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Item recognition requires discrimination of studied words from nonstudied words. Associative
recognition requires subjects to discriminate studied word groups from recombinations of words
from different groups. Cued recognition requires the same old-new discrimination as item recog
nition, but list items are presented as cues along with the test item. The results from three ex
periments show (1) little or no effect of cuing for low-frequency words, but (2) positive cuing effects
for high-frequency words; (3) increasing levels of overall performance with increases in study time,
but (4) unchanging effects of cuing with study time; and (5) stronger positive cuing effects for
two cues than for one cue. Five models (Independent Cue Model, Matrix model, MINERVA 2,
SAM, and TODAM) were fit to the data of Experiment 1. Each model has trouble with at least
one aspect of the results. Theoretical implications and modifications are discussed at length.

Current models of recognition memory can, in princi
ple, account for both item and associative recognition.
Item recognition requires subjects to distinguish events
that have occurred from events that have not. Associa
tive recognition requires discrimination of events that have
co-occurred from events that have not. In the typical par
adigm, subjects study lists of word pairs, with pairs
denoted AB, CD, EF, GH, etc., and they must distin
guish between intact(AB) andrearranged(AD) test pairs.
In this paper, attention is focused on the following models:
GiUund and Shiffrin's (1984) search of associative mem
ory (SAM) model, Humphrey's (1978) Independent Cue
Model (lCM), Hintzman's (1984) MINERVA 2, Mur
dock's (1982) TODAM, and Pike's (1984) Matrix model.

The mechanisms that these models posit as underlying
item and associative recognition are quite varied; how
ever, it has been shown that they make very similar, and
in some cases identical, predictions (Humphreys, Pike,
Bain, & Tehan, 1989). We will test these models by ap
plying them to data from a variety of test conditions. In
the three experiments reported in this paper, memory is
tested with cued recognition in addition to item and as
sociative recognition. Cued recognition requires the same
discrimination as item recognition, except that cue words,
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which the subject knows are from the list, are presented
with each test item. Thus, AB and AX denote target and
distractor trials, where A indicates the cue item, and B
has been studied with A.

A central question in the current research regards the
relationship between item, cued, and associative recog
nition. Cued recognition provides an important test con
dition because (1) it has characteristics of both item and
associative recognition, (2) the effect ofadding cues (com
parison between cued and item recognition) has been
shown to vary across experiments, and (3) it provides an
additional constraint on models. Each of these points is
discussed briefly below.

I. As noted above, cued recognition requires precisely
the same discrimination as does item recognition. How
ever, to the extent that the episodic association between
the cue and the test item is utilized, cued recognition may
be based on an associative discrimination. At an extreme,
cued recognition may beapproached in the same manner
as associative recognition, where B is called old because
A and B have co-occurred, and X is called new because
A and X have not co-occurred.

2. The effect of adding cues varies across experiments,
the results ranging from strong facilitation (Thomson,
1972, Experiments 1 and 4; Tulving & Thomson, 1971),
through little or no facilitation (DaPolito, Barker, & Wi
ant, 1972; Slamecka, 1975; Thomson, 1972, Experiments
2, 3, and 6; Underwood, 1974), to interference (Clark
& Shiffrin, 1987; Gillund & Shiffrin, 1984; Gronlund,
1986).

However, only in Gronlund's (1986) study was the in
terfering effect of adding cues statistically significant. Fol
lowing study of a list of five-tuples (denoted ABCDE,
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where each letter represents a word), subjects were bet
ter at distinguishing two old words (DE) from two new
words (XY) when the words were tested alone than when
the two words were tested with the other three words from
the sentence (ABCDE vs. ABCXY).

Clark and Shiffrin (1987) presented subjects with un
related word triples (ABC, DEF, etc.) and showed that
recognition performance declined slightly as cues were
added at test. Performance was best for single-item rec
ognition (C vs. X), slightly worse for cued recognition
with one cue (BC vs, BX), and worse yet with two cues
(ABC vs. ABX). However, the differences were small and
statistically unreliable. Similarly, Gillund and Shiffrin
(1984) showed a (statistically unreliable) cuing deficit with
word pairs.

Of the models listed above, only SAM can account for
negative effects of adding cues; other models either predict
positive cuing or predict that cuing effects will covary with
associative recognition performance. One purpose of the
current work is to determine the extent to which negative
cuing effects occur.

3. Cued recognition may provide an important third
data point for model-fitting. A full discussion of model
predictions and their underlying mechanisms will be given
after Experiment 1. The bottom line of that discussion is
the following:

MINERVA 2 predicts a large cuing advantage because
the associative information in the AB pair contributes to
its familiarity. For TODAM, the ICM, and the Matrix
model, the effect of cuing will covary with the level of
associative recognition performance. In TODAM and the
ICM, this is because the associative information that
underlies associative recognition also produces positive
cuing. Unlike in MINERVA 2, positive cuing is not oblig
atory, but it will appear concurrently with high levels of
associative recognition performance. The predictions are
linked in the Matrix model for similar reasons (however,
while item and associative information may vary indepen
dently in TODAM and the ICM, they are not separate
in the Matrix model).

Negative cuing is predicted only by SAM, and the origi
nal version of SAM cannot predict positive cuing. The
reason is that SAM assumes that retrieval resources are
limited, and these limited resources must be distributed
among the multiple cues used to probe memory. Atten
tion given to the cue is taken away from the test item.
Clark and Shiffrin (1987) suggested that when the resource
cost of utilizing a cue exceeds its effectiveness, use of the
cue will produce a decrement in memory performance,
relative to when the cue is not present (or not used).

What factors underlie a cue's effectiveness? Certainly,
the strength of the cue's association to the test item is one
factor. We will test the hypothesis that it takes more time
to encode and store associative information than it does
to encode and store item-specific information. Thus,
longer presentation rates should lead to cuing advantages.

This presentation time hypothesis presumes some
degree of independence of item and associative informa-
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tion. The models under consideration posit differing rela
tionships between these types of information. Briefly,
SAM, TODAM, and the ICM assume that item-specific
and associative information are stored separately, and may
vary independently. MINERVA 2 and the Matrix model
do not explicitly distinguish between item and associa
tive information at the level of the memory trace. Conse
quently, predictions of these models are more constrained
than those for TODAM and SAM.

EXPERIMENT 1

Pairs of words were studied, and single (A vs. X) and
cued (AB vs. AX) recognition were tested. Pair recogni
tion, which requires discrimination of intact (AB) pairs
from two new words (XY), and associative recognition
(AB vs. AD) were also tested. Associative recognition
places a constraint on models like TODAM and the Matrix
model, which can predict positive or negative cuing ef
fects, but which cannot simultaneously predict negative
cuing and high levels of associative recognition per
formance.

A specific hypothesis tested is that cuing deficits occur
when the episodic associative link between A and B is
weak, and that longer presentation rates will lead to an
increasing cuing advantage. Thus, study pairs were pre
sented at fast or slow rates in different lists. We wanted
to provide conditions that would be likely to produce a
cuing deficit; thus, based on previous results, low
frequency words were used.

Method
SUbjects. Forty-eight subjects from Indiana University partici

pated, either to fulfill an introductory psychology course require
ment or for cash.

Procedure and Materials. Eight study lists were presented, each
followed by a 3G-sec arithmetic distractor task andone of four kinds
of recognition test: single-item. cued, pair, or associative. Low
frequency words listed as having fewer than four occurrences per
million in Thorndike and Lorge's (1944) and Kucera and Francis's
(1967) word frequency norms were used to create study lists and
recognition tests.

Each study list consisted of 16 word pairs. Four lists were pre
sented at a fast rate (1.25 sec/pair) and four were presented at a
slow rate (5.0 sec/pair).

Following presentation of each list, subjects mentally added 15
single digits (from 4 to 9) presented at a 2-sec/digit rate. Follow
ing the arithmetic task, one of four recognition tests was presented:
single-item (S), cued (Q), pair (P), or associative (A) recognition.

Single-item recognition (S). On each trial, a study list word (A)
or a new word distractor (X) was presented. The subject's task was
to say whether the word was old (from the list) or new. Half of
the target items corresponded to right-hand members of a study pair,
and half to the left-hand members. The targets were presented in
their appropriate locations (left, right), and half of the distractors
were presented on the left and half on the right. A blank line was
presented next to the test item to indicate the word's position. Six
teen old and 16 new items were tested.

Cued recognition (Q). On each test trial, two words were
presented-a cue and a test item. The cue was always one member
of a studied pair. The test item was either the other member of the
pair, or a new item. Let AB denote A as a cue and B as the (old)
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test item, and let AX denote A as a cue and X as a (new) test item.
The cue item was always the left-hand item, and the test item was
always the right-hand item. I Eight old and eight new items were
tested. A cue from a given study pair was used in a test pair only
once. The subjects were fully informed regarding the cue's rela
tion to the test item for target and distractor trials. The subjects
were told that the cues would be useful in helping them make their
recognition decisions, and they were encouraged to utilize them.
In addition, the subjects were explicitly told that on old trials, the
cue would be the word originally paired with the test word.

Pair recognition (P). Target trials consisted of two old items
studied as a pair (AB), or two new items (XY); 16 old and 16 new
pairs were tested.

Associative recognition (A). An intact test consisted of two old
items studied as a pair (AB). A rearranged test consisted of two
old items studied in different pairs (AD). Positions of test words
were never reversed relative to study; for example, BA and DA
probes were not tested. Five intact and five rearranged pairs were
tested.

