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Notes and Comment

Improvements on a new model
for choice reaction time
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The past decade witnessed construction of a
unique theory of simple and disjunctive response
time (RT) based on ideas drawn from both Hull
Spence learning theory and Thurstonian psycho
physical scaling (Grice, 1968; Grice, Hunt, Kushner,
& Morrow, 1974; Grice, Hunt, Kushner, & Nullmeyer,
1976). Now, in a recent theoretical extension, Grice,
Nullmeyer, and Spiker (1977) propose a new theory
of choice reaction time (CRT) and provide methods
for analyzing RT distributions designed to expose the
underlying theoretical mechanisms thought respon
sible for response time duration and variability.
Derivations for this new theory are, regrettably, in
error and therefore the conclusions drawn from anal
yses of RT distributions may require modification.
The purpose of the current improvement is to cor
rect the erroneous derivations and suggest a new
approach toward testing the theory's RT predictions.

A major assumption in the theory of CRT ad
vanced by Grice et al. (1977) is that a stimulus pre
sentation triggers a deterministic development of re
sponse strength which continues until a response cri
terion is first exceeded. The development is deter
ministic, but the criterion is a random variable and
therefore the time to reach the criterion is a random
variable. The model for two-response CRT also
assumes that following a stimulus presentation, two
independent deterministic processes begin: "It is our
conception that there is a separate function of time
describing the growth of excitatory strength to each
response contingent upon the presentation of a given
stimulus" (p. 434).

The first of these functions describes the accrual
of excitatory strength with respect to a correct re
sponse criterion. Because the criterion is a random
variable, the time to accrue excitatory strength equal
to the criterion is a random variable with probability
density function fc(t) [in Grice et al., 1977, this den
sity function is labeled y(Ct)]. The second process
accrues strength until a criterion for an error is
reached. Again, the criterion is a random variable
and fE(t) we will define as the density function of the
time for the second process to reach the error criterion.
The model specifies that the process first to reach
its criterion elicits a response-either correct or error.

Thus, fc(t) and fE(t) are not observed directly, but
their proper estimation is of singular theoretical
importance.

Up to this point, the formal properties of the theory
are similar to race or competition theories proposed
by LaBerge (1962), Link (1968), and Gibbon and
Rutschmann (1969), to mention a few. The new
assumption contained in the theory is that the dis
tributions of criteria have a known form (in fact,
normal) and constitute the major source of variabil
ity in response time. By also specifying the function
that relates the development of, say, correct response
strength to time, it may be argued that the percen
tage of correct response strength accruals reaching
criterion prior to a particular time measures the
percentage of excitatory strengths less than a value
of the criterion distribution. The distribution in time
of correct response strength accruals may then be
used to determine such properties of the criterion
distribution as its mean and variance.

Of course, the percentage of correct response
strength accruals reaching criterion prior to a par
ticular time is not observed. Rather, the correct
response-time distribution is observed, and this dis
tribution consists of those instances where the accrual
of correct response excitatory strength reached a
variable criterion prior to the error response excita
tory strength reaching its variable criterion. In order
to determine properties of the correct and error
variable criterion distributions, the observed distri
butions of correct and error response times must be
somehow decomposed into the distributions of time
to reach criterion for the correct and error processes
when the processes are not racing to their respective
criteria. Then determinations of the criteria distribu
tions can proceed. It is the failure to derive this
decomposition properly that draws the theory into
major difficulties.

Unambiguous derivations of the theory's predic
tions depend upon a more refined partition of theo
retical and observable variables than those contained
in Grice et al. (1977). In particular, our discussion
of correct and error responses will always intend that
derivations are conditioned on a particular stimulus
being presented. That is to say, Our derivations are
not performed for the marginal distributions of cor
rect and error responses, but are conditioned upon
the occurrence of a particular stimulus. Moreover, to
clearly distinguish between the time required for cor
rect response strength to reach the correct response
strength criterion and the correct response time,
which depends on the correct response strength cri-
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whereas Equation 3 gives (correctly)

probability of the absence of a prior error." The
reader will notice that y(Ct) corresponds to fdt)
in Equation 3 above, but beyond this there is little
further correspondence between the two equations.

