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The learning of response patterns
in choice situations

ARMANDO MACHADO and RICHARD KEEN
Indiana University, Bloomington, Indiana

This study presents a theory by which to understand how pigeons learn response patterns in simple
choice situations. The theory assumes that, in a choice situation, patterns of responses compete for the
final common path; that the competition is governed by two variables, the overall reinforcement prob-
ability obtained by emitting the patterns, T, and the differences in reinforcement probabilities among
the patterns, D; and that the ratio D/T determines the final strength of specific response patterns. To
test these predictions, three experiments were run in which pigeons were more likely to receive food
when they pecked the momentarily least-preferred of three response keys. On the basis of previous re-
search, it was predicted that the birds would be indifferent among the keys (molar aspect) and would
also acquire a response pattern that consisted of pecking each key once during three consecutive tri-
als (molecular aspect). The present theory went further and predicted that the strength of that pattern
would increase with the ratio D/T. In the first two experiments, D was manipulated while 7 remained
constant, and in the third, 7 was manipulated while D remained constant. The results agreed with the
theory, for the strength of the response pattern increased with D and decreased with T, whereas over-

all choice proportions were always close to the matching equilibrium.

Probably the most robust finding in the study of choice
is Hermstein’s (1961, 1970) matching law: In a two-choice
situation, the proportion of responses to one alternative
equals the proportion of reinforcers obtained from that
alternative. In symbols,

B R
B, + B R, + Ry’

o))

where B, and B, are the number of choices of alternatives
1 and 2, respectively, and R, and R, are the number of re-
inforcers obtained from the same alternatives.

For some researchers, matching is a by-product of an
animal’s sensitivity to local variables—in particulaf, to
the momentary probabilities of reinforcement (see, e.g.,
Hinson & Staddon, 1983; Shimp, 1982b; Silberberg,
Hamilton, Ziriax, & Casey, 1978). For example, Shimp
(1966, 1969) has argued that pigeons and rats match be-
cause they track the current probabilities of reinforce-
ment associated with the choice alternatives and choose
the alternative with the highest momentary reinforce-
ment probability. By tracking local probabilities of rein-
forcement, the animal patterns its consecutive choices in
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ways that generate the matching relation when single re-
sponses are aggregated. Because this viewpoint stresses
the role of point variables, it has been termed a molecular
approach.

Other authors disagree. For them, molar matching stems
from the animal’s direct sensitivity to the rates of rein-
forcement, the rates of responding, and the correlation
between these two rates (see, e.g., Baum, 1973; Rachlin,
Battalio, Kagel, & Green, 1981; Staddon, 1983; Staddon
& Motheral, 1978). That is to say, the choice processes
“operate on the same aggregations of behavior that show
matching” (Williams, 1988, p. 189). According to this
viewpoint, single responses occur in proportion to their
overall strength, and strength is determined by rein-
forcement rate (e.g., Herrnstein, 1970; Heyman, 1979; Kil-
leen, 1981; Nevin, 1969, 1979). Because this viewpoint
stresses temporally extended variables as the key ingre-
dients of the choice process, it has been termed a molar
approach.

The preceding summary (see Williams, 1988, for a de-
tailed analysis) highlights the fact that, to some extent,
the difference between molecular and molar approaches
revolves around the importance assigned to response pat-
terns in choice situations. For the former approach, re-
sponse patterns are the primary phenomenon, and match-
ing is their derivative; for the latter approach, matching
is primary, and response patterns are an occasional de-
rivative. This difference in approach naturally raises the
question, What do experiments show about the presence
or absence of response patterns in choice situations?

The empirical evidence has been mixed. On the one
hand, in some studies, animals have exhibited reliably the
patterns of choices predicted by momentary maximizing
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accounts, patterns that, when aggregated, yield the match-
ing relation. For example, in a two-key, discrete-trials
equivalent of a concurrent variable-interval variable-
interval schedule (Conc. VI schedule, for short), with re-
inforcement probabilities in a 3 to 1 ratio, Shimp (1966)
observed that pigeons acquired the predicted maximiz-
ing pattern, a sequence of two consecutive choices of the
richer key followed by a single choice of the other key
(see, also, Shimp, 1969; Silberberg et al., 1978; Silberberg
& Williams, 1974). Moreover, studies that have shown
that pigeons and rats can learn response patterns such as
win—stay, lose—shift strategies (Hiraoka, 1984; Shimp,
1976; Williams, 1972, 1983, 1991) or response runs of
specific length (Shimp, 1982a) may also be interpreted
as (indirectly) supporting the claim that global regulari-
ties in behavior, such as matching, are a derivative of the
local organization of behavior.

On the other hand, molar matching has also been ob-
tained in the absence of the patterns predicted by the
molecular accounts. For example, using a discrete-trials,
Conc. VI schedule, Nevin (1969, 1979) found molar
matching but no evidence that changeover probability
increased with run length-—as sensitivity to changes in
local reinforcement probability would predict—or that his
pigeons had learned the specific sequences of choices
predicted by momentary maximizing. Similarly, in a
free-operant study with Conc. VI schedules, Heyman
(1979) also found no evidence of tracking momentary
reward probabilities (see, also, Herrnstein, 1997, Chap. 3).
Furthermore, studies that increased the interval between
consecutive choices found that local response patterns
were disrupted but matching still held (Silberberg &
Williams, 1974; Williams, 1991). Finally, it is also the
case that molecular theorists have advanced mainly com-
puter simulations (e.g., Shimp, 1966; Shimp, Childers,
& Hightower, 1990; Silberberg et al., 1978), but na direct
evidence, to show that the processes they have identified
underlie the molar regularities observed in Conc. VI
schedules.

Molecular theorists have attempted to explain the pre-
ceding results in a variety of ways. For example, Shimp
(1982b) has claimed that the tacit assumption of local
randomness contained in most molar theories is contrary
to fact and that Nevin’s (1969, 1979) results are simply
irrelevant to the molar-molecular issue because, in
Conc. VI schedules, “there is a statistically forced time-
allocation matching relation [the pingpong ball effect]”
(pp. 114-115). On the other hand, Silberberg et al. (1978)
argued that a slightly different decision rule—momen-
tary maximizing with memory errors or momentary max-
imizing with response perseveration—may account for
the molar and molecular data from a variety of procedures.
These accounts have not remained unchallenged, however
(see Shimp, 1990; Shimp et al., 1990; Williams, 1990;
see, also, Hineline, Silberberg, Ziriax, Timberlake, &
Vaughn, 1987; Machado, 1993), and 30 years after the con-
troversy first surfaced, we are still far from its resolution.

A major difficulty in assessing the foregoing results
and arguments is that we know very little about the con-

ditions in which specific response patterns occur in choice
situations, the rules of their acquisition, and the deter-
minants of their asymptotic strength. Without a theory
that could be conceived of as the equivalent of the match-
ing law for response patterns—a quantitative formula-
tion relating the strength of particular response patterns
to the reinforcement contingencies—our accounts (no
matter how reasonable they may be) will remain post hoc,
and our intuitions (no matter how plausible they may
sound) will remain disconnected and hard to refute. Hence,
the major goal of the present study is to sketch and test an
integrated, reasonably precise, and empirically sensitive
theory of what determines the strength of response pat-
terns in simple choice situations.

The remainder of this paper is organized as follows.
First, we describe the assumptions of the theory and de-
rive some quantitative consequences from these assump-
tions. Next, we report the results of three experiments
designed to test the theory. And finally, in the General
Discussion section, we relate the theory and experimen-
tal findings to the broader issues of matching and re-
sponse patterning.

In developing a theory of response patterns, to avoid
potential misunderstandings, we state first what the theory
to be proposed is not about. It is not a general theory of
choice, but a theory to be applied to situations in which
two or more similar responses (e.g., left and right key-
pecks in pigeons, or leverpresses in rats) are reinforced
with qualitatively identical rewards (e.g., food); it is not a
theory of the effects of single reinforcers, but of the cu-
mulative effects of many reinforcers on response patterns;
it is not a theory about the acquisition of response patterns,
but about their asymptotic strengths; and, as will be obvi-
ous, it is not a fully articulated theory (e.g., it does not deal
with temporal issues), but only the beginning of one.

Our guiding question 1s this: In a simple choice situa-
tion, what factors determine the strength of a response
pattern? For classification purposes, we can divide the
set of all factors into two subsets—the first including the
factors related to the reinforcement contingencies, the
second including the factors specific to the pattern under
examination. To isolate the first subset, assume, for the
moment, that all the patterns are equal in terms of the
second subset of factors and that only six patterns, R,
R,, ..., Ry, compose the total population of patterns.
This situation is illustrated schematically in the horizon-
tal axis of Figure 1, top panel. At a particular moment,
each pattern has an associated reinforcement probabil-
ity, illustrated in the figure by the height of the vertical
lines. The six reinforcement probabilities define a pay-
off function over the population of patterns, and our goal
is to identify the properties of this function that may de-
termine how a pattern’s strength changes.

