerning
diagonal entries. Table 2 has no such entries, and
Table 1 has entries that clearly violate the first prox-
imity constraint. If we interpret diagonal RTs in the
same way as off-diagonal RTs (i.e., high RT =
high similarity), then the diagonal entries of Table 1
should be among the highest in that table. Instead,
these entries are rather average.

We momentarily leave to one side the question of
why the diagonal entries in Table 1 are as they are,
and instead we assume that the ‘‘true’” diagonal en-
tries conform to the first proximity constraint. Thus,
each true diagonal entry is larger than its largest row
(or column) entry for the RT matrix and is smaller
than its smallest row (or column) entry for the rat-
ing matrix. We next rank order separately each row
(or column) so that each cell contains a value from
1 to 26, where the diagonal entry is always 26 for
the RT matrix and is always 1 for the rating matrix.
We then correlate all pairs of rows (or columns)
to obtain a derived similarity matrix.

To give a concrete example of this derived mea-
sure of similarity, consider the letters W and M as
targets in Table 1. Target W is assumed to be most

like display W, and this pair is given a rank of 26.
Then, from the data, we see that display M is next
most similar (has the longest RT), and that pair is
given a rank of 25; display H is next most similar,
with a rank of 24, N with rank 23, and so on to
F, A, and D, which are given the lowest ranks be-
cause they have the fastest RTs to Target W. Target M
is likewise given the rank of 26 for itself, and then,
from the data, display W is next most similar and is
given the rank of 25, followed by N with rank 24,
H with rank 23, and so on to C, G, and Y, which
have the fastest RTs to target M. These similarity
profiles for these two letters are then correlated
(actual value = .461), and this correlation becomes
the derived measure of similarity. In this instance,
M and W are not only rated as highly similar, and
have the slowest RT for any pair for either letter,
but also have similarity profiles that are similar, as
indicated by the high positive correlation between
their two similarity profiles. Two complete matrices
of these correlations as derived measures of simi-
larity were generated, one from the RT data of
Table 1 and one from the similarity rating data of
Table 2.

Having reached this step, we are again in the
position of wanting to compare matrices for a com-
mon similarity structure. The scale-and-rotate proce-
dure explained above can be adopted for this pur-
pose. Specifically, for both RTs and ratings, the de-
rived similarity half-matrices, based on product-
moment correlations between pairs of rows after
each row has been ranked, were submitted separately
to KYST2. The resulting two-dimensional scaling so-
lutions were each rotated into congruence with the
appropriate set of points (obtained from either RTs
or ratings) shown in Figure 2. For the RT data, the
goodness-of-fit measure for these two solutions was
r = .880. For the rating data, this measure was
r = .918.

In conclusion, the similarity structure extracted
from the raw measures of similarity and that ex-
tracted from the derived measures of similarity are
comparable for both RTs and ratings. The fact that
the derived similarities were chosen so as to embody
the properties of the third proximity constraint sug-
gests that the raw similarity measures inherently
obeyed this constraint.

The similarity between two objects does not
depend on the order of their comparison. The pro-
cedure outlined in the above subsection also permits
a possible test of the second proximity constraint.
This constraint requires that the similarity matrix
should be roughly symmetric about its principal di-
agonal. One way of expressing such symmetry is in
terms of a definition of derived similarity based on
the correlation between similarity profiles, since it
makes a difference whether we correlate pairs of



rows or pairs of columns of a matrix only if the
matrix is not perfectly symmetric. That is, in the
case of a symmetric matrix, an object’s similarity
profile across all row objects is identical to its pro-
file across all column objects. Our interest is not
in perfect symmetry but in approximate or “‘func-
tional”’ symmetry, so we can phrase the following
testable question: In terms of the resulting similarity
structure, does it matter whether we correlate pairs
of rows or pairs of columns in creating our derived
similarity matrix?

If we repeat the analyses of the last subsection
on pairs of columns rather than on pairs of rows,
we can compare goodness-of-fit measures between
various pairs of two-dimensional scaling solutions.
These measures are reported in Table 3. Note that
for both the RT data and the rating data, (1) the
raw measures of similarity, (2) the derived measures
of similarity based on row profiles, and (3) the de-
rived measures of similarity based on column pro-
files, all point to a common similarity structure. For
this reason, we conclude that, to a first-order approx-
imation, the original similarity matrices conform to
the second proximity constraint, which states that a
similarity matrix should be symmetric.