For all of the test conditions, words from a given study list pair
contributed to only one test trial. For example, given study of AB,
CD, and EF, if AD was tested as a rearranged pair in associative
recognition, Band C would not be used for any test trial-AB, CD,
and CB could not be tested. Similarly, for single-item and cued rec
ognition, A and B items could not both be tested.

Test trials were group-paced so that the next test trial appeared
after all subjects entered responses on the current trial. The sub
jects were run in groups of I to 4.

Prior to the collection of data, the subjects were given extensive
instructions regarding the nature of the study lists and testing pro
cedures, and they were shown four practice study lists, each of which
was followed by one of the different test conditions. Thus, the sub
jects were exposed to the kind of discrimination required by each
of the four tasks, and they were familiar with the testing proce
dures and apparatus. In the practice lists and during the experiment,
test conditions were revealed only after the study list had been pre
sented, thus minimizing the possibility of subjects' adopting dif
ferent learning strategies for different test conditions.

The selection of words and the assignment of the words to con
ditions were random. The eight study-test trials were presented in
one of eight different orders for each subject. Over the eight order
ings, each test type/presentation rate combination occurred equally
often in each of the eight positions.

Stimulus presentation and response collection were controlled by
a DEC PDP-Il/34 computer. The stimuli were presented on VT
220 and VT-240 terminals.

Results
Table 1 gives the hit rates and false alarm rates aver

aged over subjects for each test/presentation rate condi
tion, plus the average of the d's for individual subjects
for each condition (for subjects who showed hit rates equal
to 1.0 or false alarm rates of zero, estimates were calcu-

lated with the procedure described by Murdock & Ogil
vie, 1968). Statistical tests were calculated on hit rate mi
nus false alarm rate (HR - FAR) rather than d' (note,
however, that the pattern of results is the same for both
the linear [HR - FAR] and nonlinear [d'] dependent mea
sures). A test type x presentation rate X test order
(4x2x8) analysis of variance (ANOYA) showed no ef
fect of order, but a large effect for test type [F (3, 120) =
45.53, MSe = .029, p < .0001], and presentation rate
[F(I,40) = 195.76, MSe = .035, p < .0001], as well
as a significant test type X presentation rate interaction
[F(3,120) = 5.46, MSe = .033,p < .005]. The results
can be summarized as pair > single ~ cued > associa
tive, for both the fast and slow presentation rate condi
tions. The trend toward a negative cuing effect was not
statistically significant for fast or slow pr.esentation rates.

The effect of increasing study time is shown in Table 1
in terms of the ratio of d' for slow and fast presentation
rates, d~/df' and in differences in HR - FAR for slow and
fast presentation rates. Both measures show the effect of
increasing study time to be roughly twice as large for as
sociative recognition as for the other conditions. An
ANOYA of the differences showed that the differences
were reliable [F(I,141) = 5.95, MSe = .083,p < .001],
and Tukey's honestly significant difference (HSD) was
.153, indicating that the effect of increasing presentation
rate for associative recognition differed from all the other
test types, but that the effects of presentation rate for
single-item, cued, and pair tests were not different.

Discussion
A very small, statistically insignificant negative cuing

effect was shown for both fast and slow presentation rates.
This result replicates earlier results of Clark and Shiffrin
(1987) and Gillund and Shiffrin (1984). One interpreta
tion of this result is that subjects simply ignored the cue,
despite instructions to use it. Moreover, as will be shown
in the next section, all of the models with the exception
of SAM have mechanisms that will produce a large cu
ing advantage if the cue is used. Thus, advocates of these
models must explain why subjects who are encouraged
to use the cue ignore it. Within the SAM framework, at
tention to the cue produces a deficit, so it may plausibly
be argued that subjects might learn to ignore it.

The hypothesis that storage of associative information
requires more study time than item information was sup
ported by data showing that the increase in performance

Table 1
Average Hit and False Alarm Rates Plus d' for Experiment 1

Single-Item Cued Pair

HR FAR HR FAR HR FAR

Associative

HR FAR

0.80 0.17 0.77 0.17 0.84 0.11
2.01 1.98 2.67

Fast
d'

Slow
d'

d;/d,
(HR - FAR). - (HR - FAR)r

0.90 0.07
3.11

1.55
.24

0.90 0.09
2.86

1.44
.21

0.95 0.03
3.65

1.37
.19

0.73 0.44
0.85

0.87 0.15
2.27

2.67
.43



with longer presentation times was much larger for as
sociative recognition than the other test conditions. At the
fast presentation rate, associative recognition was consid
erably worse than the other recognition tasks, but at the
slow presentation rate associative recognition performance
was much closer to the other tasks.

The increase in associative recognition performance
suggests that the A-B associations are stronger at the slow
presentation rate. However, the strengthening of A-B as
sociations still did not produce a cuing advantage. This
result poses a puzzle that will be addressed later in the
article.

MODELS

SAM (Gillund & Shiffrin, 1984), TODAM (Murdock,
1982), Pike's (1984) Matrix model, MINERVA 2 (Hintz
man, 1984), and Humphreys's (l978) ICM are described
below. With the exclusion of the ICM, these models con
stitute a class of models called interactive cue global
matching models.

Models in this class share two characteristics: (l) They
base recognition decisions entirely on the familiarity of
the test probe (without appeal to any additional processes
like search). This familiarity represents information ac
cessed directly from all items in memory (constrained to
list items) on the basis of a global match (or global acti
vation) of the test item to all items in memory. This global
match differs from earlier local match familiarity models,
in which only the representation of the test item is ac
cessed (see, e.g., Kintsch, 1970). (2) Multiple cues in
these models are combined interactively such that the
match (or activation) given by cues A and B is not a linear
function of the match of the separate word cues.

The ICM proposed by Humphreys (l978) does not com
bine cues in this interactive manner, but rather posits de
pendencies such that retrieval of associative information
is contingent on retrieval of item-specific information. Al
though conceptually different from any of the interactive
cue global matching models, the Independent Cue Model
predicts many of the same results.
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The models were fit to the hit rates and false alarm rates
shown in Table 1. For SAM, TODAM, and the Matrix
model, this was done by deriving expressions for the ex
pectation and variance of the familiarity distributions for
target and distractor cases in each test condition at the
fast and slow presentation rates. For these models, nor
mal (but not necessarily equal-variance) distributions are
assumed. For MINERVA 2, predictions were obtained
by means of Monte Carlo simulation, becauseclosed-form
expressions for means and variances have not been de
rived. For the ICM, response probabilities are derived
directly.

For all models, fits were evaluated with the chi-square
statistic (including probabilities of misses and correct re
jections, which are not shown in Table 1). The data yield
16 degrees of freedom. For each model, the degrees of
freedom for the fit is 16 minus the number of free pa
rameters.

Although the predictions of all models differ signifi
cantly from data, the chi-square values give a useful in
dex of relative fit across models. Also, despite the high
chi-square values, the predictions for hit and false alarm
rates are quite close for some of the models. The propor
tion of variance accounted for (r1

) was quite high for all
model fits, an r1s being above .97.

The best-fit predictions of each model are given in Ta
ble 2, and the corresponding parameters and chi-square
values are given in Table 3. Table 2 gives hit and false
alarm rates and d's calculated from those hit and false
alarm rates. (The d's were not used for fitting the models;
they are listed as a convenient summary statistic. Since
all the d's in Table 2 are calculated from average hit and
false alarm rates, they will not correspond to the data d's
in Table 1.) The model-fitting algorithm minimized chi
square error for the response frequencies for hits, misses,
false alarms, and correct rejections, not d's.

SAM
In the SAM model, individual words are stored sepa

rately in units called images.2 Recognition is based on the

Table 2
Best Fits to Experiment 1 for SAM, TODAM, Matrix, MINERVA 2, and ICM

Single-Item Cued Pair Associative

HR FAR d; HR FAR dq HR FAR d~ HR FAR d~

Fast Presentation Rate

Data .80 .17 1.80 .77 .17 1.69 .84 .11 2.22 .73 .44 0.76
SAM .82 .16 1.91 .76 .17 1.66 .84 .12 2.17 .69 .50 0.50
TODAM(2) .77 .19 1.62 .77 .17 1.69 .85 .10 2.32 .70 .47 0.60
Matrix .72 .23 1.32 .77 .18 1.65 .88 .09 2.52 .74 .44 0.79
MINERVA 2 .69 .28 1.08 .77 .18 1.65 .86 .10 2.36 .81 .33 1.32
ICM .77 .25 1.42 .83 .25 1.62 .84 .06 2.22 .68 .47 0.54

Slow Presentation Rate

Data .90 .07 2.76 .90 .09 2.62 .95 .03 3.53 .87 .15 2.16
SAM .92 .06 2.96 .91 .09 2.68 .95 .03 3.53 .71 .30 1.08
TODAM(2) .86 .11 2.31 .92 .07 2.88 .96 .02 3.81 .81 .20 1.72
Matrix .79 .16 1.80 .92 .08 2.81 .97 .02 3.94 .83 .19 1.83
MINERVA 2 .87 .11 2.35 .92 .08 2.81 .96 .02 3.81 .89 .14 2.31
(eM .87 .12 2.58 .94 .12 2.62 .95 .01 3.87 .83 .16 1.94
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Table 3
Parameter Values for Best Fits to Experiment 1 for SAM, TODAM, Matrix,