To that end, we conceive of the patterns as being in an
arms race, competing among themselves for the final com-
mon path. Their competition is governed by two variables:
the average reinforcement probability across the popula-
tion of patterns (represented by the dashed horizontal line)
and the differences in reinforcement probabilities across
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Figure 1. The top panel shows a population of response patterns, R1, R2, ..., R6, and the reinforcement prob-
ability associated with each pattern. The horizontal line is the average of the probability function, 7. The symbols
A show the differences among the reinforcement probabilities. The bottom panels show two populations of re-
sponse patterns and their respective reinforcement function. In the left panel, the average reinforcement proba-
bility is higher for Population A than for Population B, but their variances are equal. In the right panel, the av-
erages are equal, but the variance is greater for Population A. Throughout, it was assumed that the patterns had

the same strength. ~

the patterns (represented by the A symbols). Henceforth,
we will refer to this set of differences generically as the
variance of the reinforcement function.

Consider now two populations, A and B, exposed to
the reinforcement functions drawn in the bottom left
panel of Figure 1. The functions have the same variance
but different averages. We predict that the strength ac-
crued to the pattern associated with the highest rein-
forcement probability (i.e., the rightmost pattern of each
population) will be higher in population B than in popu-
lation A. In other words, for constant variance, the lower
the average, the stronger the winning pattern will be.
There are two ways to understand intuitively this predic-
tion. Functionally, all else being equal, when the overall
reinforcement probability is higher, the pressure to
strengthen the winning pattern is lower, for regardless of
what the animal does, it obtains a greater amount of
food. Mechanistically, lowering the overall reinforce-
ment probability makes the discrimination among the
differences in the payoff probabilities easier to learn.

The bottom right panel shows the effect of varying the
set of differences in payoff while keeping the average
payoff constant. In this case, we predict that the strength
accrued to the pattern associated with the highest rein-
forcement probability will be higher in population A than
in population B. The intuitive reason for this prediction
is that, all else being equal, large fluctuations in the over-
all reinforcement probability increase the pressure to
prefer the pattern reinforced with the highest probability,
and larger differences are easier to discriminate than
smaller ones.

Combining the two foregoing ideas suggests the hy-
pothesis that the strength accrued to the winning pattern
will increase—according to some function f—with the ratio
of the variance to the average of the payoff function. This
ratio is a sort of Weber fraction in the domain of reinforce-
ment probabilities. Furthermore, what was just stated for
the winning pattern applies also, but in the opposite di-
rection, to the pattern associated with the lowest rein-
forcement probability: The larger the set of (negative)
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differences, or the lower the average of the payoff func-
tion, the more that pattern should lose its strength.

However, reinforcement contingencies are not the sole
determiners of the strength of a response pattern. Another
subset of factors needs to be considered, for this subset
includes factors that modulate the amount by which the
reinforcement contingencies change the strength of a
pattern. Consider, for example, memory constraints, a
topic also referred to as stimulus control. Variables such
as the type, the number, and the age of the cues that must
be remembered to perform a pattern may restrict the ef-
fects of reinforcement on the strength of that pattern. To
illustrate, as the number of cues that must be remem-
bered increases, variability in the performance of the pat-
tern typically increases (see, e.g., Gallistel, 1990; Mech-
ner, 1958; Shimp, 1982a). As another example, intuition
suggests and experiments confirm that, as the interval
between responses increases, the strength of a response
pattern decreases (Shimp, 1976; Silberberg & Williams,
1974; Williams, 1983, 1991). In the extreme, memory
limitations may also explain why pigeons simply cannot
learn complex response patterns, such as the sequence
RRRLRLLL (Machado, 1992).

In addition to memory constraints, the cost of per-
forming a pattern is also likely to modulate the effects of
reinforcement. Compare, for example, the pattern of al-
ternating between two keys with the pattern of repeating
the previous response. For the same frequency of occur-
rence, alternation is probably more costly than repeti-
tion, which means, more generally, that cost is likely to
differ across patterns. As evidence, consider that, when
pigeons receive food for completing sequences of eight
choices distributed over two keys, regardless of the spe-
cific sequence of the choices, they generally show a strong
preference for the sequences all pecks on the left, or all
pecks on the right (Hunziker, Saldana, & Neuringer;-1996;
Machado, 1997). Furthermore, the costs entailed by a
pattern may also increase with the pattern’s frequency of
occurrence. This much is suggested by Machado’s (1997)
findings: Pigeons were rewarded when they completed
sequences of eight two-key choices. Sequences that con-
tained three or four changeovers were always rewarded,
whereas sequences with fewer or more changeovers were
rewarded with lower probabilities. The results showed that,
although most sequences contained the optimal numbers
of three or four changeovers, these sequences did not oc-
cur exclusively. It seems reasonable to conclude that the
cost of changeovers may have increased as the bird
switched more and more between the keys.

The preceding arguments lead us to represent, in a sin-
gle function, the combined effects of all the sources that
are likely to modulate the effects of the reinforcement
contingencies. We refer to this function generically as
the cost function g and assign to it two properties. First,
the cost function may differ across response patterns.
And second, the cost of a pattern increases monotoni-
cally with its frequency of occurrence—that is, with its
strength. Although a full theory of response patterns
would need to specify the exact shape of function g and

to include in g the effects of other variables and pro-
cesses (e.g., response induction), such a detailed theory
is beyond our current knowledge.

Finally, we arrive at the main hypothesis: The differ-
ence between functions f and g drives the change in a
pattern’s strength. Function f describes the selective ef-
fects of reinforcement in the absence of any constraints;
function g adds the effects of the constraints. Hence, each
function addresses one of the two subsets of factors that
are likely to determine a pattern’s asymptotic strength.

The preceding hypothesis and its implications can be
expressed more rigorously as follows. Let the strength of
a pattern at the beginning of time epoch £ equal S. Fur-
thermore, let the average and the variance of the payoff
function during € equal Tand D, respectively. We assume
that, at the end of the time epoch, S will have changed by
an amount determined by the ratio D/T minus an amount
determined by the cost of the pattern. That is,

AS = a[f(DIT) — g(S)], @)

where both functions, fand g, are assumed to be monot-
onically increasing and « > 0 is a proportionality con-
stant. Asymptotically, AS = 0, and this occurs when
f(D/T) = g(S). Solving for S yields

S(ee) = g[S (DIT)], 3

where S(e0) is the asymptotic value of Sand g ! is the in-
verse function of g. Because f'and g were assumed to be
monotonically increasing, g ~! and g~ !of are also mono-
tonically increasing. Hence, S(<0) increases with the ratio
D/T. Note that the asymptotic strength of a pattern is not
affected by the duration of the time epoch &, although its
rate of acquisition may be.

Our major hypothesis may be stated as follows: In sim-
ple choice situations, the asymptotic strength of a response
pattern depends on the Weber-like ratio of the variance
to the average of the reinforcement function.

GENERAL METHOD

Before we can test the preceding theory, two problems need to be
solved: how to control for the likely possibility that the cost func-
tion differs across patterns, and how to manipulate independently
the variance and the average of the reinforcement function. The first
problem occurs when we attempt to apply the theory to a single ex-
perimental condition, because, on the basis of the ratio D/T, we
could predict that pattern x would be stronger than pattern y, but
the prediction would not hold necessarily if pattern x had a higher
cost than pattern y. More generally, without knowing the cost func-
tion for each pattern, nothing definitive can be stated about as-
ymptotic strengths in a single experimental condition. This diffi-
culty is not as troublesome as it may seem, however, for instead of
attempting to predict the strengths of the various patterns during a
single experimental condition, we can try to predict how one pattern’s
strength changes as we vary D or T across conditions. By focusing
on a single pattern across conditions and assuming that its cost does
not change as D and T are varied, the aforementioned difficulty is
eliminated.

The second problem, how to manipulate D and T independently,
can be solved by using a reinforcement schedule that was devel-
oped on the basis of previous work by Blough (1966), Shimp
(1967), and Machado (1992). (We will show later on that the pres-



ent schedule is remarkably similar to a Conc. VI schedule.) In a dis-
crete-trials situation, a pigeon chooses one of three response keys:
left, center, or right. The probability of reinforcement for each peck
depends on the number of similar pecks emitted during the last, say,
10 trials. We refer to this number, critical in what follows, as the
sample size M. The exact reinforcement function is illustrated in
the top panel of Figure 2 and has the equation

P(S*) = + )
27 i +1

where P(S*) is the probability of reinforcement following a left, a
center, or a right keypeck, and i is the number of left, right, or cen-
ter keypecks produced during the last M trials. For example, if a
bird has pecked the left key five times, the center key three times,
and the right key two times on the last 10 trials, on the next trial,
food will follow a choice of the left key with probability 1/(27 X .5
+ 1) = .069, of the center key with probability .110, and of the right
key with probability .156. The number 27, a sort of penalty factor,
determines how fast the function decreases with the proportion of
responses on one key.