Diagonal RT and an Object’s Self-Similarity

The problem of comparing the absolute values of
measures generated by different responses. The first
proximity constraint, which concerns an object’s
similarity to itself, is the one we assumed in the
foregoing analyses of the other two comnstraints. We
should answer the question why we had to assume
this constraint rather than finding the constraint in
the data themselves. For the rating data, we did not
ask subjects to compare the similarity of a letter
to itself. We did not want to confuse subjects by
asking them to make what might be a bizarre com-
parison. For the RT data, the only potential self-
similarity data are contained in the diagonal entries,
or the ‘‘same’’ responses; and, as mentioned earlier,
these numbers are not large, but average.

However, there are many reasons why the absolute
value of the diagonal ‘‘same’’ responses would be
different from that of the off-diagonal ‘‘different”
responses. A major reason, and one empirically
demonstrated in this paper, is response bias. By
changing the response probability of a ‘‘same”’ trial
in the two subconditions of the fixed-target condi-
tion, we completely reversed the direction of the dif-
ference between average ‘‘same’’ and ‘‘different’’
RT. A second reason for expecting a difference in
the absolute amounts of time is the fact that a
given ‘‘same”’ pair, as a pair, gets repeated many
more times than does a given ‘‘different’’ pair. Such
repetition could easily facilitate the processing of
‘‘same’’ pairs.
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Table 3
Correlation Coefficients Computed Between Coordinates
of Corresponding Points in Pairs of Two-Dimensional
Scaling Solutions

Reaction Times Similarity Ratings

Raw CRP CCP Raw CRP CCPp
Reaction Times
Raw
CRP .880
CCP .902 .833
Similarity Ratings
Raw .785 796 712
CRP 733 758 711 918
CCP 72 .788 164 937 930

Note—CRP = correlated row profile, CCP = correlated column
profile. Each coefficient is based on 52 pairs of numbers. two
coordinates for each of 26 letters in each of two scaling solutions.

Differences between measures generated by the
same response are interpretable. The lesson, then, is
not to worry about absolute time differences be-
tween two different types of response, but to concern
ourselves with relative time differences within a type
of response. Essentially, the previously reported
scaling solutions were all based on the off-diagonal
‘‘different’’ responses and, thus, conformed to this
advice. Applying the same logic to the diagonal
‘‘same’’ responses, we immediately see that all di-
agonal entries are not nearly equal. In fact, the di-
agonal entries vary as much as or more than the off-
diagonal row and column marginals (see Table 1).
Two questions arise: (1) Is there any way in which
the variance of these diagonal entries can be pro-
viding information about self-similarity? (2) Is there
any order or pattern to the variance in the diagonal
entries?

To attempt to answer the second question first,
we have included information about “‘same’’ RTs
in a multidimensional scaling solution derived from
the ‘‘different’’ RTs. In Figure 3 the log area of
each circle is directly proportional to the ‘‘same’’
RT for the encircled letter, and each circle is centered
about the letter’s independently defined position in
a two-dimensional scaling solution.

The particular scaling solution used in this analysis
varies slightly from that previously reported in
Figure 2 for the RT data. That previous analysis was
based on the collapsed half-matrix formed from the
raw RTs in Table 1. The scaling solution in Figure 3
is based on a ranking of RTs. Specifically, (1) each
row of the full matrix in Table 1 was rank ordered
(without respect to the diagonal entry); (2) each
column of the same original matrix was rank or-
dered (without diagonal); (3) these two matrices
based on ranks were added together to form an
average ranked matrix; and (4) this average matrix
was collapsed into a half-matrix and submitted to
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Figure 3. A representation that combines in a single picture
information obtained both from ‘‘different”’ and from ‘‘same’’
RTs of Experiment 1. A letter’s position in this picture was de-
termined by its coordinates in a two-dimensional scaling solution
derived from ranked-RT data of Table 1 (see text). The log area
of the concentric circle encompassing a letter is proportional to
the mean ‘‘same’’ RT for that letter (see the diagonal of the
matrix in Table 1).
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KYST2. The resulting two-dimensional scaling
solution (stress = .281) is shown in Figure 3. In
terms of our previous criterion of goodness of fit
or spatial congruence, the scaling solution in Figure 3
agrees strongly with that for RTs in Figure 2 (r =
.989). This agreement indicates that the common
similarity structure evident in Figures 2 and 3 does
not depend very much on differences in the abso-
lute amount of time that subjects take to respond
to different letters. Later we will isolate a subtle
difference between these two solutions that can be
explained in terms of the effect of scaling ranks vs.
that of scaling raw RTs (even though we use a
nonmetric scaling technique).