MINERVA 2, and ICM models

SAM bl = .0628, b,=.1700

CI = .1002, c, = .1800, d = .0100, Wq = .16

x1(2) = 69.90, x1/df = 34.95

TODAM(2) -Yi(f) = .5500, -Yi(S) = 2.5016, -y.(f) = .1270, -y.(s) = 1.7984, N = 190

X1(3) = 45.72, x1/df = 15.24

Matrix III = 4.1, /los = 4.6875

UI = 3.801, u, = 5.9625, N = 493

X1(3) = 187.50, x1/df = 62.50

MINERVA 2 er = .355, e, = .604, N = 20

X1(5) = 140.48, x1/df = 28.096

ICM Cil = .695, Ci, = .856, {31 = .354, (3, = .641

gil = .248, g21 = .518, g31 = .734

gl, = .115, g2, = .161, g3, = .671

x1(6) = 134.78, x1/df = 26.956

Note-Parameters are described in the text. Criterion parameters are not listed for SAM, TODAM,
MINERVA 2, and Matrix models.

connection strengths between stored images and the cues
used to probe memory (including the test item). These
cue-to-image strengths are combined multiplicatively and
summed over all N images in memory to give a measure
of familiarity,

N M
F(Qh Q2' Q3, ... , QM) = E Il S(Q;,Ij)Wi. (1)

j=1 i=1

In Equation 1, the Q; refer to the cues used to probe mem
ory, including the test item(s) and context, and Wi is a
cue weight indicating the proportion of limited resources
allocated to cue Qi. The limitation on resources is instan
tiated by the constraint that Ew; is a constant, usually set
to 1. Generally, memory is probed with the test item(s)
and context as cues. The context cue is assumed to focus
retrieval on the study list, and in previous applications
(Clark & Shiffrin, 1987), the weight on context has been
set to 0.5.

Each cue-to-image strength is a random variable with
expectation determined by parameter values. The vari
ance is approximated by a three-point distribution. Spe
cifically, the value for any S(Q;,Ij) with mean x is x(1 +v),
x, or x(l-v), each with a probability of 1/3 (usually v
is set equal to .5).

The expectations for S(Q;,Ij) are given by four param
eters. The strength between the context cue and image
Ij is denoted a. The strength between Q; and its own im
age I; is a self-strength, denoted c. The strength between
a cue and the image of a word with which it has been re
hearsed is an interitem strength denoted b. A residual

strength, d, is assumed between a cue and an image with
which it has not been rehearsed.

Assuming independence between images (i.e., the vari
ability in S(Q;,Ij) is uncorrelated for all i and j), expres
sions can be derived for the expectation and variance of
the familiarity distribution for each of the different test
probes. Hit and false alarm rates were obtained by as
suming that familiarity distributions are normal, and by
calculating the proportion of target and distractor distri
butions above a criterion that varied as a free parameter.

The free parameters in the model were as follows: br
and b, are interitem strengths for fast and slow presenta
tion rates, ct and Cs are self-strengths for fast and slow
rates, and d is a residual strength. The residual strength
applies to words not rehearsed together, so the value of
d is determined only by preexperimental factors (but see
Shiffrin, Ratcliff, & Clark, 1990) and thus did not vary
with presentation rate. (It is reasonable to assume that con
text strength increases with presentation time; however,
if only list items are activated by the probe cues, the con
text parameter cancels out of all the d' equations, so the
context strength parameter is ignored in the present work.)

The context cue We is given a fixed weight of .5, and
the remaining weight of .5 is evenly divided among the
test word cues, except in the case of cued recognition
where a weight Wq is given to the cue," and WI is given
to the test item, where Wt = .5 - Wq. The other weights
are as follows: Ws denotes the weight on the item cue in
single-item recognition, wp denotes the weight on each
item cue in double-item tests (pair and associative recog-



nition); W s is set to .5, and wp is set to .25. Only Wq is
free to vary.

Since the decision criterion for responding "old" varied
freely for each of the eight study-test conditions, a total
of 14 parameters varied freely. . .

The predictions for d' for the four test conditions are
as follows:

d~ = (a sIN'h)[(cld)W'+(bld)W'-2] (2)

dq= (aqIN'h)[(cld)Wq(bld)Wt+(bld)Wq(cld)Wtt

-(cld)Wq-(bld)wq (3)

d~ = (a pIN'h)2[(cld)Wp(bld)Wp-l] (4)

d~ = (aaIN'h)2[(cld)Wp(bld)Wp+ 1-(cld)Wp-(bld)Wp]

(5)

The a terms are constants whose values depend only on
the cue weights. For W s = We = .5 and W p = .25, as =
3.22, and ap = aa = 3.70. The value of aq depends on
the free parameter Wq; aq = as if Wq is zero, and aq < as
for all nonzero wq. For the best-fit value of Wq = .16,
aq = 3.63. The derivation of a terms is described in Ap
pendix A.

It can be seen from Equations 2 and 3 that cued recog
nition performance cannot exceed single-item recognition.
Note that Ws = wq+Wt, and all the terms in parentheses
are greater than or equal to I. The a terms have almost
no effect on d', By symmetry, Equation 3 reaches a max
imum when wq equals zero. At that point, d; = dq, so
it is clear that d~ ~ dq.This point can be verified by set
ting W q to zero in Equation 3. If Wq is zero, then aq =
as, the weight on the test item in cued recognition will
be equal to the weight on the test item in single-item rec
ognition (Wt = ws), and all terms raised to the Wq power
are equal to I. Equations 2 and 3 are then identical.

Although the model clearly deviates from the data
[~(2) = 69.90], several aspects of the data are captured
in the fit. The model makes accurate predictions for old
new discrimination (single-item, cued, and pair tests) at
fast and slow presentation rates. However, associative rec
ognition performance is underpredicted at the fast p.re
sentation rate, and particularly at the slow presentation
rate, where the error in prediction contributes a chi-square
of 52.24 to the total error chi-square of 69.90; 77% of
the total error comes from this comparison. There is some
thing happening in associative recognition that the model
in its present form is missing. We will return to this i~

sue in the general discussion. It is useful to note at this
point that the self-strength parameter c rises by a factor
of 1.8 from the fast to the slow rate, but that the inter
item strength parameter b rises by a factor of almost 3,
suggesting accentuation of associative information at the
slower rates.

TODAM
A word is represented as a normalized vector of in

dependent feature values, each with expectation equal to
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zero. We will distinguish between stimuli and their cor
responding vector representations with upper and lower
case. Thus, Stimulus A is represented by vector 8. For
a given AB pair, three vectors are stored, 8 and b, and
the convolution of 8 and b, which represents the associa
tion between 8 and b, and is denoted 8 *b. Unlike SAM,
items are not stored separately, but rather are summed
together into a single vector, M, which represents a com
posite memory. Specifically,

M j = aMj-, +-y18j+-y1bj+-Y3(8j*bj), (6)

where Mj is the memory vector after thejth presentation,
8j and bj are item vectors, (aj*bj) is the a-b association,
a is a forgetting parameter, and -y" -Y1, and -Y3 are weights.
In the original description of the model, all -y were set
equal to 1.0, although in some applications (see Weber,
1988), they have been constrained to sum to 1.0. We al
lowed the weights to vary freely, with the only restric
tion that 'YI = -Y1' In accord with this assumption, we
denote the weight on an item vector (-Yl> 'Y1) as -Yi and
the weight on an associative vector (-Y3) as -Ya. The for
getting parameter a does not playa substantive role for
our studies, so it is not considered further (i.e., it is set
to 1.0 for convenience).

Recognition is based on the familiarity of the test probe,
which is given by the match of the test probe vector to
the memory vector. This match is computed as the inner
dot product of the two vectors.

Two versions of TODAM are considered, denoted T-l
and T-2, which vary with respect to the information used
to probe memory. 4 T-I assumes that single-item tests
probe with the single vector, and that all double-item tests
probe with the convolution of the two test item vectors.
This model can be rejected out of hand, because it predicts
essentially equal performance for all double-item tests.
This prediction has been verified previously by Weber
(1988).

Model T-2 also assumes that for a single-item test,
memory is probed with the single test vector. For the cued
tests, memory is probed with the sum of the test item vec
tor and the pair convolution vector. For the pair tests,
memory is probed with the sum of the single vectors cor
responding to both test items, and the convolution vector
for the test pair. For the associative tests, only the con
volution vector is used as a probe (since single items can
not help).

Thirteen parameters were varied for Model T-2; -Yi(f)
and -Yi(S) are storage weights for single-item vectors at
fast and slow presentation rates, and -yif) and -Ya(S) are
the corresponding weights for convolution (associative)
vectors. The length of the single-item vector, N, did not
vary with study time. Eight decision criteria varied freely
for each study-test condition. The means and variances
for each condition are given in Appendix B.