If we restrict our attention to the population of patterns composed
by left, right, and center keypecks (i.e., single responses) and as-
sume that their cost functions are equal, Equation 3 predicts that, at
equilibrium, the bird will be indifferent among the three keys and
obtain food on 10% of the trials (see the equilibrium point in Fig-
ure 2). This prediction stems from the fact that Equation 3 subsumes
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under variable D the dynamics of melioration (see, ¢.g., Herrnstein,
1997).

But what sorts of patterns will occur in this choice situation? And
how strong will they be at the steady state? To answer these ques-
tions, we need to examine the payoff function for response patterns
induced by Equation 4. The filled circles on the bottom left panel
of Figure 2 show this function when molar choice proportions equal
1/3 (see Appendix A for the derivation). Only a subset of all pairs
and triplets is shown, because the curve is the same for the remain-
ing ones. The function for pairs LL, LR, and LC shows that repeat-
ing is less likely to be reinforced than switching. Hence, if the costs
of all the pairs were identical, Equation 3 would predict that switch-
ing should be stronger than repeating. In addition, if we also con-
sider the function for triplets, LLL, LLR, ..., LRC, we see that,
after the bird switches from one key to another (e.g., from L to R),
the reinforcement probability is highest on the third key (i.e., C;
compare LRC with LRL and LRR). Hence, if the costs of all the
patterns were identical, Equation 3 would predict that the patterns
that involve one peck on each key during three consecutive trials
should win the competition. On the other hand, the functions for
pairs and triplets also reveal that, under cost equality, the patterns
that consist of repeating the same response (e.g., LLL) should have
the lowest strength, for they are the least likely to be reinforced.

So far, we have simply applied Shimp’s (1966) momentary max-
imizing analysis to the present situation. However, the theory being
proposed goes beyond Shimp’s analysis, because it states that the
asymptotic strength of the various patterns depends on the ratio of
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Figure 2. The top panel shows the reinforcement function used in the three experiments. The prob-
ability of reinforcement for one response decreases with the proportion of similar responses emitted
during the last M trials. At the matching equilibrium, all responses are equally likely, and the overall
probability of reinforcement is .1. The bottom left panel shows the effect of adding a constant to the re-
inforcement function. The average (dotted line) changes, but the variance remains the same. The bot-
tom right panel shows the effect of the sample size M on the probabilities of reinforcement for various
response patterns. A smaller sample induces higher variance but the same average (dotted line). In
both cases, it was assumed that the molar proportions equaled 1/3.
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the variance to the average of the reinforcement function for patterns.
Hence, to test the theory, we need to manipulate these two variables
independently.

To change the average, but not the variance, we fix the sample
size M and simply add a constant to Equation 4. The effect on the
probabilities of reinforcement following pairs and triplets is illus-
trated by the squares in the bottom left panel of Figure 2. In the ex-
ample, the shift equaled .1. The average reinforcement probability
changed (see dashed lines), but the set of differences in the rein-
forcement probabilities remained constant. Equation 3 predicts that
the pattern one peck on each key during three consecutive trials—
which from now on we call stable patterns'—will be stronger, the
smaller the value of T. Conversely, the repeat patterns, LLL, RRR,
and CCC, will be weaker, the smaller the value of T (note that, for
these patterns, D < 0).

To change the variance but not the average, we change the num-
ber of trials from which the response proportion is obtained—that
is, the sample size M. The effects on the reinforcement contingen-
cies for pairs and triplets are illustrated in the bottom right panel of
Figure 2. Note that the variance of the reinforcement function is in-
versely related to the sample size. The overall reinforcement prob-
ability, however, remains constant (dashed line). The effects of the
sample size on D and T are intuitively reasonable: When the sam-
ple is small, a few consecutive pecks on the same key cause large
changes in the reinforcement probabilities, but when the sample is
large, the same number of consecutive pecks on one key causes only
small changes in the reinforcement probabilities. On the other hand,
the average reward probability remains constant, because, regardless
of the sample size, sample proportions are unbiased estimates of the
true pecking probabilities (Appendix A may be consulted for a more
rigorous version of this argument). Equation 3 predicts that the sta-
ble patterns will be stronger but the repeat patterns weaker, the
smaller the value of M or, equivalently, the higher the value of D.

Using the new schedule, three experiments were conducted to test
how the average and the variance of the payoff function affect the
asymptotic strength of response patterns. In the first two, the variance
was manipulated across conditions, while the average remained con-
stant; in the third, the average was manipulated, while the variance
remained constant. After analyzing the results of each experiment
separately, we combined them to see whether the ratio D/T was cor-
related with the asymptotic strength of the response patterns.

EXPERIMENT 1

The first experiment manipulated the variance of the
payoff function by changing the sample size across ex-
perimental conditions. We predict that, regardless of the
value of D, molar choice proportions will agree with the
matching law—the birds will choose each key equally of-
ten. However, as D increases, the stable patterns will be
stronger, and the repeat patterns will be weaker.

[t is important to realize that, to a large extent, the sta-
ble patterns may change in strength without that deter-
mining the strength of the repeat patterns, and vice versa.
In other words, the predicted changes are not forced. A
hypothetical example clarifies this point. A bird could
respond in runs of three pecks during one condition and,
thus, generate a high proportion of repeat patterns but no
stable patterns; in another condition, the bird could re-
spond in runs of only two responses and, thus, generate
fewer repeat patterns but still no stable patterns. In this
example, a substantial change in the proportion of the re-
peat patterns occurred without any significant change in
the proportion of the stable patterns.

Method

Birds. Four experimentally naive pigeons (Columba livia) par-
ticipated in the experiment. The birds were housed in individual
home cages, with water and grit continuously available, but with no
dark-light cycle in effect. Throughout the experiment, the birds
were maintained at 80% of their free-feeding body weight.

Apparatus. A standard experimental chamber for pigeons from
Med Associates was used. The front aluminum panel contained
three keys placed at the vertices of an inverted isosceles triangle.
The top two keys were 10 cm apart and 27 cm from the floor; the
bottom key was 8.5 cm from the top two keys. The keys could be il-
luminated from behind with red light. Directly below the center key
and at 4 cm from the floor was a 6 X 7 cm hopper opening. The bird
had access to mixed grain when the hopper was raised and illumi-
nated with a 7.5-W white light. On the back wall of the chamber,
another 7.5-W houselight provided general illumination. An outer
box equipped with a ventilating fan enclosed the experimental cham-
ber. All the events were controlled by a microcomputer.

Procedure. After the birds had learned to peck the keys through
autoshaping, they were trained to respond under low probabilities
of reinforcement per peck. Sessions were divided into trials, and at
the beginning of each trial, one randomly selected key was illumi-
nated. A peck on that key turned the keylight off, and with proba-
bility s, it activated the hopper. If the peck did not activate the hop-
per, a 0.4-sec intertrial interval (ITI) followed. Pecks during the ITI
reset the timer for the interval. After the ITI or the food delivery, a
new trial began. The houselight was always illuminated, except dur-
ing reinforcement. Across five sessions of 50 trials each, the value
of s decreased from .3 to .1.

During the experiment proper, all the procedural details remained
the same, except that all the keylights were illuminated at trial onset
and the probability of reinforcement after each peck was given by
Equation 4. Thus, the following sequence of events occurred on each
trial: (1) The computer determined the number of times the bird
pecked each key during the last M trials, using, when necessary, the
last trials of the previous session (for the very first session of the ex-
periment, the computer generated M random choices); (2) from the
number of left, center, and right keypecks, the computer determined
the reward probabilities for the next trial, using Equation 4; (3) the
three keylights were then illuminated, and when the bird pecked one
of the keys, either a reinforcer or the ITI followed. The cycle was then
repeated until the bird had obtained 50 reinforcers.

The experiment was divided into three experimental conditions,
each one defined by the sample size M and two transition phases
that tried to minimize any carryover effects from the previous con-
dition. Table 1 shows the order of the conditions and the number of
sessions for each one. Because the data on response patterns were
not analyzed after each session, the duration of the experimental
conditions was determined by the stability of the molar proportions.
Each condition lasted a minimum of 25 sessions and until molar
proportions showed no systematic trend for S consecutive sessions.
During the transition phases, only one key delivered reinforcers,
with a constant probability of .1 per peck; responses on the other
two keys were extinguished. The key that delivered reinforcers was
determined by looking at the last S sessions of the previous condi-

Table 1
Order of Conditions in Experiment 1
Condition 1 Condition 2 Condition 3
Bird M N Trans. M N Trans. M N
6112 20 30 4 10 35 6 80 30
8261 20 25 3 10 35 4 80 30
2581 20 30 3 80 35 3 10 35
5263 20 35 3 80 35 4 10 30

Note—M, sample size; N, number of sessions; Trans., number of ses-
sions in transition phase.



tion and selecting the least-preferred key. For example, at the end
of Condition 1, Bird 6112 preferred the center, the left, and the right
keys, in that order; hence, the right key was the target key during the
first transition phase. Transition sessions continued until at least
80% of all the choices were on the target key.