From this plot of circle size in relation to spatial
location, it is obvious that there is a correlation be-
tween the size of circles and their position in two-
dimensional space. In general, the larger circles can
be found in or toward the upper-left corner of the
scaling solution. Letters occupying this spatial region
generally contain diagonal lines and generally do
not contain curved lines (J and U are possible ex-
ceptions) or right-angled lines (H is an exception).
The visual property of diagonality, or angularity,
then, appears to be associated with a slow ‘‘same”’
response.

The mapping between self-similarity and RT. The
next experiment directly addresses the question of
whether the variance in the ‘‘same’” RTs can be
interpreted in terms of self-similarity. Note here that
if we adopt the same direction of mapping between
RT and similarity that we used for off-diagonal en-
tries (i.e., high RT = high similarity), then we would

expect that letters in the upper-left corner of the
similarity space shown in Figure 3—the letters with
higher ‘‘same”” RTs—should have greater self-
similarity. However, it is very possible that the effect
of similarity is different for ‘‘same’’ and ‘‘different”’
responses. Given that two objects are actually non-
identical, then it should take more time to discrim-
inate between them if they are highly similar; but
given that two objects are actually identical, then it
might well take less time to match them if they are
highly similar (see, e.g., Posner, 1964).

Error Data

Error rates were generally low for subjects in the
two RT conditions (recall that errors were undefined
in the rating condition) and ranged from .1% to
6.5% for individual subjects, with a two-condition
average of 2.1%. Forty-six percent of the 756 total
errors occurred on trials in which subjects gave
“same’’ responses incorrectly. The pattern of these
errors and their relation to RT will be covered in
the General Discussion.

EXPERIMENT 2

As mentioned previously, there is a problem
with comparing the diagonal and off-diagonal entries
of the matrix in Table 1 since each set of numbers
was produced by a separate response. If the diago-
nal entries can, in fact, be interpreted as measures
of self-similarity, we currently have no independent
evidence with which to establish the direction of
mapping between RT and self-similarity. Does a high
‘‘same’’ RT mean that an object is very similar or
very dissimilar to itself? In the present experiment,
we study a classification task in which the diagonal
entries and the immediately surrounding off-diagonal
entries are measures produced by the same type of
response. This task permits us to evaluate directly
(1) whether the similarity of an object to itself is
greater than its similarity to any other object, and
(2) whether all measures of intraobject similarity are
necessarily greater than any measure of interobject
similarity.

Choice RT is still the dependent measure of
interest; but instead of discriminating and matching
pairs of letters, the subject is now instructed to
classify the two letters on the basis of their visual
similarity. We make this a practicable task by ju-
diciously choosing the subset of letters whose
members the subject must classify. Referring to Fig-
ure 3, we see that the letters HMNW form a rel-
atively compact cluster in the upper-left portion of
the space whereas the letters CDOQ form a cluster
in the upper-right portion of the space. Although
intracluster distance is relatively small for both subsets,
intercluster distance is quite large. Therefore, sub-



jects should find it reasonable to classify any pair
of objects from the same cluster as similar and any
pair from different clusters as dissimilar. We can
then look at the amount of time it takes a sub-
ject to say that two identical letters are similar vs.
the time it takes the subject to say that two non-
identical letters are similar. If the first proximity con-
straint is, in fact, correct and if high visual similarity
facilitates classification based on similarity, then the
former times should be less than the latter.

Method

Subjects

Ten students at Yale, five men and five women, participated
in this experiment for course credit and were included in the
data analyses to be reported later. An 11th subject’s data were
not included due to this subject’s high error rate—a rate twice
that of the next most errorful subject.

Equipment
The same equipment used in Experiment 1 was used in
this experiment.

Stimuli

The letters used as stimuli were created in the same way as
the letters used in the first experiment. However, instead of
studying the entire uppercase alphabet, we chose to study the
subset of letters HMNWCDOQ which can itself be broken, on
the basis of similarity, into the subsets HMNW and CDOQ.

Procedure

The subject sat in front of the video terminal with his or her
middle and index fingers of the right hand placed on the *k”’
and ‘‘j°’ keys, respectively, of the terminal’s keyboard. The
computer announced on the screen that the next block was
number x, where x ranged successively from 0 to 8. (The zeroth
block was a practice block.) When ready to begin, the subject
pressed the “‘return’’ key, and 4 sec later the first trial began.

The structure of an individual trial was as follows. A target
letter appeared in the center of the screen and remained there
for 300 msec. A blank interstimulus interval of 750 msec followed
and was itself succeeded by the occurrence of a second letter,

" the display, in the same spatial location as the target. The onset
of the display was simultaneous with the clock’s start, and the
display remained in view until the subject responded, which re-
sponse also stopped the clock. The next trial began 2,000 msec
after the subject’s response.