Obviously, any calculations depending upon Equa
tion 3G are likely to be in error. Thus, it is not a
surprise that in determining y(Ct) Grice et al. (1977)
obtain (incorrectly),

(4)

(4G)

The major difference between Equations 4 and 4G,
besides the obvious multiplication by P(C) in Equa
tion 4, is the difference in the denominators. For
Grice et al. (1977), the denominator is the probability
of the absence of an error prior to time t, and is to
be estimated by 1 minus the proportion of trials on
which errors occurred before t. By contrast, the
denominator of Equation 4 is 1 minus the probability
that the error response strength reached criterion
before time t-a probability that cannot be estimated
directly from the observed proportion of trials on
which errors occurred before time t.

A second difficulty arises from an attempt to esti
mate values of the defective density y(Ct). The authors
argue that this unknown, but desired, density can be
estimated by

(2)

The assumed independence of the correct and error
accruals permits a straightforward calculation of the
probability of a correct response. We note that if
tc is the time when the accrual of correct response.
strength reaches criterion and if te is the time when
the error response strength reaches criterion, then
te < t, results in a correct response. Let fC,E(te, tel be
the joint probability density function for the com
pletion times of the two processes. By virtue of
independence, this joint density function equals
fdtc)fE(te). The probability of a correct response is
then calculated as

THEORETICAL RESULTS

P(C) =1'000

fc(t)[I- FE(t)]dt (1)

where FE(t) =1;/ fE(te)dte·

To compute the probability density function for ob
served correct responses, we first define

terion being reached prior to the error strength cri
terion being reached, the discussion below uses the
word "process" to refer to the unobservable mecha
nism that accrues response strength as a function of
time.

and note, by the argument put forth above, that

so that the function ~(t) does not integrate to 1.0
and is therefore a defective probability density func
tion. However, ~(t) can be transformed into a legit
imate density function by divisionby P(C), producing

(5G)

where the numerator is "the proportion of trials on
which the correct response occurred at t (sic), and
P(~t) is the proportion of trials on which errors
occurred before t."

There are two objections to these substitutions.
First, the density in the numerator of Equation 4G
cannot be estimated by the substitution of a propor
tion, which estimates an integral of the density func
tion, for a value of the density function. Second,
the value of P(~t) is the probability that an error
occurs before time t, but it does not equal the proba
bility that the error process reaches criterion before
time t, which is What, according to Equation 4,
should be contained in the denominator. Thus,
neither suggestion concerning estimation results in an
analysis that can be applied to obtained data.

In the event that Equation 4 is used to estimate
fdt), we must calculate the unobserved value of
FE(t), the probability that the error process, consid-

(3)
fdt)[1 - FE(t)]

hc(t) = P(C)·'

which is, given the theory, the density function for
correct responses.

We may now compare Equation 3 with the corre
sponding equation in Grice et al. (1977), also labeled 3,
which is

where y(Ct) is "the theoretical probability density of
the correct response reaching criterion at t, depend
ing purely on the stimulus input and the criterion
distribution of that response," and 1- p(~t) "is the



ered alone, reaches its criterion by time 1. To perform
this calculation, we note first that the (marginal)
probability of an error is

peE) = faoo fE(t)[1 - Fc(t)]dt.

The density function for observed errors can be cal
culated using a method identical to that for obtaining
Equation 3, which results in the defective density
for observed errors,

We find the legitimate density function for observed
errors to be

(5)

Then Equation 5 leads the unknown density for the
error process to be represented as

The probability that the error process reaches its
criterion by time t, when considered independently
from the correct response process is

FE(t) =fat fE(t*)dt*

t hE(t*)
= P(E) fa 1 _ Fc(t*) dt* .

Thus, an appropriate representation for the unknown
density for the correct response process, obtained by
substitution into Equation 3, is

f (t) - P(c)hc(t) . (6)
c - h (t*) ,

1 - P(E)fa\ _~c(t*) dt*

where hdt) and hE(t) are the density functions for
correct and error responses, respectively.

The difficulty with using Equation 6 to estimate
fdt) arises from the fact that we must simultaneously
estimate both hdt) and hE(t) and also estimate the
value of the integral in the denominator of Equa
tion 6. Rather than pursue this method further, it
may prove useful to calculate the density function of
the time to criterion for the independent correct and
error processes by investigating the assumptions of
the theory in greater detail.
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A NEW APPROACH TO
TESTING THE THEORY

An additional assumption contained in Grice et al.
(1977) is that the variable criteria are normally dis
tributed. Because the accrual process is deterministic,
there corresponds to each value of the criterion a
unique value for excitatory strength. Moreover, be
cause excitatory strength is a function of time, there
corresponds to each value of excitatory strength a
unique value of time. Therefore, for each value of a
variable criterion there is a unique, corresponding
value of excitatory strength which has a unique cor
responding value of time. It follows that the response
time density function can be treated as the density
function of a transformed normal random variable
where the transformation is simply the inverse func
tion for the accrual process.