Expressions for d' for single-item, cued, pair, and as
sociative recognition are given as follows:

d~ = -yJ(A)'h (7)



Matrix Model
Words are represented as vectors. Values of vector ele

ments are random variables, each with expectation equal

and K is the number of pairs.
From Equations 7 and 8, it is clear that a cued advan

tage is predicted for large 'Ya relative to 'Yi. Cued recog
nition is based on a mixture of item and associative
information, so that as the relative contribution ofassocia
tive information increases, so too will the predicted posi
tive effect of the cue. The value of 'Ya is constrained by
paired and associative recognition. Lowering values for
'Ya can produce a cuing disadvantage but only at the cost
of underpredicting performance for associative recogni
tion. This pattern may be seen in Table 2. The overall
fit of T-2 shown in Table 2 is relatively good, although
predictions deviate from the data (~(3) = 45.72]. At fast
and slow presentation rates, single-item recognition per
formance is slightly underpredicted, and cued recogni
tion performance is slightly overpredicted. Particularly
at the slow presentation rate, the relationship between
single-item and cued recognition is mispredicted. Like
SAM, associative recognition performance is under
predicted at the slow presentation rate, although the er
ror is not as great. Perhaps more to the point, TODAM
predicts a bigger advantage for cued over associative rec
ognition than that observed, especially at the slow pre
sentation rate.

Despite these mispredictions, the fit of the model is very
good. Perhaps this is not surprising, given the freedom
of choosing values for 'Yi and 'Ya. Item and associative in
formation are independent in TODAM, so the relation be
tween single-item and cued recognition can be adjusted
freely; increasing the contribution of associative informa
tion has no effect on single-item recognition. Note that
'Yi increases by a factor of five (from .55 to 2.5) from
the fast to the slow presentation rate, and 'Ya increases by
a factor of 14 (.127 to 1.8). At the fast presentation rate,
'Yi/'Ya = .55/.127 = 4.33. At the slow presentation rate,
this ratio is 2.5/1.8 = 1.39. Thus, according to TODAM,
associative information is accentuated at slower presen
tation rates. This is the same pattern as that shown by the
SAM model: in SAM, the slow/fast ratios of interitem
strengths were much larger than the ratios of self
strengths.
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dq = ('Yi+'Ya)/{A+B+[(N+l)/N2]('Y~+'Y~)}'h

d~ = ('Ya+2'Yi)/(B+2A)'h

d~ = 'Ya![(B+ 2::2)('Yt+'Y~)]'h,

where

[ (
3N 2+ 1)]

A = (2/Nh~+ 'Y~ 4N3 K,

(8)

(9)

(10)

to JL and variance equal to o". Associations are represented
by vector multiplication (outer product); specifically, the
association for AB is given by multiplication of the a
column vector by the b row vector to form a matrix. The
a-b association matrices are summed together cell by cell
into one distributed memory, represented as the NxN
matrix M.

Recognition is based on the familiarity or match of the
test item matrix with the memory matrix. As in TODAM,
the match is given by the dot product. For single-item
tests, a test matrix is constructed by taking the product
of the test item vector and a vector of ones. Equations
for d' (and for the means and variances) are very com
plicated and do not reduce to simple enough expressions
to merit their incorporation in the text; they are given in
Appendix C.

The Matrix model can produce a cuing advantage or
disadvantage. As a'- is increased relative to JL, an increas
ing cuing advantage is predicted. In fact, increasing a'
relative to JL produces performance increases in all test
conditions. The reason for this is that recognition is based
on the relative match of target and distractor probes to
memory. As u2 increases relative to JL, the difference in
the match of targets and distractors is expanded.

Thus, like TODAM, the Matrix model predicts a cor
relation between associative recognition performance and
a positive cuing effect. This behavior in the model can
be seen in Figure 1, which shows predictions for d~, dq
and d~, varying JL from 3 to 6 while a is constant at 3.0.
Vector length was set at 100,200 (not shown), and 500.
Thus, an increasing cuing advantage should be associated
with increasing associative recognition performance; a re
sult that is not found.

In fitting the Matrix model to Experiment 2, 13 param
eters were free to vary: JLf, JLs, a;, and a~, the mean and
variance of the match values for test matrix cell t(i,j) to
memory matrix cell M(i,j) for fast and slow presentation
rates, N the vector length (which does not vary with pre
sentation rate), and the eight decision criteria.

The fit of the model was relatively poor [x 2(3) =
187.5]. The predictions are given in Table 2. The main
source of the error is clear: single-item recognition is 00

derpredicted particularly at the slow presentation rate. The
reason for this is also clear. Unlike TODAM and SAM,
item andassociative information are not stored separately,
and their strengths cannot vary independently. Except in
the single-item case, the Matrix model exhibits a diffi
culty also seen in TODAM: The predicted difference be
tween cued and associative conditions is too large, espe
cially at the slow presentation rate.

MINERVA 2
Word pairs are represented as a single vector, which

is the concatenation of two item vectors with Elements
1 to N/2, representing item A, and Elements N/2+ 1 to
N, representing item B (this is consistent with the repre
sentation of category name-exemplar pairs in Hintzman,
1986). Vector elements may take on values of + 1, -1,
or O. The expectation for a given feature is zero, and the
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This encoding parameter is assumed to vary with presen
tation rate, giving two free parameters, er and es- The
length of the memory vector, N, also varied, but it did
not vary with presentation rate. The decision criterion also
varied freely in each of the eight study-test conditions.

Derivations for expectations and variances of familiar
ity have not been developed for MINERVA 2, although
their development is under way (Sheu, 1990). Thus, we
obtained predictions by Monte Carlo simulation. Each set
of predictions is based on 500 simulations.

The model did not yield a good fit relative to other
models (¥(5) = 140.48], although the fit was better than
that of the Matrix model. Also, the pattern of mispredic
tion was different from that for other models. Whereas
SAM, TODAM, and the Matrix model tended to under
predict associative recognition performance, MINERVA 2
overpredicted it, particularly at the fast presentation rate.
Like the Matrix model, MINERVA 2 underpredicted
single-item recognition performance, but unlike the
Matrix model, MINERVA 2 underpredicted single-item
recognition performance for the fast, rather than for the
slow presentation rate. MINERVA 2, like the Matrix
model, does not store item and associative information
separately. Relative performance of single- and double
item tests is constrained. In particular, MINER VA 2
predicts a considerable cuing advantage, contrary to the
data.

Independent Cue Model
The ICM was first proposed by Humphreys (1976,

1978), and a similar model was later proposed by Mand
ler (1980). For the present purposes, we will focus here
on the Humphreys model. As noted previously, this model
is quite different from the others, but it makes many of
the same predictions.

In the ICM, item information provides evidence that
an item, B, has been presented in some context (i.e., on
the list). Relational information indicates that two items,
A and B, were rehearsed together (as a pair). The proba
bility of retrieving item information is a, and the proba
bility of retrieving relational information given that item
information (for some item) is retrieved is (3. The proba
bility that a given test item, B, will be recognized as old
when tested alone, p(Rg B IB), or in a rearranged pair,
p(Rg BICB), is

p(Rg B IB) = p(Rg B ICB) = a. (12)

The probability that B will be called old when tested in
an intact pair, p(Rg BlAB), is

p(Rg BlAB) = a +(I-a){3a. (13)

Thus, even if item information is not retrieved for B, it
may still be recognized if A is recognized and used as
a cue to retrieve AB relational information. A cued rec
ognition advantage is clearly predicted when {3 > 0,
which it must be to predict d~ > 0, and a cued disadvan
tage cannot be predicted.

The probabilities for retrieving item and relational in
formation vary with presentation rate, giving four free
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Figure I. Matrix model predictions for cued, single, and associa·
tive recognition, holding 11constant and varying '" and vector length
N. Recognition d's are calculated from hit and false alarm rate
predictions.
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F(t) = i~ll/NRL~/(k)mi(k)r.
where the NR is the number of cells for which either t(k)
or mi(k) is nonzero.

For single-item tests, the test vector contained elements
of the test item vector, and the other half of the test vec
tor contained zeros. Double-item tests concatenated the
two single-item vectors for each test type.

Cubing the dot product match of test vector and mem
ory vector introduces a nonlinearity into the model, which
allows the discrimination of intact test pairs from re
arranged test pairs. This same nonlinearity, however,
predicts a substantial positive cuing effect.

Eleven parameters varied freely: e represents the prob
ability ofcorrectly encoding feature} in the stimulus and
storing it in cell j of its corresponding memory vector.

variance depends on the probability of a nonzero value.
Each pair vector is stored separately in memory:
MINERVA 2 stores K pairs as K separate memory vec
tors m l , ml, ... , mK.

An index of familiarity is given by taking the vector
dot product of the test item vector t and each memory
vector m., cubing it, and summing these values across
all memory vectors. The familiarity of a test item t is given
as
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parameters, ac, as, {jc, and (js. We assumed six guessing
parameters. The probability of guessing that a single item
distractor is old is g,. Subjects may also guess old for an
AB probe if item information is retrieved for only one
test item. This probability is g2' Subjects may also guess
that a rearranged distractor is old given that item infor
mation is retrieved for both items with probability g3'
These guessing probabilities varied independently for fast
and slow presentation rates.

The fit [x 2(6) = 134.78] is not as good as that of SAM
or TODAM, but it is better than that obtained with the
Matrix model and just slightly better than that for
MINERVA 2. In some conditions, the model predicts hit
and false alarm rates to be too high, which contributes
to the error. However, when hit and false alarm rates are
converted to d', the fit of the model improves. As with
MINERVA 2 and the Matrix model, the main error for
the ICM occurs in predicting single-item recognition per
formance to be too low relative to that on double-item
tests: predictions for single-item recognition are too low,
and predictions for cued and pair recognition are too high.
The error is not as great as it is for MINERVA 2 or the
Matrix model, particularly when the fit is evaluated in
terms of d' .