The subject pressed the “‘j>’ key if the two letters were from
the same cluster and pressed the ‘‘k”’ key if they were from dif-
ferent clusters. Subjects were told to make their judgments on
the basis of visual similarity, and similarity was defined for them
in terms of intracluster membership. Errors were monitored by
the computer and were indicated to the subject by a “‘buzz”
sound, but error trials were not repeated later in the session.
As in Experiment 1, trials with latencies greater than 1,000 msec
were considered errors.

Within a single block, there were 64 trials, and these trials
represented the 64 possible permutations of pairs (including iden-
tical pairs) of the eight letters. The sequence of the 64 trials
was randomly permuted anew for each subject and for each
block. Between each of the nine blocks, there was a 1-min break,
and the entire session took approximately 1 h for each subject.

Results and Discussion
Error trials were excluded from analysis. For each
subject, a mean correct RT was calculated across
blocks for each of the 64 permutations of letter
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Table 4
Mean Reaction Times (in Milliseconds) for Similar-Dissimilar
Judgments of Experiment 2
Display
Mean C D O Q H M N W Mean
II I
495%* C 497 546 537 550 554 561 557 561
D 538 490 509 590 581 574 577 568 568+%
531 O 502 526 493 518 584 542 571 554
t Q 512 540 508 561 573 579 574 576
11 v
H 581 625 588 620 563 587 583 580 545%%
594+ M 582 603 577 594 603 526 536 586
N 591 587 563 625 589 573 532 593 582
W 575 604 586 605 590 574 589 560 i

numbers for each quadrant are reported
*Mean of all entries in quadrant.
Mean of all off-

Note—Summary
adjacent to the quadrant.
*¥Mean of all diagonal entries in quadrant.
diagonal entries in quadrant.

pairs. Next, for each of these 64 cells, a mean RT

.was computed across subjects. These latter means

are reported in matrix form in Table 4. Note that
the upper-left and lower-right quadrants (II and 1V,
respectively) contain the mean times for the “‘simi-
lar”’ response whereas the lower-left and upper-right
quadrants (III and I, respectively) contain the mean
times for the ‘‘dissimilar’’ response. In this table,
rows represent targets and columns represent dis-
plays, as in Experiment 1,

Is an Object Most Similar to Itself?

We are primarily interested in the ‘‘similar’’
response, since diagonal and off-diagonal entries
within this type of response can be compared di-
rectly (unlike the comparable entries from the RT
matrix in Experiment 1 which contained *‘same”’
and ‘‘different’’ times, respectively). If we confine
our attention to quadrants II and IV, we see that
each of the eight diagonal entries is the smallest
number in its respective row and column of its
respective quadrant. An analysis of variance con-
firmed the reliability of this result across subjects:
A mean diagonal RT and a mean off-diagonal RT
were calculated for each subject and for each quad-
rant (i.e., Iland IV). The F test showed that diagonal
RT was less than off-diagonal RT [F(1,9) = 16.31,
p < .01], but that this factor did not interact with
quadrant [F(1,9) < 1]. In addition, the fact that the
numbers along the diagonal are the smallest rather
than the largest suggests that in this experiment the
direction of mapping between RT and similarity is
negative: Low RT means high similarity.

Another way of testing this assumption of an in-
verse mapping between RT and similarity in the
present experiment is to correlate each subset of
off-diagonal ‘‘similar’’ RTs with the corresponding
“‘different’” RTs from Experiment 1. Recall that in
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Experiment 1 the off-diagonal RTs were shown to
increase with increasing visual similarity. Therefore,
if the RTs in the present experiment in fact decrease
with increasing similarity, a correlation between
analogous cells in the two experiments should be
negative. The correlations for each of the two sub-
sets, although not strong, are indeed negative (r =
—.430 for CDOQ and r = -.714 for HMNW,
based on the respective collapsed half-matrices for
the corresponding subsets in the two experiments).
With the inverse mapping between RT and similarity
established, it is clear that an object is more similar
to itself than to any other object, and the first prox-
imity constraint is validated.

Is Every Object Equally Similar to Itself?