Results and Discussion

Figure 3 shows the proportions of left, center, and
right keypecks observed at the end of each session of
each experimental condition. In general, molar propor-
tions converged rapidly to the 1/3 matching equilibrium
(represented by the dotted line). This rapid approach to
matching, also reported by Mark and Gallistel (1994), is
typical of frequency-dependent schedules (Machado,
1992, 1993, 1994) and may be due to the fact that these
schedules contain a strong negative feedback loop from
choice proportion to reinforcement probability. Birds
6112 and 2581 showed some oscillations during the first
condition (M = 20), but these oscillations disappeared
during the last sessions. There were also some clear in-
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stances of bias (e.g., Bird 6112, M = 10), but overall, the
quality of matching did not seem to differ appreciably or
systematically across conditions.

It was critical to the theory under examination that the
proportion of reinforced trials remain constant across
conditions, for otherwise the effect of D would be con-
founded with the effect of T. Figure 4 (lines without sym-
bols) shows that this was indeed the case. Although T
tended to be slightly lower when M = 10 than in the other
two conditions, the differences were quite small and
probably did not affect the results described below. The
average across birds and sessions equaled .09, .11, and
.10 for M = 10, 20, and 80, respectively.

Figure 4 also shows the proportion of the stable pat-
terns for each session of the experimental conditions. (Al-
though the theory being tested deals only with asymp-
totic performance, these results are included, because
they inform about within- and between-subjects variabil-
ity in performance.) The proportion of the stable patterns
was obtained by counting the number of instances in which

M=10

M=10

M=80

A Center O Right

Figure 3. Molar results from the three conditions of Experiment 1. M refers to the sample size for each condition. The

dashed horizontal line shows the 1/3 matching equilibrium.
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Figure 4. Proportions of the stable patterns (line with dots) and reinforcers (simple line) during each session
of Experiment 1. The numbers at the top identify the sample size for each condition.

the three keys were pecked consecutively and then divid-
ing that number by the total number of pecks. The count-
ing was done using overlapping sequences of choices, so
that, in the string CCRLCRR, for example, we count
three stable patterns, CRL, RLC, and LCR.

The results show that, for Birds 2581 and 5263 (top
panels), the stable patterns were stronger when M = 10
or 20 than when M = 80. For the other 2 birds, the sta-
ble patterns were stronger when M = 10 than in the re-
maining conditions. It is also clear from the figure that
there was no correlation between the strength of the sta-
ble patterns and the overall probability of reinforcement.
There was some indication, in particular for Bird 2581,
that the final values, when M = 20 and 10, had not yet
stabilized.

Figure 5 summarizes the data from all the triplets dur-
ing the last five sessions of each condition. The triplets
are separated into three sets, one containing the stable
patterns and represented by 1X, 1Y, and 1Z (i.e., one re-
sponse of each type occurred during three consecutive
trials), another containing the repeat patterns and repre-
sented by 3X (i.e., three identical responses during three
consecutive trials), and another containing the remaining
triplets and represented by 2X and 1Y. To compare the
sets directly, the proportion of each set was divided by
the number of its elements (i.c., 6 for the stable, 3 for the
repeat, and 18 for the remaining patterns). Finally, the re-

sults for the 4 birds were averaged, and the standard error
of the mean proportion was computed. For reference
purposes, the dotted line shows the 1/27 value that would
be expected if the three choices occurred randomly.

The results indicate that, as the sample size increased,
the strength of the stable patterns decreased, whereas the
strength of the repeat patterns increased. One-way, re-
peated measures analyses of variance (ANOVAs) showed
that these effects were significant [F(2,6) = 8.79, p =
.02, for the repeat patterns, and F(2,6) = 8.11, p = .02,
for the stable patterns]. These results agree with the pre-
dictions based on Equation 3. The strength of the remain-
ing patterns did not change appreciably with the sample
size [F(2,6) = 0.63].

In summary, the data showed that (1) molar choice pro-
portions always approached the matching equilibrium;
(2) deviations from matching were small and did not
seem to be related to the experimental condition; and
(3) the strength of the response patterns changed in the
direction predicted by the theory (when D increased, the
strength of the stable patterns increased, whereas the
strength of the repeat patterns decreased).

EXPERIMENT 2

Experiment 2 was a systematic replication of the pre-
ceding study. It was motivated by the fact that Experi-
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Figure 5. Mean proportion of the stable patterns (one peck on
each key during three consecutive trials, i.e., 1X, 1Y, 1Z), the re-
peat patterns (three consecutive pecks on the same key, i.e., 3X),
and the remaining triplets (2X, 1Y) as a function of the sample
size M. The data are from the last five sessions of each condition
of Experiment 1 (excluding the replication). The dotted line
shows the expected proportion if the bird responded randomly.
The error bars show the standard error of the means.

ment 1 included two features that may have obscured the
effects of the variance of the reinforcement function on
the strength of the stable patterns. First, during the tran-
sition phase that separated the experimental conditions,
only one key delivered rewards, and the birds quickly
learned to peck that key on most trials. As a consequence,
the stable patterns may have been insufficiently extin-
guished during the transition sessions, and some carry-
over effect from one condition to the next may have oc-
curred. Second, the order of the experimental conditions
was not fully counterbalanced, since all the birds were
initially exposed to a sample size of 20. To minimize the
first problem, during the transition phase of Experiment 2,
the birds received food only when they emitted one of the
repeat patterns, LLL, RRR, or CCC. By reinforcing rep-
etitions, we attempted to strengthen response patterns that,
in a sense, are the opposite of the stable patterns. We rea-
soned that, at the beginning of the new condition, the sta-
ble patterns would be weaker than their competitors and,
therefore, their final strength would depend more clearly
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on current conditions. To eliminate the second problem,
the order of the conditions was fully counterbalanced.

Method

Birds and Apparatus. Four pigeons (Columba livia), 1 naive
(Bird 6447) and 3 with previous experience in frequency discrimi-
nation (Machado & Cevik, 1997) and response variability (Mach-
ado, 1997) tasks, participated in the experiment. All the housing de-
tails and the experimental apparatus remained the same as those in
Experiment 1.

Procedure. The preliminary training and the experiment proper
were similar to those in Experiment 1, except for the following
changes. The sample size varied from 10 to 50 to 160, and, by sub-
tracting .02 from Equation 4, the average reward probability at
equilibrium was set at T = .08. Table 2 shows the order of experi-
mental conditions and transition phases and the number of sessions
for each one. Note that, unlike that in Experiment 1, the first exper-
imental condition was also preceded by a transition phase, and a
fourth condition replicated one of the first two. Each experimental
condition lasted for a minimum of 40 sessions and until the propor-
tion of the stable patterns showed no systematic trend for 5 consec-
utive sessions. Sessions ended after 48 reinforcers, and the first two
choices after each reinforcer were never reinforced. This last mod-
ification attempted to reduce any control that food itself might exert
over the keypecks.

During the transition sessions, the computer chose one of the
three keys at random, but with the constraint that each key was cho-
sen 16 times per session. When a variable interval (x = 60 sec)
elapsed, three consecutive choices of that key were followed by food.
Afterwards, the computer selected a new key, and the cycle was re-
peated. The transition phase continued until the proportion of the
stable patterns was below .10 for five consecutive sessions.

Results and Discussion

Figure 6 shows the proportions of single responses for
each session and the experimental condition. Again, the
proportions were always close to the 1/3 matching equi-
librium, and, with the exception of a few instances of bias,
no large or systematic differences were visible across
conditions.

Figure 7 shows the proportions of reinforced trials and
stable patterns across sessions and conditions. The pro-
portion of reinforced trials remained approximately con-
stant throughout the experiment but slightly below the
scheduled value of .08. The averages across birds and
conditions equalled .066, .071, and .071, for M = 10, 50,
and 160, respectively. Concerning the stable patterns, the
figure shows that, in general, their proportion was higher
when M = 10 than in the remaining conditions. The dif-
ferences between the M = 50 and the M = 160 condi-

Table 2
Order of Conditions in Experiment 2
Condition 1 Condition 2 Condition 3 Condition 4
Bird Trans. M N Trans. M N Trans. M N Trans. M N
6447 7 50 49 7 160 50 6 10 55 8 160 55
2738 S 160 42 5 50 43 S 10 77 7 50 47
5291 5 50 46 6 10 48 6 160 46 S 10 83
9882 5 10 42 7 160 60 6 50 51 5 10 77

Note—Trans., number of sessions in transition phase; M, sample size; N, number of sessions.
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Figure 6. Molar results from the four conditions of Experiment 2. M refers to the sample size for each condition.

tions, however, were not consistent across birds. The last
condition, which replicated one of the first two, produced
the expected results for 3 birds. However, for Bird 6447,
there was an unexpectedly high proportion of stable pat-
terns, despite the high value of M = 160. This last finding
suggests that, even though the transition sessions brought
the strength of the stable patterns below .1, some carry-
over effects between conditions may have been present.