Finally, note that for the ICM, associative (relational)
information is accentuated at slower presentation rates:
{j increased from .354 to .641 for fast and slow presenta
tion, while a increased from .695 to .856. Slow/fast ra
tios were 1.81 {js/{jc and 1.23 for as/ac.

Summary
Overall tit. Of the models considered here, SAM and

TODAM give the best fits to data. Both models under
predicted associative recognition performance at the slow
presentation rate (SAM's error was larger than TODAM's),
and TODAM incorrectly predicted a cuing advantage,
particularly for the slow presentation rate. The fits for
the Matrix model and MINERVA 2 were much poorer.

In evaluating the performance of the models, one can
not overlook that the predictions are generated with dif
ferent numbers of free parameters. Direct comparisons
of performance that take into consideration the differing
numbers of free parameters are difficult to interpret. Al
though goodness-of-fit statistics can be used to evaluate
the fit of a single model with varying numbers of free pa
rameters, comparison across different models is not as
straightforward. In many cases, it is not clear how addi
tional parameters would be incorporated into the model.
For MINERVA 2, for example, the fit would clearly im
prove were there an additional parameter that weighted
item and associative information; however, it is not con
ceptually clear how such a parameter would be incorpo
rated into the model.

Nonetheless, one can obtain an index of the efficiency
of each model by dividing the chi-square by its degrees
of freedom; these statistics are also listed in Table 3. It
can be seen that ~/dfis smallest for TODAM, indicat
ing that it was the most efficient model. MINERVA 2 and

the ICM also have relatively low values for ~/dfbecause

each had relatively few free parameters, even though the
overall fits were not very good. The SAM model, while
giving a good fit, was not very efficient. The Matrix model
showed the largest value for x2/df

Cued and single-item recognition. The Matrix model,
MINERVA 2, and the ICM clearly rnispredict the effect
of cuing, each predicting a substantial advantage of cued
over single-item recognition. The picture is more com
plicated for SAM and TODAM. At the fast presentation
rate, the cued-single results do not distinguish between
TODAM and SAM. TODAM produced a small cuing ad
vantage, and SAM produced too large a cuing disadvan
tage. However, at the slow presentation rate, the models
diverge. SAM still predicts a cuing disadvantage that is
just slightly too large, but TODAM incorrectly predicts
a large cuing advantage.

TODAM and the Matrix model can predict positive or
negative cuing effects, depending on parameters; how
ever, they predict an increasing cuing advantage as as
sociative recognition performance increases. Associative
recognition performance increased markedly at the slow
presentation rate. Consequently, both TODAM and the
Matrix model incorrectly predict a cuing advantage, par
ticularly at the slow presentation rate.

The SAM model, on the other hand, cannot predict a
cuing advantage. SAM predicts a negative effect for two
reasons: (1) the cue is nondiagnostic in distinguishing tar
gets from distractors, since it is common to both test
probes, and (2) retrieval capacity in SAM is limited. Thus
any resources given to process the cue must be taken from
the test item, and because the cue is nondiagnostic, no
return is made on that resource investment.

Representation of item and associative information.
The models differ in their representation of item-specific
and associative information. In SAM, the two kinds of
information are represented by self-strength and interitem
parameters, c and b. The self-strength represents the cue's
connection to its own representation in memory, and the
interitem strength represents the cue's connection to the
representation of a word with which it has been rehearsed.
These parameters are allowed to vary independently.
Similarly, TODAM assumes that item and associative in
formation are stored in separate vectors (within the com
posite memory) and assumes separate weights 'Yi and 'Ya
on item and associative (convolution) vectors.

While TODAM and SAM both distinguish between
item-specific and associative information, they differ in
an important respect. In TODAM, associative informa
tion plays relatively little role in recognition of single items
because the expected dot product match between the con
volution vector and one of its component vectors is zero,
that is, E[(a*b) 'a] = O. Thus, predictions for item and
associative recognition are completely unconstrained for
TODAM. This is not the case for SAM. The familiarity
of the test item is a sum of strengths between the test item
A and each image in memory. One of these strengths is
the connection from A to image B. The larger this inter-



item connection is, the larger will be the familiarity of
A. This factor also underlies the cuing deficit in SAM:
A-B associative information contributes to the familiar
ity of A even when B is not present. Thus, as long as A
and B share the weight that would otherwise go to A, add
ing B as a cue does not add to the familiarity of A as the
sole item cue. The ICM is similar to SAM and TODAM
in that item and associative information are separate. How
ever, their relationship during retrieval is quite con
strained-relational information cannot be retrieved unless
item information is retrieved. The ICM fit was worse than
for TODAM or SAM, but better than for MINERVA 2
or the Matrix model.

For MINERVA 2 and the Matrix model, the constraints
appear too severe. Item and associative information are
not stored separately in these models. The Matrix model
stores pairs by vector multiplication, and MINERVA 2
stores them as the concatenation of two item vectors.
Thus, for both models, the match of a single test item to
memory is considered a partial match to its pair. This
helps to explain why single-item recognition predictions
are so low for these models.

MINERVA 2 makes an additional misprediction not
made by any other model; it overpredicted associative rec
ognition performance, especially at the fast presentation
rate. In fact, it predicted associative recognition to be bet
ter than single-item recognition, contrary to current and
previous reports (Clark & Shiffrin, 1987; Humphreys,
1976). Again, item and associative information are not
stored separately, and intact-rearranged discrimination is
produced by cubing activation. It is probably this cubing
assumption that produces such high associative recogni
tion performance.

Presentation rate hypothesis. We hypothesized that
item and associative information are stored at different
rates, and specifically, that it takes more time to store as
sociative information than it does to store item informa
tion. This hypothesis is supported by the empirical and
theoretical results. The hypothesis presupposes that item
and associative information are stored separately, and
models that do not make that assumption could not fit the
data. Each model that represents item and associative in
formation separately (TODAM, SAM, and the ICM)
showed estimated parameters consistent with relatively
more storage of associative information at slow presen
tation rates. Despite this, all three models underpredicted
the magnitude of the increase in associative recognition
performance with presentation rate and underpredicted the
level of associative recognition performance at the slower
presentation rate.

Thus, there are two main findings that the models as
a group have some problems in handling: the failure to
find an advantage for cued recognition (even when as
sociative recognition improves markedly), and the rather
large improvement exhibited by associative recognition
when the presentation time is increased (causing the cued
and associative performance levels to become fairly
close). It may well be that the models will be forced to
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incorporate additional forms of associative information,
or additional types of retrieval processes, in order to han
dle such effects.

EXPERIMENT 2

In Experiment 2, we explored conditions that might
produce a cuing advantage. In Clark and Shiffrin (1987,
Experiment 2) and in Experiment 1 of the present study,
low-frequency words were used; this may not have been
conducive to the storage and retrieval of the kind of as
sociative information needed to produce a cuing advan
tage (although it did produce high levels of associative
recognition performance).

If one is to obtain a cuing advantage, retrieval gains
must exceed attentional cost. There are at least three ways
in which this might happen: (1) A higher order AB unit
might be stored (such as the a*b convolution; see also
Gronlund, 1986; Shiffrin, Murnane, Gronlund, & Roth,
1988); (2) the A cue could be used to retrieve B (via re
call perhaps), similar to the independent cue models of
Humphreys (1978) and Mandler (1980); or (3) the cue
word might bias the encoding of the test word (Clark &
Shiffrin, 1987; Light & Carter-Sobell, 1970). These fac
tors may be minimized for low-frequency words. For ex
ample, Clark (1992) has shown that associative recogni
tion performance is better for high-frequency than for
low-frequency words. Experiment 2 therefore examines
cuing effects for low- and high-frequency words.

A second factor may have been operating in previous
experiments. Subjects may have switched retrieval strate
gies between test conditions in such a way that associa
tive information was utilized for associative recognition,
but not for cued recognition (since it isn't necessary to
do the task). Such strategy switching would allow high
levels of associative recognition performance without a
cuing advantage for old-new recognition. However,
switching strategies between associative recognition and
cued recognition would be more difficult if the test trials
were not blocked by type, but rather varied from trial to
trial. A mixed rather than blocked testing procedure was
used in Experiment 2, to minimize strategy switching be
tween test conditions.

Also, while there was little evidence that the cued
single-item recognition relationship varied with study time
for low-frequency words in Experiment 1, there was
strong evidence consistent with the hypothesis that it takes
more time to store associative information, and that
proportionally more associative information accumulates
with additional study time. Additional study time may pro
duce a cuing advantage for high-frequency words, even
though it did not produce an advantage for low-frequency
words.

Experiment 2 also varied the number of cues in cued
recognition. Presumably, monotonic functions should be
obtained. In cases in which one cue harms performance
slightly (perhaps with low-frequency words at fast pre
sentation rates), two cues should do more harm, and in
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cases in which cues are helpful (high-frequency words at
slow presentation rates), more cues should be more help
ful. Words were studied in triples rather than in pairs,
and zero, one, or two cues were available at test.

Method
Subjects. The subjects were 122 students at the University of

California, Riverside, participating to fulfill an introductory psy
chology course requirement. They were run in groups of 1-5, with
each session lasting about 50 min.