In this classification task, ‘‘similar’’ RT decreases
with increasing visual similarity. Therefore, the re-
sults of Table 4 indicate that the self-similarities
in the CDOQ subset are greater than those in the
HMNW subset, since the mean RTs for the diagonal
entries of quadrant II are less than those of quad-
rant IV [t(9) = 2.32, p < .05]. This result, in turn,
may throw light on the ‘‘same’ RTs or diagonal
entries from Experiment 1, since in that experiment
the four mean ‘‘same’’ times for the subset CDOQ
were all /ess than the four mean times for the sub-
set HMNW, just as they are in the present experi-
ment. We tentatively conclude, then, that in Experi-
ment 1 ‘‘same” RT also decreased with increasing
visual similarity (just as ‘‘similar’> RT did in the
present experiment) whereas ‘‘different’’ RT increased
with increasing visual similarity.

The fact that the first proximity constraint re-
quires only that each diagonal entry in Table 4 be
less than every entry in its row and column of its
quadrant, and does not require that all diagonal
entries be equal, provides the theoretical rationale for
the following empirical finding: In Table 4, there are
many off-diagonal entries in quadrant II that are
less than the diagonal entries in quadrant IV. This
result confirms a prediction that was considered in
the introduction, namely, that two different objects
may be more similar to each other than a particular
single object is to itself (e.g., C is more similar to
O than W is to itself). Furthermore, this result is
troublesome for the metric version of the first prox-
imity constraint that techniques of multidimensional
scaling assume, since the distance between an object
and itself would not be less than the distance be-
tween certain pairs of nonidentical objects (i.e., the
distance between an object and itself could not be
represented as a single point; see, also, Tversky, 1977).

A Problem Concerning the Purity of the Measures
However, earlier we mentioned the presence of a
small but interpretable difference in the scaling solu-

tions for RTs in Figures 2 and 3 that may bear on
this issue. Recall that the scaled points for RTs in
Figure 2 were based on raw RTs, whereas the points
in Figure 3 were based on RTs ranked by row and
by column. Even though we used nonmetric multi-
dimensional scaling in both cases, the two solutions
were not completely identical. We adopted the pro-
cedure of first ranking by rows and by columns in
an attempt to reduce mean row and column differ-
ences among the 26 letters (see the row and column
marginals of Table 1). The necessity or even the
desirability of such a correction depends on the
nature of the information contained in the marginals
of the raw RT matrix. Is the marginal entry for a
given row or column providing information about
inter- or intraobject similarity?

For example, if a particular row marginal of
Table 1 appears to be large relative to other row
marginals, this fact could be interpreted in one of
two ways. Either the letter represented by that row
could be quite similar to many of the 26 display
letters (i.e., the row marginal correctly reflects that
letter’s high interobject similarity to other letters)
or that letter could be an especially difficult letter
to process in general (e.g., difficult to encode or to
compare) irrespective of what other letter is paired
with it. In the latter case, the large row marginal is
not providing information about the letter’s inter-
object relationship to other letters, but is, instead,
providing information about the specific letter itself;
and this latter type of information is related to what
we have been calling intraobject similarity. The pro-
cedure of ranking by rows and by columns reduces
the differences among the marginals of the resulting
matrix and thereby controls for the possibility that
intraobject variables will falsely manifest themselves
as interobject effects.

The relevance of the above analysis is supported
by the observation, to be discussed in the General
Discussion, that both the row and column marginals
of Table 1 are positively correlated with their re-
spective diagonal entries. This same type of correla-
tion can be seen in the present experiment in that
the average RT in quadrant II, for both diagonal
and off-diagonal entries, is considerably less than the
average RT in quadrant IV. The issue we are raising
here concerns the relationship between inter- and
intraobject similarity in the choice task and how
these two types of similarity influence the single
response we measure: choice RT. In the General
Discussion, we consider a recent multidimensional
scaling approach to this problem,

For present purposes, the above analysis leads us
to prefer the scaling solution in Figure 3 over the
scaling solution for RTs in Figure 2. Since the scaling
solution in Figure 2 is based on an analysis of
raw RTs, the letters with long ‘‘same’’ responses and



with long RT marginals are relatively closer together
than are letters with short ‘‘same’’ responses and
with short RT marginals. Specifically, in Figure 2,
the cluster HMNW (for the RT data) is more com-
pact than that same cluster in Figure 3, whereas the
CDOQ cluster in Figure 3 is more compact than
that same cluster in Figure 2. Our claim is that in
Figure 2 the closeness of letters in the HMNW
cluster and the relative lack of closeness of the letters
in the CDOQ cluster is determined in part by the
fact that, in general, subjects took more time to pro-
cess letters from the HMNW cluster than from the
CDOQ cluster. In turn, this same argument helps to
explain why the RTs in quadrant II of Table 4 are
less than the RTs in quadrant IV.