The triplet data for the last five sessions are presented
in Figure 8. As in Experiment 1, the proportion of the
stable patterns was highest and the proportion of the re-
peat patterns was lowest when the sample size was 10,
but there were no substantial differences between the
M = 50 and the M = 160 conditions. The strength of the
remaining patterns, 2X 1Y, did not change appreciably
across conditions. One-way, repeated measures ANOVAs
yielded a significant difference for the stable [F(2,6) =
10.67, p = .01] and the repeat [F(2,6) = 6.68, p = .03]
patterns.

In summary, (1) molar choice proportions were always
close to the matching equilibrium, and the occasional de-
viations from matching did not seem to be related to the
experimental condition; (2) as was predicted, the largest

variance (i.c., the smallest sample size) yielded the strong-
est stable patterns and the weakest repeat patterns; but
(3) for small variance (i.¢., relatively large samples), there
were no major differences in the strength of the response
patterns.

EXPERIMENT 3

Experiment 3 varied the average T of the reinforcement
function, while keeping its variance D constant. Given
the theory presented above, we predict that (1) regardless
of the value of 7, molar choice proportions will follow
the matching law; (2) the stable patterns will be stronger
as the average reinforcement probability is lower; and
(3) conversely, the repeat patterns will be stronger as 7'
increases. ‘

Method

Birds and Apparatus. Four pigeons (Columba livia), 1 naive
(Bird 10371) and 3 with previous experience in frequency discrim-
ination (Machado & Cevik, 1997) and response variability (Mach-
ado, 1997) tasks, participated in the experiment. All the housing
details and the experimental apparatus remained the same as those
in Experiment 2.
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Figure 7. Proportions of the stable patterns (line with dots) and reinforcers (simple line) during each session of
Experiment 2. The numbers at the top identify the sample size for each condition.

Procedure. The general procedure, including the transition
phases, remained the same as that in Experiment 2. The only dif-
ference was that, in Experiment 3, the sample size remained con-
stant at M = 40, whereas the overall probability of reinforcement T’

varied across experimental conditions. By adding the constants -

—.05, 0, and +.05 to Equation 4, the scheduled value for T changed
from .05 to .10 to .15. Table 3 shows the details.

Results and Discussion

Figure 9 shows that molar choice proportions were al-
ways close to the 1/3 matching equilibriumn. However,
unlike the previous experiments, the deviations from
matching were systematically related to the value of T.
Thus, when T = .15, the deviations from 1/3 were large,
but when 7 = .05, the deviations were quite small; when
T = .10, the deviations from matching were intermedi-
ate. Observed in all the birds, these findings indicate that
molar choice proportions came closer to the matching
equilibrium as the overall probability of reinforcement
decreased.

The top lines in Figure 10 show the proportion of re-
inforced trials for all the sessions of each experimental
condition. To improve readability, all the values were
shifted upwards by .4. The obtained values were slightly
less than the scheduled ones, particularly during the con-
dition T = .15. The averages across birds and sessions
equalled .047, .086, and .117 for T = .05, .10, and .15,
respectively. This discrepancy between scheduled and

obtained values, owing mainly to the decision not to re-
inforce the first two choices after each reinforcer, does
not jeopardize the interpretation of the other findings,
because the curves remained relatively constant within
conditions and clearly distinct across conditions.

Figure 10 also shows the proportion of the stable pat-
terns. In general, the strength of these patterns increased
as the value of T decreased. In particular, the stable pat-
terns attained their highest strength for all the birds when
T = .05. Also, the last condition, a replication, yielded
results roughly consistent with those from the first two
conditions. Finally, by comparing Figures 9 and 10, we
can see that, as the strength of stable patterns increased,
molar choice proportions came closer to the 1/3 match-
ing equilibrium.

Figure 11 shows the triplet data for the last five ses-
sions of each condition. As the overall reinforcement prob-
ability increased, the proportion of the stable patterns
decreased, whereas the proportion of the repeat patterns
increased. The proportion of the remaining patterns did
not change appreciably across conditions. One-way, re-
peated measures ANOVAs yielded a significant effect
for the stable patterns [F(2,6) = 9.71, p = .01], but the
result for the repeat patterns only approached signifi-
cance [F(2,6) = 3.61,p = .09].

In summary, (1) choice proportions were always rea-
sonably close to the 1/3 matching equilibrium, but the
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sponded randomly. The error bars show the standard error of
the means.

quality of matching improved when the average rein-
forcement probability decreased; (2) as the theory pre-
dicted, the strength of the stable patterns decreased with
T, whereas the strength of the repeat patterns increased
with T this latter effect, however, did not reach statistical
significance; and (3) there was a clear correspondence
between the strength of the stable patterns and the qual-
ity of matching.

The correspondence between the strength of the stable
patterns and the quality of molar matching, observed in
Experiment 3, was not observed in Experiments 1 and 2.
The significance of this asymmetry is unclear, for one
might have expected that choice proportions would al-
ways come closer to perfect matching when the strength
of the stable patterns increased. Although the present
theory does not attempt to describe how each reinforcer
affects responding—only how a reinforcement function
affects the terminal strength of response patterns—the
following observation may help explain this unexpected
finding. Figures 5, 8, and 11 show that, when D changed

in Experiments 1 and 2, the strengths of the stable and re-
peat patterns changed by comparable amounts, albeit in
opposite directions, but when 7 changed in Experiment 3,
the strength of the repeat patterns changed by a much
larger amount. Thus, it may be that T affects primarily the
strength of the repeat patterns and secondarily the strength
of the stable patterns, whereas D may affect both types
of patterns equally. The effects of D and T may, thus, cor-
respond to the two distinct ways to strengthen a pattern—
reinforce it more (the main effect of increasing D?) or ex-
tinguish its competitors (the main effect of decreasing 7'7).

GENERAL DISCUSSION

The present study attempted to answer the following
question: In simple choice situations, what factors de-
termine the strength of a response pattern? To that end,
we have conceived of a choice situation in the following
way: An animal chooses from a population of response
patterns; in contact with the contingencies of reinforce-
ment, the strength of the various members of the popu-
lation changes (i.e., the patterns replicate differentially,
and the population evolves, as it were); at the steady state,
one or more members are dominant. The process of change
may depend on two general sets of factors, one related to
the reinforcement function defined over the population
(e.g., its average and variance), the other related to the
population itself (e.g., memory constraints, the effort as-
sociated with the various patterns, induction across the
patterns). We then sketched a quantitative theory for pre-
dicting how these two sets of factors may determine the
outcome of the patterns’ arms race. The theory predicts
that, all else being equal, the asymptotic strength of a re-
sponse pattern varies directly with the variance and in-
versely with the average of the reinforcement probabil-
ity function. The data from the three experiments tend to
agree with these predictions. In Experiments 1 and 2, the
variance was manipulated by changing the sample size
while the average remained constant. It was found that,
when the variance of the payoff function increased, the
strength of the patterns for which D > 0 increased,
whereas the strength of the patterns for which D < 0 de-
creased. In Experiment 3, the average of the reinforcement
function was manipulated while its variance remained
constant. The data showed that the strength of the re-
sponse patterns changed in the predicted direction.

Table 3
Order of Conditions in Experiment 3
Condition 1 Condition 2 Condition 3 Condition 4
Bird Trans. T N  Trans. T N  Trans. T N Trans. T N
10405 6 05 67 6 15 67 6 10 65 6 15 65
10490 6 10 4 7 05 61 9 15 45 5 05 67

10371 5 A0 45 6 15
5269 6 15 44 7 10

45 6 05 50 7 A5 45
62 6 05 63 7 10 56

Note—Trans., number of sessions in transition phase; T, overall reinforcement possibility; N, num-

ber of sessions.
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Figure 9. Molar results from the four conditions of Experiment 3. 7 refers to the (scheduled) average probability of reinforcement

for each condition.