Procedure. The subjects were presented with eight study lists,
each consisting of 36 word triples (ABC, DEF, GHI, ... , etc.).
Each list consisted of all high-frequency or all low-frequency word
triples, presented at 1.0, 2.5, 4.0, or 5.5 sec/triple (which was con
stant within a given list). All words were sampled from Thorndike
and Lorge's (1944) andKuCera andFrancis's (1967)word frequency
norms. High-frequency words were defined as having 50+ occur
rences per million, and low-frequency words were defined as hav
ing less than 4 occurrences per million.

A recognition test followed a mental arithmetic task. All items
used for dis tractors were of the same frequency as items from the
study lists. Single, cued (with one or two cues), and associative
trials were mixed together in a 32-trial test phase following each
study list. For each test condition, four targets and four distractors
were tested. The procedures for a given test trial are described be
low for single, cued, and associative recognition.

Single. A list item was selected from one of the three positions
of a study triple, or a new word was presented. The subject was
to indicate whether the word was on the list.

Cued. Cued tests consisted of one or two list words from a tri
ple with either a list word from the same triple or a new word.
Cued-I tests were designated as AB or AX for target and distractor
trials, respectively; Cued-2 tests were designated as ABC and ABX.
For all cued tests, the subject's task was to say whether the desig
nated test word was from the list. The position of the cue(s) and
test item varied across the three positions with equal probability.
For 70 subjects, a row of question marks identified the test word.
For the remaining 52 subjects, the question marks were not used,
and the cue word was marked by a line under it. This manipulation
had no effect, and it is not considered in the data analysis. As in
Experiment I, the subjects were fully informed regarding the rela
tion of the cue(s) to the test item, they were told that the cue would
be useful in making recognition decisions, and they were encouraged
to use them.

Associative. Each test consisted of an intact study triple (ABC)
or a rearrangement of three list words from three different study
triples (AEn. The subjects were to indicate whether each test triplet
was intact or rearranged.

As in Experiment I, each study list triple contributed to only one
test trial. The subjects were prompted as to the nature of the test
type immediately before each test trial. The position within the tri
ple of old test items and cues was maintained between study and
test. Test trials were self-paced and independent for each subject.
The subjects were run in groups of 1-6.

Prior to data collection, the subjects were given detailed instruc
tions and a practice study and test list containing all recognition
test conditions.

The order of list presentation, order of test types within a test
phase, and selection of words from the word pool and assignment
to conditions were all randomly determined for each subject. Stim
ulus presentation and response collection were controlled by ATARI
I040ST computers, which ran independently for each subject.

Results
OveraU analysis. Average hit and false alarm rates,

plus hit rates minus false alarm rates (HR-FAR), are
shown in Table 4 for each condition. An analysis of vari
ance (ANDYA) computed on hit rates minus false alarm
rates showed increases in performance with presentation
time [F(3,363) = 108.85, MSc = .149, P < .0001], a
main effect of test type [F(3,363) = 36.84, MSc = .105,
p < .0001], and a very small statistically insignificant
effect for word frequency [F(l,121) = 3.08, MSc =
.106, P < .09].

However, word frequency did interact with test type
[F(3,363) = 19.31, MSc = .106,p < .0001]. Recog
nition performance was higher for low-frequency than for
high-frequency words for single-item [F(1,121) = 28.39,
MSc = .106, p < .0001] and for Cued-1 recognition
[F(1,121) = 10.31, MSc = .105, p < .005]. No word
frequency effect was shown for Cued-2 recognition, and
the word frequency effect was reversed for associative
recognition [F(1,121) = 19.16, MSc = .124, P <
.0001]. Discussion of this word frequency interaction
will shed light on other findings to be discussed; thus,
further discussion of the interaction will be temporarily
deferred.

Single-item-cued recognition comparisons. Clark and
Shiffrin (1987) showed that old-new discrimination de
creased slightly as cues were added (e.g., single
item > Cued-l > Cued-2). Clearly, this trend was not
replicated here. A separate ANDYA comparing single-

Presentation
Time (seconds) HR

Table 4
Average Hit Rates and False Alarm Rates, Experiment 2

Single-Item Cued-I Cued-2

FAR HR-FAR HR FAR HR-FAR HR FAR HR-FAR

Associative

HR FAR HR-FAR

Low-Frequency Words

1.0 .53 .30 .23 .53 .39 .14 .57 .38 .19 .62 .56 .06
2.5 .58 .26 .32 .64 .26 .38 .69 .24 .45 .67 .50 .17
4.0 .65 .25 .40 .68 .25 .43 .70 .21 .47 .75 .42 .33
5.5 .66 .19 .47 .73 .26 .47 .74 .20 .54 .73 .40 .33
M .61 .25 .36 .65 .29 .36 .68 .26 .42 .69 .47 .22

High-Frequency Words

1.0 .56 .45 .11 .53 .44 .09 .59 .35 .24 .59 .45 .14
2.5 .59 .38 .21 .60 .31 .31 .64 .25 .39 .69 .35 .34
4.0 .63 .30 .33 .64 .30 .34 .77 .25 .52 .68 .30 .38
5.5 .63 .30 .33 .70 .27 .43 .75 .22 .53 .73 .30 .43
M .60 .36 .24 .62 .33 .29 .69 .27 .42 .67 .35 .32



item, Cued-l , and Cued-2 recognition showed that cuing
helped for both high-frequency [F(2,242) = 40.76,
MS. = .100, P < .0001] and low-frequency words
[F(2,242) = 6.06, MS. = .094, P < .003]. It can be
seen from Table 4 that for low-frequency words, collaps
ing over presentation rate, there was no difference be
tween single-item and Cued-l recognition. Thus, the
overall cuing advantage was due to better recognition with
two cues. For high-frequency words, the 0.048 advan
tage for Cued-lover single-item recognition was not sta
tistically significant [F(I,121) = 1.38, MS. = .100].
However, the .13 advantage ofCued-2 over Cued-l was
significant [F(1,121) = 24.40, MS. = .loo,p < .001].

For high-frequency words, test type (excluding associa
tive recognition) did not interact with presentation time
[F(6,726) = 1.10, MS. = .105, p > .36]. For low
frequency words the interaction was marginally signifi
cant [F(6,726) = 1.99, MS. = .097, P < .065]. At the
fastest presentation rate, for both high-frequency and low
frequency words, single-item recognition was better than
Cued-L Only for low-frequency words did this difference
approach significance [t(121) = 1.80, p < .08].

Effects of study time. We wished to know (1) whether
the rise in performance due to increasing presentation rate
varied across the different test conditions, and (2) whether
the effect of cues varied with either presentation rate or
the level of associative recognition performance. Each of
these will be discussed in tum.

Presentation rate did not interact with test type
[F(9,l,089) = 1.56, MS. = .010, p > .10], indicating
that the rate at which performance increased with presen
tation rate did not vary across test types. The slopes of
the functions relating performance to presentation time
ranged from .051 to .072. The flattest slopes were for
single-item recognition, which is consistent with the hy
pothesis that proportionally more associative information
is stored with increased study time; however, the slope
differences were extremely small and statistically
unreliable.

For low-frequency words, associative recognition per
formance was much lower than for the other conditions
at the fastest presentation rate, which was consistent with
Experiment 1. However, in Experiment 2, associative
recognition performance didn't "catch up" to the level
of performance in the other conditions when presentation
time was increased, as had occurred in Experiment 1. The
pattern for high-frequency words was quite different from
that for low-frequency words. At the l-sec presentation
rate, associative recognition was slightly better than
single-item or Cued-1 recognition, and it maintained that
advantage as presentation time increased.

Presentation time had only a very small effect on the
relationship between cued and single-item recognition.
Only at the fastest presentation rate was there evidence
for a cuing disadvantage. For presentation rates longer
than l-sec/triple, the cued-single-item relationship was
relatively constant.
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Relationship between cuing and associative recog
nition. We also looked at the relationship between cuing
effects and associative recognition. There was little evi
dence for any relationship. First, associative recognition
performance increased steadily with increased presenta
tion time, but the effect of cuing was little changed by
increases in presentation rate. Ifone looks at mean levels
of performance, the only evidence for a link between cu
ing effects and associative recognition performance was
that the sole cuing deficit of just marginal reliability oc
curred under conditions that rendered associative recog
nition performance near chance.

A correlational analysis was also performed. For each
subject, the differences in performance between Cued-l
and single-item recognition (Q1-S), and between Cued
2 and single-item recognition (Q2-S) were calculated by
subtracting HR-FAR scores. Separate correlation coeffi
cients were calculated, relating each of these to associa
tive recognition (A) performance. These are denoted rQI.A

and rQ2.A, for the one- and two-cue cases. If the cued
single-item relationship is mediated by associative infor
mation, then positive cuing should co-occur with high
associative recognition scores, and both correlations
should be positive. Sixteen separate correlations were cal
culated: rQI.A and rQ2.A for high- and low-frequency
words, and for each presentation rate. All of these corre
lations were near zero, except for the longest presenta
tion time and high-frequency words where rQI.A = .180,
and rQ2.A = .184, which are both significantly different
from zero [t(120) = 1.99 and 2.05, respectively,
p < .05]. The interpretation of significance must be done
with caution, of course, since the omnibus test that any
of the rs is different from zero fails to show a significant
result X2(119) = 11.686, p > .10].