GENERAL DISCUSSION

So far in this paper, we have concerned ourselves
with properties of measurements and with whether
certain RT measurements can be considered valid
measures of similarity, where similarity is defined
in terms of how subjects directly rate objects as
similar and, also, in terms of certain general prox-
imity constraints whose operation confers on data
the ability to represent similarity relations. In this
final section, we want (1) to return to the question
of “‘similarity as confusability’’ by discussing the
errors of Experiment 1; (2) to specify some of the
properties of letters that appear to cause either high
inter- or intraobject similarity; and (3) to discuss
these results concerning visual similarity in terms of
general models of choice RT tasks.

RT and Confusability

In the introduction, we postulated a link between
confusability and discriminative RT. The argument
was as follows: Given that confusability is an oper-
ationally (and ecologically!) reasonable indicant of
what we mean by ‘‘similarity,”” and given that
““confusion’’ errors in which subjects incorrectly
respond ‘‘same’ are positively correlated with
discriminative RTs, it follows that the RT measure
itself can be used as a measure of similarity and,
indeed, should be used since it has several desirable
properties that error measures frequently do not
have. Following that opening argument, we pro-
vided other types of evidence that help to establish
the legitimacy of using RT as a measure of visual
similarity. We return now to an empirical test of our
initial argument by analyzing the errors from Ex-
periment 1.

As expected, the number of errors on trials in
which subjects incorrectly said ‘‘same’’—excluding
errors due to long latencies—was positively corre-
lated with correct ‘‘different’” RT for a pair of
letters. This relationship can be clearly seen by ex-
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amining those off-diagonal cells of the cumulative
error matrix that have the largest entries. For the
following analysis, symmetric cells were combined,
and all cells with an entry greater than four are
reported here. The rank order of these cells from
highest number of errors to lowest number of errors
is: VU, MH, QO, WM, WN, WH, OD, TI, NM,
GC, QC, NH. (Note that the order of letters in a
pair is irrelevant in this ranking because we col-
lapsed across the diagonal.)

However, the cells with the greatest number of
confusions are also the cells that have the longest
RTs. In fact, if we collapse the RT matrix of Table 1
about its principal diagonal and then isolate all cells
that have a mean RT equal to or greater than 500 msec,
we are left with the following letter-pair combina-
tions (again in rank-order from highest to lowest):
VU, WM, NM, QO, TI, WH, OD, MH, WN, XK.
The overlap between this set of letter pairs and the
set obtained with the error measure is remarkably
clear. In addition, the present error data show one
of the previously mentioned weaknesses of confusion
data: Of the 325 cells of the error half-matrix, 171
contain an entry of zero; 91 contain an entry of
one; 40 contain an entry of two; and only 23 con-
tain an entry of three or more.

However, the errors along the diagonal—which
represent those trials in which subjects incorrectly
responded ‘‘different’’ when the letters were in fact
the same—are somewhat more useful, since each of
the 410 errors of this type belongs to one of only
26 cells, whereas the 346 errors we considered pre-
viously were distributed among 325 off-diagonal cells.
If we correlate the diagonal entries of the cumulative
error matrix (which contains numbers ranging from 6
for B to 24 for M) with the corresponding diagonal
entries of the RT matrix in Table 1, we obtain a
correlation coefficient of .539. This high positive cor-
relation is plainly consistent with our previous inter-
pretation of the diagonal ‘‘same’’ RTs as measures
related inversely to intraobject similarity. Stated
probabilistically, our interpretation is that subjects
are more likely to call two identical objects “‘differ-
ent”’ if these objects have low self-similarity.

In summarizing the results from the error data, we
can say that whenever a sufficient number of errors
occur, the pattern of errors confirms what the RTs
have told us.

Properties of Letters and Letter-Pairs

that Produce High Visual Similarity
What can we say about the properties of visual
form that cause two nonidentical letters to be seen
as similar? Figure 4 contains a hierarchical cluster-
ing analysis of the collapsed RT half-matrix from
Table 1 based on the “maximum’’ or ‘‘compactness’’
method of incorporating objects into clusters (see
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Figure 4. Hierarchical clustering solution, based on the
maximum or compactness method of incorporating objects into
clusters, for the RT data of Table 1. The RT scale on the left
can be used to determine, for a given cluster, the minimum RT
that was obtained between any pair of letters in that cluster.