The theory not only identified two variables, D and 7,
but also proposed a way to combine them, the ratio D/T.
We can now assess how well this ratio was correlated
with the asymptotic strength of the response patterns.
Figure 12 shows the average strength of the stable and re-
peat patterns, plotted against the ratio D/T. The value of
D was set to 1/VM, where M was the sample size.? The
top panels show the data from Experiments 1 and 2, the
middle panels show the data from Experiment 3, and the
bottom panels show the data from all three experiments.
The lines are best-fitting regression lines. Although the
relation between D/T and the strength of a pattern can-
not be linear—for strength must remain between 0 and 1,
whereas D/T has no bounds—in most cases, a linear re-
lation described reasonably well the major trend in the
data. The proportions of the repeat patterns in Experi-
ment 3, however, showed some curvature, which is also
apparent in the collapsed data displayed in the bottom
right panel. Be that as it may, we conclude that the ratio
D/T is a good first-order predictor of the strength of a re-
sponse pattern.

The Learning of Response Patterns

Our experimental findings concerning the rofe of D
are consistent with previous studies. Williams (1972),
for example, found that when win—stay and win—shift re-
sponse patterns were reinforced with probabilities .65
and .35, respectively, pigeons did not learn the win—stay
pattern, but they learned it when the probabilities changed
to .8 and .2 (see, also, Williams, 1991). In terms of the
preceding theory, the pattern was stronger when D was
larger. Similarly, Silberberg and Williams (1974) found
strong alternation (which, in their experiment, violated
the matching law) when “each choice produced dramatic
changes in local reinforcement probabilities” (p. 321)—
that is, when D was large. Our theory and findings add
to these studies one proviso: The effect of the differences
in reinforcement probability are modulated by the over-
all context of reinforcement. In other words, the correct
predictor of the strength of a pattern may be the ratio
D/T, not D alone. We know of no other studies on re-
sponse patterning that manipulated the variance or the
average of the reinforcement function.
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Figure 10. Proportion of the stable patterns (line with dots) and reinforcers (simple line) during each ses-
sion of Experiment 3. The reinforcement proportions were shifted upwards by .4. The numbers at the top
identify the average probability of reinforcement for each condition.

In some conditions of Experiments 1 and 2, the stable
patterns were very strong, but no bird ever showed an ex-
clusive preference for them. The absence of exclusive
preference calls into question some attempts to apply the
matching law directly to response patterns. Thus, after
conceding that local contingencies of reinforcement
sometimes produce response patterns, Herrnstein (1997)
went on to say that “when a subject discriminates shift-
ing local probabilities, ... the matching law applied lo-
cally predicts local exclusive preferences, presumably for
the alternative that is locally reinforcing with the higher
probability” (p. 70, italics added). In contrast, our theory
suggests that the nonexclusive preference for the stable
patterns is due to a cost function that increases with the
frequency of these patterns. According to the theory, the
strength of the stable patterns increased until an equilib-
rium was reached wherein the tendency to a further in-
crease, f(D/T), was offset by the additional cost of per-
forming the patterns, g(S). Without the concept of a cost
function—with cost being broadly conceived—it is not
clear how to explain the fact that the stable patterns in the
present experiments or the momentary maximizing pat-

terns in previous studies (e.g., Shimp, 1966; Silberberg
et al., 1978) did not occur with a probability of 1.

Not all the data from individual birds agreed with the
theory, however. In some cases, the absolute strength of
the stable patterns did not conform to the value of D or
T; in other cases, the results from an early condition could
not be replicated. These two results suggest the presence
of carryover effects across conditions, the transition phases
notwithstanding. Other studies have also reported order
effects when the differences in reinforcement probabili-
ties are manipulated. Williams (1991), for example, re-
ported that, in a choice situation, one group of rats learned
to shift levers reliably when the difference in reward prob-
abilities for shifting and staying were large and that they
maintained that behavioral pattern when, subsequently,
the difference was reduced. However, a group of rats that
did not benefit from an initial exposure to the large dif-
ference did not learn to shift levers with the smaller dif-
ference. The author concluded that “stimulus control is
more likely to be established with larger differences in
local reinforcement probability [i.e., large D], and, once
established, may persist even after the differences in re-



A4 2
1 Pattern
124 03X
m2X 1Y
104 mixiviz

Proportion
8

Figure 11. Mean proportion of the stable patterns (1X, 1Y, 17Z),
repeat patterns (3X), and remaining patterns (2X, 1Y) as a func-
tion of the overall reinforcement probability 7. The data are from
the last five sessions of each condition of Experiment 3 (exclud-
ing the replication). The dotted line shows the expected propor-
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standard error of the means.

inforcement probability are reduced to a level that would
not enable the establishment of stimulus control if pre-
sented from the beginning of training [i.e., small D]”
(Williams, 1991, p. 471). Similarly, Machado (1993) found
that, once a pigeon learned to double alternate when the
variance in the reinforcement function was large, it main-
tained that response pattern when the variance later de-
creased (in that study, the variance was also manipulated
by changing the sample size).

There is a striking similarity between the theory pro-

posed here and Nevin’s (e.g., 1988) behavioral momen- -

tum theory. Using an analogy from mechanics, Nevin
proposed that the magnitude of a behavioral change de-
pends on two variables—a disruptor, which acts like an
external force, and resistance to change, which acts like
mass (the analogy is with Newton’s second law, F/m = a,
where F, m, and a represent force, mass, and acceleration,
respectively). According to Nevin, the differences in re-
ward probability (D) are one type of disruptive force, and
the overall reinforcement rate in the situation (7°) is one
determinant of behavioral mass. Hence, Nevin’s behav-
ioral momentum theory, applied to response patterns,
also suggests the critical role of the ratio D/T.

The Local Structure of Choice Behavior

As we mentioned in the introduction, some studies
have found that the patterns and the sequential depen-
dencies between consecutive responses are predicted by
molecular accounts (e.g., Shimp, 1966; Silberberg et al.,
1978), whereas others have not found such dependencies
(Heyman, 1979) or, worse, have found the opposite ones
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(Nevin, 1969, 1979). The sequential dependencies ob-
served in the former studies correspond to the stable pat-
terns in our experiments, because, when molar choice
proportions are at equilibrium, the stable patterns are the
momentary maximizing sequences. The opposite depen-
dencies, observed in the latter studies, correspond to the
repeat patterns in our experiments, because, when molar
choice proportions are at equilibrium, the repeat patterns
are the momentary minimizing sequences. What is in-
teresting to note here is that our experiments reproduced
the two opposite types of sequential dependencies by
varying the ratio D/T: As the ratio increased, the repeat
patterns decreased and the stable patterns increased.

To show more clearly the relationship between the
ratio D/T and the local structure of behavior, we reana-
lyzed our data in the following way. For each reinforced
response, we determined whether the same response oc-
curred during the trials that immediately preceded and
the trials that immediately followed the reinforced trial.
The analysis proceeded in both directions simultane-
ously and stopped when another reinforced trial was
found or a total of 5 trials in each direction had been in-
cluded. This procedure ensured that the analysis was
based on the same number of (reinforcer-free) trials be-
fore and after the reinforced trial. The totals were con-
verted into probabilities, and the probabilities were first
averaged across the three responses and then across the
4 birds. Figure 13 shows the results for the last five ses-
sions of each condition.

On each panel, Trial O corresponds to a reinforced trial.
The right curve is the probability of emitting the just re-
inforced response during each of the next five trials, and
the left curve is the same probability for each of the pre-
ceding five trials. The nine panels (3 experiments X 3
conditions per experiment) are arranged from left to
right and from top to bottom according to the ratio D/T of
the corresponding condition. For example, in one condi-
tion of Experiment 2, M = 50 and 7 = .08; hence, D =
1/V/50, and D/T = 1.77. This condition is represented by
the middle panel.

Consider the left curves first. As we move from lower
to higher D/T ratios, the left curves first increase and then
decrease. The change from a positive to a negative slope
is quite orderly, for no decreasing curve precedes an in-
creasing one. Moreover, the three curves for each individ-
ual experiment show the same orderly relation. A positive
slope indicates response perseveration (i.e., strong re-
peat patterns); a negative slope indicates a tendency to
switch keys (i.c., strong stable patterns). In particular,
when a bird responds LCR or RCL frequently, the rein-
forced response generally differs from the two preced-
ing responses—hence the dip in the left curve on trials
—2 and —1 in the two rightmost bottom panels. In sum-
mary, as the ratio D/T increased, the tendency to perse-
vere gave way to the tendency to switch keys—the mo-
mentary maximizing pattern replaced its opposite. This
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Figure 12. The left and right panels plot the average proportions of the stable and repeat patterns, respectively. The
top panels show the data from Experiments 1 and 2, the middle panels show the data from Experiment 3, and the
bottom panels show the data from all three experiments. The data are from the last five sessions of each condition
(excluding replications). Also shown are the best-fitting regression lines. The value of D equaled 1/\/M, where M was

the sample size.

result reproduces the two extreme forms of sequential
dependency found in previous studies, but it accounts for
them in terms of a single variable, the ratio D/T.