One might cautiously conclude that there is limited evi
dence for a correlation between cuing effects and associa
tive recognition based on: (1) the only marginally reli
able cuing deficit occurred when associative recognition
performance was near chance, and (2) for high-frequency
words, rQI.A and rQ2.A are significantly greater than zero.
However, the bulk of other results that do not show a rela
tionship between cuing effects and the level of associa
tive recognition performance suggest that any relation
ship must be extremely weak-at least in the present study.

Discussion
Experiment 2 shows that the effect of adding cues on

old-new recognition judgments is influenced by word fre
quency and by the number of additional word cues. For
high-frequency words, old-new recognition increased as
the number of cues increased. For low-frequency words,
the increase in performance due to adding cues was min
imal: adding a single cue had no effect (Cued-I perfor
mance equaled single-item recognition performance), and
the increase in performance with two cues was modest.
That the effect of cuing depends on word frequency and
the number of cues argues against the hypothesis that sub-
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jects simply ignore the cue. For this hypothesis to be tena
ble, it must be argued that subjects selectively ignore the
cue only for low-frequency words, only when the pre
sentation rate is at least 2.5 sec, and only when one cue
is used.

Contrary to what was found in Experiment I, the in
crease in associative recognition performance did not in
crease disproportionately relative to that for item recog
nition. The result from Experiment I seems reliable,
however, and it was replicated in two additional experi
ments done with word pairs (see Note 1). One reason for
the discrepancy between Experiments 1 and 2 may be that
the associative recognition task in Experiment 2 was con
siderably easier. Discrimination of ABC from AEI (in
which the words in the rearranged triple come from three
different study triples) is easier than discrimination of AB
from AD. For the ABC-AEI discrimination, the AEI tri
ple can be rejected on the basis of anyone of the three
pairwise connections.

Increases in study time also had very little effect on the
relationship between cued and single-item recognition.
Only at the fastest presentation rate did a cuing deficit
occur. Beyond that, cuing effects were relatively constant
with increases in presentation rate.

The evidence that cuing effects were correlated with
associative recognition performance was also quite lim
ited: the cuing deficit occurred only under conditions that
rendered associative recognition performance marginally
above chance. However, a correlational analysis showed
very little evidence overall that the effect of cuing was
correlated with the level of associative recognition per
formance. Moreover, for low-frequency words, there was
no effect of adding a single cue, although associative rec
ognition performance increased steadily with study time.

This pattern of results shows that the effect of adding
cues, and the relationship between cuing effects and as
sociative recognition, is not simple. The lack of a rela
tionship between cuing effects and associative recogni
tion performance suggests two separate associative
factors. Moreover, the associative factor that underlies
intact-rearranged discrimination in associative recogni
tion may not be the same associative factor that produces
cuing effects in old-new discrimination.

It may be, for example, that associationsare represented
at two levels. At one level, the association between A and
B is a connection between two distinct memorial units;
at another level, the A-B association is a single higher
order unit. This bilevel representation of associative in
formation was proposed earlier within the framework of
the SAM model by Shiffrin et al. (1988).

Related to the hypothesis of higher order units is the
hypothesis that a word's encoding depends on the other
words that are presented and studied with it in the same
group. To take an extreme example, the encoding of dia
mond would be different in the context of ruby than it
would in the context of baseball. If such effects occur,
then repeating a studied group at test would lead to simi-

lar encoding and hence better performance. Such a mech
anism was incorporated in the model of Clark and Shiffrin
(1987), to help account for higher than predicted perfor
mance when all items in a studied group were presented
together at test.

Alternatively, the two aspects of associations may reflect
differences in retrieval processes. Within the framework
of a single-level model, either associative information may
be accessed by global matching, or associative connec
tions may be utilized in a recall-like memory search. Rec
ognition models of this type, which combine recall-like
retrieval processes with direct-access familiarity compu
tations, have also been proposed (Atkinson & Juola, 1974;
Humphreys, 1978; Mandler, 1980; Wolford, 1971).

The word frequency x test type interaction is also con
sistent with a two-factor association model. Typical re
sults show that high-frequency words are recalled better
than low-frequency words, but that low-frequency words
show better performance for item recognition (see Gregg,
1976, for a review). Word frequency interactions have
been demonstrated previously by Clark (1992), who
showed that a single-factor version of the SAM model :
could not simultaneously produce a low-frequency word
advantage for item recognition and a high-frequency word
advantage for associative recognition.

In Experiment 2, the low-frequency advantage for
single-item old-new recognition disappeared as additional
word cues were added, and it reversed to a high-frequency
word advantage for associative recognition. The clear im
plication here is that there is an increasing associative con
tribution as cues are added, which by the nature of the
task is maximized for associative recognition. On the ba
sis of the independence of cuing effects and associative
recognition, it would seem that there are at least two as
sociative factors. How many associative factors are
responsible for the shift in the frequency effect remains
an open question.

An additional associative factor may have been induced
by strategies that subjects used in the mixed testing pro
cedure. This procedure may have induced them to adopt
an "associative" strategy, since for any block of trials,
three out of four test trials involved the presentation of
word groups for which associative information was im
portant. Such a strategy may have been nonoptimal for
single-item recognition, and it may have produced a de
crease in performance for that condition relative to the
others. This factor might explain why cuing effects were
almost always in the positive direction, contrary to the
results in Experiment 1, and it would also be consistent
with the finding that for high-frequency words, associa
tive recognition was better than single-item recognition.
In Experiment 3, performance in mixed conditions was
directly compared with performance in blocked test con
ditions. If the pattern of results is the same for mixed and
blocked testing, it can be assumed that the results of Ex
periment 2 were not due to subjects' adopting an associa
tive strategy.
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EXPERIMENT 3

Method
Subjects. The subjects were 130 undergraduates from the same

population as that for Experiment 2.
Materials and Procedure. Eight study lists were presented, each

consisting of 18 study triplets presented at a rate of 4.0 sec/triplet.
Four lists consisted of high-frequency words, and four consisted
oflow-frequency words. Each study list was followed by the arith
metic distractor task that was used in Experiments I and 2. Each
study list was then followed by a recognition memory test. The test
probes were the same as those in Experiment 2 (single-item, Cued-I,
Cued-2, associative).

For each subject, four study lists were followed by a blocked
test phase and four by a mixed test phase. The blocked test condi
tion corresponded to the test condition in Experiment I; only one
kind ofdiscrimination was made within one block of test trials. The
mixed test condition was like that in Experiment 2; the four differ
ent test types were mixed into one test sequence. As in Experiment 2,
a prompt appeared just prior to each test trial, informing the sub
ject of the test type.

In a mixed test phase, two target and two distractor trials were
presented for each of the four test types, for a total of 16 tests.
In the blocked test phase, eight target andeight distractor trials were
presented for each test condition-except for associative recogni
tion, which had four target and four distractor trials.

Results
Average hit rates and false alarm rates, as well as hit

rates minus false alarm rates, are listed in Table 5 for each
condition. Blocked testing led to better overall perfor
mance than did mixed testing [F(l,294) = 3.92, MSe =
.278,p < .051]. An overall main effect was also shown
for test type [F(3,294) = 12.59, MSe = .050,p < .0001].
There was not a main effect of word frequency [F(I,98)
= 0.18, MSe = .072]. However, the test type x word
frequency interaction was significant [F(3,294) = 23.09,
MSe = .053, p < .0001], replicating results from Ex
periment 2. No other interactions approached statistical
significance.

For low-frequency words, cued recognition was only
slightly better than single-item recognition, but the ad
vantage was not statistically reliable, either for blocked
[F(2,98) = 1.24, MSe = .035] or for mixed [F(2,98) =

.15, MSe = .040] testing conditions. For high-frequency
words, the cuing advantage was reliable for both mixed
[F(2,98) = 6.59, MSe = .035, p < .005] and blocked
[F(2,98) = 9.20, MSe = .052, p < .0005] testing con
ditions. Even for high-frequency words, the increase in
performance with one cue (Cued-l e-Single) was small,
and not statistically significant, either for mixed [1(49) =
.30] or for blocked [1(49) = 1,57] test conditions.

The word frequency x test type interaction is a repli
cation of the word frequency effect reversal shown in Ex
periment 2. Eight separate comparisons of high- and low
frequency words for mixed and blocked testing and for
each test type showed the following for both mixed and
blocked testing: a low-frequency word advantage for
single-item and Cued-I recognition, no difference due to
word frequency for Cued-2 recognition, and a reversal
of the word frequency effect-that is, a high-frequency
word advantage for associative recognition. The statisti
cal analyses are summarized in Table 5.

Discussion
Experiment 3 replicated the results of Experiments 1

and 2. For low-frequency words, there was no increase
in recognition performance due to adding cues. However,
for high-frequency words, recognition performance in
creased with the number of cues. Experiment 3 showed
that the cuing x word frequency interaction is not pro
duced by an "associative" strategy induced by mixing
test types within a block of test trials. It is also notewor
thy that for high-frequency words the associative perfor
mance level was virtually equal to that of the Cued-2 con
dition, a finding that poses problems for most models (for
example, SAM, TODAM, and the Matrix model all pre
dicted too large a difference for the Experiment 1 data,
and the present difference is considerably smaller).

GENERAL DISCUSSION

In the present research, we investigated the effects of
adding cues on old-new item recognition by examining
cued and single-item recognition, and we investigated the

Table 5
Average Hit Rates, False Alarm Rates and DR-FAR. for Experiment 3

Single-Item Cued-I Cued-2 Associative

HR FAR HR-FAR HR FAR HR-FAR HR FAR HR-FAR HR FAR HR-FAR

.32

.51

17.12
.0001

.47

.27
.79
.78

n.s.