Johnson, 1967). The physical—as opposed to topo-
logical—depth of a cluster in the tree structure is
determined by the minimum RT (i.e., maximum dis-
tance) among all letter pairs in that cluster. For a
two-letter cluster, the branch depth is equal to the
‘‘different’” RT for that letter pair. If we scan along
the lowest branches of the tree and isolate the two-
letter clusters, we are immediately struck by a
“‘theoretical confound’’: Those pairs of letters that
are most visually similar differ only by a distinctive
feature or by a small discrepancy in physical overlap.
That is, the most similar pairs of letters support
indiscriminately either a feature-analytic or template-
matching approach to a theory of representation.

Several pairs of letters make this point quite
clearly: O and Q are rated as very similar and also
give a slow RT, but the difference between them can
be described equally well as one of an additional
feature in the Q as contrasted with the O, or as one
of high overlap between templates. C and G, also
seen as highly similar, have the same dual type of
difference, as do the letter pairs E and F, I and T,
and even K and X. From such pairs, it is indeed
impossible to differentiate a feature and a template
theory of letter discrimination.

Strictly speaking, the simnilarity between the letters
in pair JL and pair MW can be explained by a tem-
plate theory only after ‘‘preprocessing’’ or ‘‘normal-
izing’’ operations have been applied to the letters
to bring them into better registration (Neisser, 1967).
Recently, however, the probable existence of just this

sort of operation has been effectively demonstrated
for rotational transformations (Cooper & Shepard,
1973; Shepard & Metzler, 1971) and for size-scaling
transformations (Bundesen & Larsen, 1975; Larsen &
Bundesen, 1978). In light of these recent findings,
we recommend that renewed attention be given to
template-like theories of pattern perception.

It may be only a Pythagorean coincidence (cf.
Miller, 1956), but a template-theory of similarity
that asserts that letters in a pair (1) are compared
by internally transforming one into the orientation,
size, and what-have-you of the other, and then (2) are
judged with respect to identity (or similarity) in terms
of physical overlap, could easily explain why the
RT and rating data of the present experiments appear
to conform to the three proximity constraints. For,
it is certainly true that a letter will overlap maximally
with itself, will overlap equally with another letter
irrespective of which is “‘on top,” and will necessarily
overlap somewhat with a second letter if each of
these overlaps moderately with a third.

In terms of general visual properties of letters that
might confer high similarity on pairs, the most im-
portant such attribute in the present data appears
to involve the ‘‘curved’’-‘‘noncurved’’ distinction,
where the ‘‘noncurved’ property can perhaps be
further divided into ‘‘diagonality’’ vs. ‘‘rectilinearity.”’
Both the multidimensional scaling solution of Figure 3
and the hierarchical clustering solution of Figure 4
provide support for these distinctions. In the scaling
solution, curved letters generally fall toward the right
of Figure 3 and noncurved letters fall toward the
left; and rectilinear letters typically occur toward the
bottom left and diagonal letters occur toward the top
left. In the clustering solution, the first major break
between letters (at approximately 420 msec) occurs
between a predominantly curved and noncurved set.

Other investigators have attempted more elaborate
classifications of the ‘‘features’’ that combine to
form alphabetic stimuli (Geyer & DeWald, 1973;
Gibson, 1969; Kuennapas & Janson, 1969); and one
of us (Garner, Note 2) has considered the effects of
context and of stimulus variables, such as symmetry,
on letter comparison processes. We currently remain
uncommitted to any descriptive system for charac-
terizing those properties of alphabetic stimuli
that lead to confusion errors and to long RTs.

Directionally Reversed Mappings

of Similarity in the Choice Task
A common distinction among various models of
the binary-choice task is whether a model is a dual-
process or single-process model. A dual-process
model asserts that the ‘‘same’’ and *‘different’’ judg-
ments are each handled by a separate processor,
whereas a single-process model claims that one pro-
cessor can produce both judgments (see Krueger,



1978; Nickerson, 1972). Aside from evidence based
on differences in the absolute amount of time of the
two responses, a major piece of evidence that has
been used to support dual-process models is that
there exist experimental variables that selectively in-
fluence one type of judgment and not the other type
of judgment (e.g., Egeth & Blecker, 1971). The evi-
dence from the present experiments of the reversed
direction of mapping between similarity and RT for
the two types of response might also be taken as
evidence for a dual-process theory.