Consider now the right curves. They are included be-
cause they allow us to answer the question of whether, at
the steady state, reinforcers strengthened individual re-
sponses (see, e.g., Bailey & Mazur, 1990; Mazur, 1992).
The question is important, because if that were the case,
our findings about the effects of T could be explained in
a simpler way. When the number of rewards (i.e., T') in-
creases, the cumulative strengthening effect of the rewards
also increases. It follows that the frequency of the repeat
patterns should increase with T, as our experiments
showed.

To understand what the right curves should look like
if reinforcers strengthened single responses, consider the
following argument. At equilibrium a bird pecks the left,
right, and center keys with roughly constant probabili-
ties p, g, and r, respectively. The average of these prob-
abilities is, obviously, 1/3 because p + ¢ + r = 1. If when
a left response is reinforced, its strength increases, p
should increase to p, at least during the next few trials;
the same argument for right and center pecks implies
that, when these responses are reinforced, ¢ and » should
increase to g, and r,. Therefore, the average of the new
values p|, q,, and r should be greater than 1/3. By com-
paring the right curves in the figure with the dotted lines
(equal to 1/3), we see that any strengthening effects of rein-
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Figure 13. Assume that a response was reinforced on Trial 0. The right curve on each panel shows the probability of emitting
the same response during the next five trials, and the left curve shows the probability of emitting the same response during the
preceding five trials. Each panel corresponds to a different experiment (identified by the number at bottom left) or experimental
condition (identified by the corresponding ratio D/T, where D = 1/VM).

forcement were minimal at best, nonexistent at worst.
Only when D/T = 1.12 and 1.58 was there some evidence
of a (weak) strengthening effect of reinforcement.
Furthermore, a close analysis of the behavior of each
bird revealed that, instead of tending to repeat the just-
reinforced response, most birds tended to emit a particular
sequence when they resumed pecking after consuming
the reinforcer. For example, during the M = 10 condi-
tion, Bird 6112 emitted the sequence CLC after most re-
inforcers. Because that sequence occurred regardless of
which response had just been reinforced, the postrein-
forcement probabilities averaged to the expected value
of 1/3. Interestingly, the postreinforcement sequences
were not always the dominant sequence; they occurred
regardless of whether the repeat or the stable patterns were
dominant, and they occurred even when, as in Experi-
ments 2 and 3, the two choices that followed a reinforced
trial were never reinforced. In summary, in contrast with
some previous studies (but see Mazur, 1992, for a sum-
mary of conflicting findings on this issue), we found no
evidence of an immediate strengthening effect of rein-

forcers. Instead, reinforcers seemed to cue idiosyncratic
response patterns. It follows that our results concerning 7
cannot be explained by a simple strengthening effect of
rewards on individual responses.

Another Look at Concurrent
Variable-Interval Schedules

The application of the proposed theory to Conc. VI
schedules presents some difficulties, but it also offers
some new insights. To see the difficulties, consider the
following situation. A pigeon chooses among three keys,
left, center, and right, that set up rewards according to
three independent VI 20-sec schedules. Assume that the
bird responds at an average rate of A pecks per second and
allocates a proportion p of its choices to the left, a pro-
portion g to the right, and a proportion # to the center keys,
withp + g + r = 1 (see, e.g., Gibbon, 1995). The prob-
ability that, say, a left peck is rewarded is then equal to
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Figure 14. Assuming that the bird pecks at an overall rate of A = 1 pecks per second and al-
locates proportions p, ¢, and r to the left, right, and center keys, respectively, the left panel shows
the probability of reinforcement for a response as a function of its proportion. The right panel
shows the reward probability for single responses, pairs, and triplets when p = ¢ = r = 1/3. The
squares are for the variable-interval (VI) 20-sec schedules, and the circles are for the VI 60-sec
schedules. The dotted lines represent the average reinforcement probabilities.

where ¥, is the reciprocal of the VI parameter. This hy-
perbolic function is plotted in the left panel of Figure 14,
and it shows that the more the bird prefers the left key,
the lower the probability of reinforcement for left key-
pecks. If we restrict our attention to the population of pat-
terns composed by left, right, and center keypecks and
assume that their cost functions are equal (i.e., no bias),
Equation 2 predicts that, at equilibrium, the bird will be
indifferent among the keys and matching will occur.

The similarity between Equation 5 for VI schedules
and the equation used in the present experiments (Equa-
tion 4) predicts that the reinforcement functions for re-
sponse patterns should also be similar in the two schedules.
The right panel of Figure 14 shows that this is indeed the
case.? The squares represent the reward probabilities in-
duced by the VI 20-sec schedules when molar choice
proportions are at equilibrium (i.e.,p = ¢ = r = 1/3; see
Appendix B for the derivation). As in Figure 2, the func-
tion for pairs shows that repeating is less likely to be re-
inforced than switching, and the function for triplets
shows that, after the bird switches from one key to an-
other, the reinforcement probability is highest on the third
key. Hence, if the costs of all the patterns were identical,
Equation 3 would predict that the stable patterns should
win the competition. For similar reasons, the repeat pat-
terns should lose the competition.

The problem, however, is that cost differences may in-
validate these predictions. Equation 3 states only that the
strength of some specific patterns should increase,
whereas that of others should decrease, with the ratio
D/T. Hence, to test this prediction with Conc. VI sched-
ules, the ratio D/T should be manipulated across condi-
tions. Here one is tempted to change the VI parameters,
from 20 to 60 sec, say. But the second function in the
right panel of Figure 14 (see circles) shows that chang-
ing the Vs to 60 sec decreases both the average and the
variance of the payoff function by approximately the same
factor. The ratio D/T remains basically unchanged.

Two consequences follow from the preceding analysis,
both with negative overtones. First, if the theory is cor-
rect, the asymptotic strengths of the various response pat-
terns should not change with the VI parameters. We know
of no data set that could be used to test this prediction.
Second, and perhaps more important, VI schedules are
not suited to test the roles of D and 7, because they do not
allow the independent manipulation of these variables. In
fact, the only way to change the ratio D/T in Conc. VI
schedules is to vary the animal’s overall response rate A .
But when A changes, the interval between consecutive re-
sponses and, therefore, the cuing function of previous re-
sponses also change. As a consequence, the experimenter
would be unable to determine which variable, the ratio
D/T or the interresponse interval, caused the effect.

Be that as it may, our theory suggests new ways to think
about response patterns in Conc. VI schedules. For exam-
ple, in typical VI schedules, overall response rate is much
higher than overall reinforcement rate, and, therefore, a
run of responses on one key changes only slightly the re-
ward probabilities on the other keys. It follows that typi-
cal Conc. VI schedules may be functionally equivalent to
the high M schedule used in some conditions of Experi-
ments 1 and 2. If this interpretation is correct, the theory
proposed in this study would predict weak stable patterns
in the typical Conc. VI schedules. Conversely, to obtain
strong stable patterns, the theory states that Conc. VI
schedules need to be modified so that each response
causes a larger change in the local reward probabilities, as
in the low M conditions of our experiments, while simul-
taneously, the overall reward probability remains low.

The theory also predicts that, without a changeover
delay, undermatching is likely to occur. Consider, for ex-
ample, a two-key, Conc. V120 sec VI 60 sec. If we plot
the reinforcement function for response pairs and trip-
lets, using the equations provided in Appendix B, we sece
that the reward probabilities for switching (LR and RL)
are higher than the reward probabilities for staying (LL



and RR). Hence, without a changeover delay, the animal
is likely to switch frequently and to undermatch. Note
that the high switching rate is explained by invoking, not
adventitious or accidental reinforcement (see, e.g., Davi-
son & McCarthy, 1988, p. 10), but the relatively higher
rate of direct reinforcement for switching than for staying
responses. More generally, the theoretical analysis of the
payoff function for response patterns and the empirical
study of how its properties (e.g., D and T') affect respond-
ing may help us to achieve a deeper quantitative under-
standing of the animal’s behavior in Conc. VI schedules.

The theory may also be extended to types of patterns
other than sequences of keypecks. For instance, if a pi-
geon chooses between two interresponse times, one with
duration ¢, and rewarded according to schedule |, an-
other with duration ¢, and rewarded according to sched-
ule r,, the theory would predict that, asymptotically, the
strength of these response units should depend on the
ratio D/T. To derive specific predictions, the experi-
menter would need to obtain the functions relating D and
T to (1) the schedule parameters r, and r,, (2) the aver-
age and variance of the durations of the two interre-
sponse times ¢, and ¢,, and (3) the proportion of choos-
ing ¢,—say, p. Once these functions are obtained, either
analytically or by computer simulations, the theory can
be tested.