We may now turn to the computation of fdt) ,
the density function for the time at which the accrual
of correct process excitatory strength stops. In this
regard, it is useful to review a fact concerning func
tions of random variables. Let X be a continuous
random variable with probability density function,
say, n(x), and suppose that t = H(x) is a strictly
monotone differentiable function of x. Then the ran
dom variable T, defined as T = H(X), has probabil
ity density function given by,

fcCt) = n(x)I~~ I,
where x is expressed in terms of 1.

In the simplest form of the CRT theory proposed
by Grice et al. (1977), the relationship between
excitatory strength and time is

X = a - be- cT,

where X is normally distributed, with mean IJ and
variance x. To determine the density of T, we need,
first,

= bee-ct.

Then,

1
fc(t) = . rr.::::- exp[( - 1I2le)(a - be - ct -1J)2]bce - ct,

V ~TTX:

(7)

where truncation of n(x) necessitated by time being
nonnegative is ignored for simplicity.
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Now that fc{t) is known, we have computed the
probability density function for the termination
times of the correct response process. Were one to
test the theory against the data, one would, pre
sumably, seek out through chi-square minimization
those values of lA, x, a, b, and c that provide a best
fit to the distribution function,

by using standard procedures. Alternatively, one
could apply maximum likelihood or method of
moments techniques to the estimation of the param
eters. However, in the case of the Grice et al. theory
of CRT, estimation of fc{t) cannot proceed directly
for it is not fc{t) that is observed but, rather, correct
responses occurring prior to an error.

The density function for the error process can be
determined in a manner similar to that used in ob
taining Equation 7. Suppose that the relationship
between excitatory strength and time is

y = u - ve-w~

where Y is normally distributed with mean m and
variance L. The result is:

fE(t) = v;nL exp[(-1I2L)(u-ve- wt-m)2]wve- wt •

(8)

Since the processes for correct and error excitatory
strengths are independent, we can compute probabil
ity of a correct response by using Equation 1. Then
the density function for the observed correct responses
follows by applying Equation 3. Again, a similar
method leads to the determination of the observed
error distribution by using Equations 7 and 8 in
Equation 5.

CONCLUSION

The practical difficulties in pursuing the methods
outlined above are disturbingly large. For example,
formulating the theory in the simple manner proposed
here exposes the fact that there are at least 10 param
eters involved in specifying the density functions for
the correct and error processes. These are a, b, c, lA,
x, u, v, w, m, and L. If the normal distributions for
the variable correct and error criteria were to be trun
cated to ensure that negative response times are
impossible, then two additional parameters arise.
The frankly alarming number of parameters needed
to provide a cogent test of the theory causes at least
this investigator to question the theoretical value
of the theory, especially when several other current
theories of choice reaction time could probably

account for the basic empirical facts with far fewer
parameters.

The analyses presented in this improvement
were conditioned on the presentation of a particular
stimulus and do not apply to the analysis of marginal
correct and error RT distributions. These marginal
distributions are properly considered to be mixtures
of distributions. For example, the marginal error RT
distribution equals the weighted average of the error
RT distributions resulting from presentations of the
two stimuli. The weights are estimated by the number
of errors in a distribution divided by the total number
of errors. The parameters of the resulting distribu
tion of response times are generally not the weighted
average of the parameter values obtained by separate
analysis of each separate error distribution. In fact,
the mixture (of distributions) often results in a dis
tribution which is not a member of the same family
as the distributions being mixed. In this case, applica
tion of family-dependent estimation methods would
lead to questionable results. Furthermore, the idea of
simply combining all error responses into a single
distribution and proceeding with estimation is iden
tical to analyzing a marginal distribution that is a
mixture of distributions and will lead to problematic
conclusions.

Beyond these practical problems are theoretical
calculations which, in spite of the comments by Grice
et al. (1977, p. 432), are best pursued by formulating
the theory rigorously and applying straightforward
mathematical methods in deriving the predictions of
the theory. If the techniques contained in this "im
provement" had been applied to the formulation of
the proposed theory, then the authors' assertions
regarding the value of their theory, as opposed to
the value of other current theories, might have merit.
But the analyses of data are based -on erroneous
derivations and hardly support the "scientific opti
mism" subscribed to by the authors.
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