However, Krumhansl (1978) has recently shown
how it may be possible to obtain this altered map-
ping by taking into account both the distance be-
tween and the density surrounding points in a multi-
dimensional space (see, also, Hutchinson & Lockhead,
1977; Monahan & Lockhead, 1977). In effect,
Krumhans! attempts to predict both ‘‘same’’ and
“different’’ judgments from a representational
medium based solely on psychological distance be-
tween nonidentical objects, and thus this
model—although not intended as a process model—
seems consistent with a single-process approach
based on a concept of ‘‘discriminability.”’ Referring
to our Figure 3, we can state Krumhansl’s predic-
tions in terms of covariation between circle size and
spatial location: The large circles (long ‘“same’’ RT
or low self-similarity) should reside in regions of the
space where many letters are close together and con-
fusable. In fact, the largest circles do occur in one
of the densest regions of the space; but note that
the dense set ““FILT’’ comprises some of the small-
est circles. Another possible test of average spatial
density on the speed of the ‘‘same’’ response is pro-
vided by correlating both the mean ‘‘different’’
responses by rows (row marginals) and the mean
‘““different” responses by columns (column marginals)
with the mean diagonal ‘‘same’’ responses. These
correlations are both positive (r = .617 and r =
.442, respectively) and therefore suggest that a let-
ter’s location in a densely lettered area might influ-
ence the speed of the ‘‘same’’ response (but see our
Discussion following Experiment 2). Finally, in
Figure 3, there appears to be a trend for small cir-
cles to occupy peripheral locations on the spatial
solution’s boundary where, necessarily, there are
fewer close points.

An alternative way of conceptualizing the observed
covariation between circle size and spatial location in
Figure 3 is by again noting the observation that the
largest circles predominantly surround letters that
contain diagonal lines. Therefore, a theory that states
that letters containing diagonal lines—or other dis-
advantageous properties—are processed slowly could
produce a result in which large circles reside in a
dense region of the similarity space (assuming that
letters containing diagonal lines are also seen as
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fairly similar). Indeed, there is much behavioral and
even neurophysiological evidence (Mansfield, 1974)
that suggests that diagonal lines are not processed as
efficiently as vertical or horizontal lines.

These two ways of describing or explaining a co-
variation between inter- and intraobject similarity are
quite different conceptually., According to the dis-
criminability hypothesis, a low value of self-simi-
larity for a letter (high ‘““same” RT) is caused by
that letter’s being close to and confusable with other
letters. Intraobject similarity, then, is a by-product
of interobject similarity. According to the alterna-
tive specific-property hypothesis, low self-similarity
is caused by a letter’s containing certain properties
that are not processed as efficiently as other proper-
ties in a letter-pair comparison. By this latter view,
intraobject similarity is largely determined by pro-
cessing consequences relating to the object itself
and is not determined by the interobject context
in which the object appears. Indeed, the latter
hypothesis predicts that intraobject similarity can
adulterate measures of interobject similarity by rais-
ing and lowering these measures in a manner that
depends on the difficulty or ease with which the
letters in a pair are processed as individual letters.

CONCLUSIONS

With respect to interobject similarity, little doubt
remains that ‘‘different”’ RTs can be interpreted as
measures that are related in positive fashion to
visual similarity. The following evidence supports
this conclusion:

(1) RTs define a similarity structure that has an
unmistakable component in common with the analo-
gous structure defined by subjects’ direct ratings of
visual similarity.

(2) RTs, by conforming roughly to the two prox-
imity constraints that pertain to nonidentical objects,
show an internal consistency as measures of similarity,
irrespective of the nature of the properties or di-
mensions (visual, in our case) that determine differ-
ential similarity,

(3) The highest RTs occur for pairs of letters that
also lead to the greatest number of confusion errors
of the type in which subjects incorrectly respond
‘‘same,”” and we assume that confusion with respect
to an object’s identity is the prototypical indicant of
what one means by ‘‘highly similar.”’

With respect to intraobject similarity, we have
provided the following evidence:

(1) All “‘same” RTs are not identical. Hence, if we
hope to use these numbers as measures of intra-
object similarity, we must accept the conclusion that
all objects are not equally similar to themselves.

(2) When subjects judge letters as similar-dissimilar
rather than as same-different, RT to say ‘‘similar”’
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to identical objects does conform to the first prox-
imity constraint, which requires that an object be
most similar to itself. Still, as found in (1) directly
above, such intraobject similarities are not all equal.

(3) Our results indicate that ‘‘same’’ RT varies in-
versely with intraobject similarity: High RT means
low self-similarity.

(4) When subjects make an error by calling two
identical objects ‘‘different,”’ they do so more fre-
quently for objects that have low self-similarity.

What remains to be established is the processing
connection between the two similarity constructs.
People have forceful intuitions about what consti-
tutes visual similarity between pairs of nonidentical
objects, but intuition breaks down when pairs of
identical objects are considered. A general model of
same-different processing must accommodate par-
simoniously both types of object similarity.
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