Matching and Response Patterns

The picture that emerges from the studies summarized
above, as well as from our experimental results, is that
molar matching does not seem to be reducible to the learn-
ing of any specific response patterns. For matching occurs
when the animal responds in short or long runs, by learn-
ing the momentary maximizing or the momentary mini-
mizing patterns, with strong sequential dependencies be-

tween consecutive responses or in a quasi-random way

(see, e.g., Heyman, 1979). Furthermore, matching seems
to be generated by a fast-acting, reward-following pro-
cess—of the sort of melioration, for example—whereas
response patterns seem to be generated by a slower and
noisier process. And yet, response patterns do occur in
choice situations, and under some conditions, matching
may even be violated because the animal learned a re-
sponse pattern (see, e.g., Silberberg & Williams, 1974).
And so, one is left with the thorny issue of how the molar
and molecular structures of behavior are interrelated.
We distinguish at least three viewpoints on the inter-
relation of the molar and molecular aspects of behavior
in choice situations. Some authors seem to imply that
distinct and independent processes may be involved:
“Orderly effects at the molecular level, though perhaps
of interest in their own right, do not shed light on molar
processes” (Nevin, 1979, p. 300). Other authors seem to
believe that local processes shape behavior into new re-
sponse units and, then, global processes strengthen these
units (e.g., Nevin, 1982; Shimp, 1982b; Williams, 1990).
Finally, still other authors argue that global and local pro-
cesses jointly control behavior: “The results ... suggest
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that control by local reinforcement contingencies and by
molar reinforcement contingencies are in competition”
(Williams, 1991, p. 457). The first viewpoint does not seem
tenable, because, as Silberberg and Williams (1974) have
shown, sometimes the matching law is violated because
the animal has learned a response pattern incompatible
with matching. The second and third viewpoints, although
more promising, have not been sufficiently elaborated.
Thus, it is unclear how we can separate the strengthen-
ing of a response unit from the shaping of that unit when
the only evidence available for the unit is its strength. And
without a model for competition between contingencies,
the sense of William’s metaphor remains elusive. The last
two viewpoints, however, can be integrated with the the-
ory proposed here and can generate testable hypotheses.

Assume that (1) one-response and multiresponse pat-
terns are members of the same population of competing
patterns (i.e., the arms race is among patterns of different
lengths, including single responses, runs of responses, and
patterns involving changeovers), (2) the reinforcement
contingencies change the strength of all types of patterns ac-
cording to Equation 3, and (3) one-response patterns have
faster acquisition rates than multiresponse patterns (or,
in other words, in Equation 2, ¢ is greater for single re-
sponses). A few consequences follow from these general
assumptions. First, when the multiresponse patterns fa-
vored by the reinforcement contingencies yield molar
matching in the aggregate—as the stable patterns in our
experiments yield the 1/3 matching proportions—and the
ratio D/T is high, response patterning and overall match-
ing will both occur. Matching is predicted because, for
single responses, Equation 2 makes the same predictions
as melioration. However, because of the differences in
the rate of learning, molar matching will typically pre-
cede the response patterning. Second, when the patterns
favored by the reinforcement contingencies are incom-
patible with matching, molar matching may be observed
initially, but after prolonged training, it will be violated.
Third, regardless of which patterns are favored by the re-
inforcement contingencies, if these patterns are associ-
ated with small ratios of D/T or are difficult to learn (be-
cause of long ITIs, e.g.), matching is predicted even after
prolonged training.

The foregoing consequences seem to be consistent not
only with our experimental findings, but also with those
of Silberberg and Williams’ (1974) study. In the latter,
three groups of pigeons obtained food only when they
switched keys, but because switching in one direction
was reinforced more often than switching in the other,
the overall reinforcement probabilities for the two keys
differed. When the ITI was 20 sec, the birds initially
matched choice proportions with reinforcement propor-
tions and did not switch very often; with additional train-
ing, however, switching became stronger, and matching
was violated (by switching frequently between the keys,
choice proportions were close to .5, but one key deliv-
ered much more food than the other); when the ITI was
5 sec, switching developed rapidly, and matching was vi-
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olated (unfortunately, because the authors did not report
the data from the first sessions, we do not know whether
matching was also initially observed when the ITI was
5 sec); when the ITI was 120 sec, switching was not ac-
quired, and molar choice remained close to matching.

In conclusion, this study advanced the hypothesis that
the asymptotic strength of response patterns in simple
choice situations may be a function of the ratio D/T. The
results of three experiments agreed with the hypothesis,
for the strength of the response pattern increased with D
and decreased with 7. The theory that generated the hy-
pothesis is clearly incomplete—it has not detailed the
specific form of functions f'and g, for example, or how
temporal discrimination processes affect the learning of
response patterns. Whether it will be able to grow and to
survive further empirical and theoretical challenges, re-
mains to be seen.
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NOTES

1. The reason for not calling them momentary maxiziming patterns is
that, when molar choice proportions are far from the matching equilib-
rium, the contingencies of reinforcement do not favor the stable pat-
terns. For example, if a pigeon chooses the left key during a large num-
ber of trials, with /arge being defined with respect to the sample size M,
most rewards will follow pecks at the right and center keys, and several
consecutive pecks on one of these two keys are likely to be reinforced.
In this case, the stable patterns would not be differentially reinforced.
Eventually, however, the bias for the left key will be reduced, and the
strengths of the three choices will approach equality. Then, and only
then, will the stable patterns be the momentary maximizing patterns.

2. So far we have used the term variance to refer to the set of differ-
ences in the payoff probabilities, D, without implying a specific way to
measure those differences. This vagueness was acceptable as long as
we made only ordinal predictions. However, when a specific metric is
needed, the standard deviation seems preferable to the variance because,
if nothing else, it is commensurable with 7. Appendix A shows that the
variance of the payoff function is proportional to 1/M. The standard de-
viation is, therefore, proportional to 1/\/M.

3. Another similarity is that, in both types of schedules, the overall re-
ward probability tends to be fairly constant (see Figures 4, 7, and 10).

APPENDIX A

Assume that overall choice proportions equal the 1/3 match-
ing equilibrium. One way to derive expressions that approxi-
mate the average and the variance of the reinforcement function
is to use a Taylor series expansion. Starting with Equation 4,

1 _ M
27-L+1 27i+ M’

h(i)=

where i is the number of (left, right, or center) choices on the last
M trials; we expand function /4 around the average value of i,
called u, ~

h(i) = h(u) + h" (1) (i — p),

where A’ () is the derivative of 4 evaluated at i = .
Then,

. 1
EUG)] = hw) = 5
because, at the matching equilibrium, g = M/3. Also,
E[h(i)}] =f(h)2 + h'(1)207
where 0'1.2, the variance of i, equals M X 1/3 X 2/3 (variance of

a binomial distribution). It follows that the variance of 4 will be
approximately
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where k is a constant. In conclusion, the variance of 4 changes
inversely with M, and therefore, the standard deviation of 4
changes inversely with VM.
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APPENDIX B

To determine the probability of reinforcement following a par-
ticular response pattern in Conc. VI schedules, we assume the
following conditions. The bird responds at an overall rate of 4
pecks per second (more specifically, according to a Poisson pro-
cess with parameter A). A proportion p of these pecks is directed
at the left key, a proportion g at the right key, and a proportion r
at the center key, with p + g +r = 1. The three schedules are in-
dependent and set up a reward with rates ¥, , ¥, and . By condi-
tioning on the appropriate exponentially-distributed interresponse
times, we obtain the following probabilities of reinforcement:

P(S*|Ly=1- 2P
Y. +A
P(St|LL)=1-—*
Y.+

P(ST|LR)y=1-) ——— s
(STIER) [}’R"’M Yrth

2
P(S*| LLR):l—(—Lq J( 4 J :
YR+AG N\ YR +A

and so on. Consider the third case, the probability of reinforce-
ment following the left-right response pattern, P(S*|LR). This
probability depends on the interval from the preceding R response
to the current R. We divide this interval into two parts, that be-
tween the last L and the last R responses, call it 7;, and that be-
tween the last L and the preceding R response, call it 7,:

R— non—R responses - L—R.
o

4l

7

The interval 1, comes from an exponential distribution with
parameter A; the interval 7, comes from an exponential distri-
bution with parameter Aq. Hence,

P(S*|LR)

_ J~:J~0°°(1 _ exp_y"(r‘ﬂz )) (/l exp_M‘ )(,lq cxp“A"T2 )dTl drt,

)
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Another way to derive the preceding result is to consider that
the LR pattern will not be reinforced if a reward was not set up
during 7, and it was not set up during 7;. The first event occurs
with probability

A

%t Aq’
because this is the probability that, of two Poisson processes, one
with parameter Aq (i.e., R pecks), the other with parameter y,
(i.e., reinforcers on R key), the former occurs before than the
latter. For similar reasons, the probability that no reward is set
up during interval 7, equals

A
T+ A
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