.54

.55

.09

.20

.18
.74
.73

.20

.26
.74
.67

.49

.40

4.02
.06

.17

.24
.66
.64

Mixed

.54

.41

8.17
.01

Blocked
LF .77 .20 .57 .80 .20 .60 .82 .22 .60 .76.40 .36
HF .72 .29 .43 .72 .22 .50 .78 .18 .60 .79 .21 .58

F 3.19 5.76 .02 10.24
P .001 .05 n.s. .005

Note-F values with df = 1,49 andp values arefor comparisons of HR - FAR for high-frequency (HF) andlow-frequency
(LF) words.

LF
HF

F
P
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relation of associative recognition to other types of
multiple-items tests. The relationship between cued,
single-item, and associative recognition has important im
plications for current models of recognition.

The SAM model predicts only negative cuing effects,
i.e., that cued recognition performance is always worse
than performance for single-item recognition. Hum
phreys's (1978) ICM and Hintzman's (1984) MINERVA 2
predict positive cuing effects. For Murdock's (1982)
TODAM and Pike's (1984) Matrix model, cuing effects
covary with associative recognition performance.

Experiment I showed that for low-frequency words,
cued recognition was slightly worse than single-item rec
ognition for both fast and slow presentation rates, although
the differences were small and statistically insignificant.
This is consistent with previous findings of small, statis
tically unreliable cuing deficits (Clark & Shiffrin, 1987;
Gillund & Shiffrin, 1984). The absence of cuing facilita
tion is clearly inconsistentwith predictions of MINERVA 2
and the ICM, which both predict cuing advantages. The
result also appears to be inconsistent with TODAM and
the Matrix model, because the relationship between single
item and cued recognition remained constant while
associative recognition performance showed large im
provements with increased study time. The small negative
cuing result is consistent with the SAM model's limited
capacity assumption.

It is important to evaluate the models, not simply on
the basis of the cued and single-item recognition data, but
on that of the whole data set. Each of the models listed
above was fit to the data of Experiment 1. TODAM gave
the best fit, followed by the SAM model. The fit of
TODAM was good, despite the fact that there was a con
stant cuing deficit, presumably because the magnitude of
the deficit was small. The fits for the other models were
substantially poorer. In general, models that make a clear
distinction between item and associative information
(TODAM, SAM, ICM) fit better than models that do not
(MINERVA 2, Matrix model). One reason for this is that
in Experiment 1 increases in performance with presenta
tion time were much larger for associative recognition than
for any of the other test conditions.

Two factors were examined in Experiment 2, presen
tation rate and word frequency. Overall, positive rather
than negative cuing effects were shown. These positive
cuing effects were larger for high-frequency words than
for low-frequency words. For low-frequency words, the
positive cuing effect was found only when two cues were
used. A negative cuing effect occurred only for low
frequency words at the fastest presentation rate. Cuing
effects were unrelated to the level of performance for as
sociative recognition.

Experiments 2 and 3 yielded large effects of word fre
quency. Single-item and Cued-1 recognition showed
higher performance for low-frequency words, which is
consistent with the standard findings for old-new item rec
ognition. Cued-2 recognition showed a null result for word
frequency, and associative recognition showed an advan-

tage for high-frequency words. This pattern of results sug
gests that the contribution of associative factors increases
as cues are added, and that it is maximized for associa
tive recognition.

The overall pattern of results for Experiments 2 and
3 is obviously inconsistent with the original version of
the SAM model, which predicts only cuing deficits. Be
yond this, all the models have difficulty handling the cu
ing results, the single-item results, and the associative rec
ognition results, taken together. In particular, associative
recognition performance increases with presentation time,
whereas cuing effects (null or positive) are relatively in
sensitive to presentation time. The results suggest that the
factor that produces cuing advantages is not the factor that
underlies associative recognition performance. One ex
planation may be that different kinds of associative com
ponents are operating.

There are at least three ways in which associative fac
tors may be operating in the recognition tasks used in these
experiments. One proposal is based on higher order as
sociative units, another is based on the operation of recall
like retrieval processes, and the third posits encoding
match factors. We did not apply the models to the data
of Experiments 2 and 3, because it was clear that the re
sults were complicated and problematic for all of the
models. Three general ways of modifying the models are
discussed below; the specifics of how to instantiate mul
tiple associative components, however, remains to be
worked out.

Higher Order Units
Two types of associative information may be stored:

information linking two different stored traces, and in
formation incorporating the members of a pair or a triple
into a single, higher order unit (see Gronlund, 1986;
Shiffrin et al., 1988).

In SAM, linkinginformation (i.e., the b parameter) con
tributed to single-item, cued, and associative recognition;
thus, strengthening linking information will improve per
fonnance in all conditions and will not lead to differen
tial improvement for different conditions. However, add
ing higher order associative information will produce a
cuing advantage, because the cost, if any, of processing
the additional cue or of forming a joint cue may be small
in comparison with the gain produced by the exact match
of the test unit to the stored unit.

The following assumptions seem reasonable concern
ing the relation of associative units and word frequency.
First, associative units are more likely to be stored for
high-frequency word groups than for low-frequency word
groups. Second, for word triples, only one associative unit
is stored for each triple, if one is stored at all. And third,
the partial match to the associative unit for a group oflow
frequency words is very small, compared with a partial
match for high-frequency words. These assumptions are
consistent with the results of Experiments 2 and 3, which
showed that cuing effects were quite small for low
frequency words and that the cuing advantage in Experi-



ment 2 for low-frequency words occurred only when two
cues were given, but not when only one cue was given.

TODAM, MINERVA 2, and the Matrix model store
associations in terms of a single representation, rather than
as a link between items. Associations are represented as
a single convolution in TODAM, as a single vector in
MINERVA 2, and as a single matrix in the Matrix model.
These representations are similar to the higher order unit
assumption in SAM. However, only in TODAM is the
associative information distinct from the item-specific in
formation. TODAM also differs from the higher order
unit SAM model in that SAM has dual representation of
associations: as separate units, and as linksbetween items.
Adding dual representations to TODAM and the Matrix
model might enable these models to predict the small dif
ferences between cued and associative conditions that were
found for high-frequency words.

The dual nature of associations might also reflect a dif
ference in level of processing: associative information may
be represented both graphemically and semantically. Sub
jects may discriminate intact pairs from rearranged pairs
on the basis of such factors as the number of spaces be
tween words, as well as the overall shape of the pair, even
if the meanings of the words are unknown. This kind of
associative information may playa relatively larger role
for low-frequency than for high-frequency words.

Recall Processes in Recognition
This hypothesis involves the possibility of recall's be

ing used to supplement global recognition processes.
Retrieval of associative information may involve a search
process similar to that proposed by Raaijmakers and
Shiffrin (1980) for recall. This assumption is central to
Humphreys's (1978) ICM and a similar model proposed
by Mandler (1980). This proposal is particularly tempt
ing in light of the word frequency interaction shown in
Experiments 2 and 3. The standard word frequency ef
fect reverses for associative recognition (performance was
better for high-frequency words), a pattern normally found
for recall tasks. Also, the cuing effects in Experiments
2 and 3 were very small for low-frequency words.

The fact that cuing advantages in Experiments 2 and
3 were very small for low-frequency words is consistent
with a familiarity-plus-search model: additional cues
facilitate recognition performance mainly for high
frequency words, because high-frequency words are bet
ter recall cues than low-frequency words. For low
frequency words, the cues are not helpful and the
resources given to the cue are wasted. The same hypoth
esis helps explain the failure to obtain cuing advantages
in Experiment 1 (in which low-frequency words were
used). Given this, the increase in associative recognition
performance with presentation time must be due to some
factor other than recall.

Encoding Match
Another proposal that must be considered has been

termed the encoding-match or change-of-meaning hypoth-
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esis (Light & Carter-Sobell, 1970). Words tested in a ver
bal context that is different from their study context may
beencoded differently than they were at study, and hence
they will be less familiar than words tested in an intact
verbal context. Reder, Anderson, and Bjork (1974) have
proposed that encoding-match effects are larger for high
frequency words than for low-frequency words, since they
have more meanings. This differential encoding match hy
pothesis is consistent with the present result that negative
cuing occurs for low-frequency words and that positive
cuing occurs for high-frequency words, and with thehigh
frequency word advantage for associative recognition. Ex
planations based on encoding match are not associative
in the way that the higher order unit and recall hypothe
ses are. For cued recognition, the cue and the test item
do not combine to form an association, but rather the cue
biases the encoding of the test item. Thus, the effect is
at the time of encoding rather than at retrieval.

Evidence from similar paradigms argues against the
sufficiency of encoding match as an explanation of cuing
effects. Specifically, Humphreys (1976) and Humphreys
and Bain (1983) required subjects to make old-new deci
sions for the individual words in intact and rearranged
test pairs. Encoding match factors operate at the level of
words, not associations; thus double-miss rates are pre
dicted to be lower for intact than for rearranged test pairs
(see Humphreys and Bain for details of the argument).
Contrary to this prediction, they have shown that double
miss rates are equal for intact and rearranged test pairs.
Moreover, Clark (1992) has shown that this equality is
maintained for both high- and low-frequency words.

Summary
It is possible, if not likely, that each of the three possi

ble mechanisms may contribute to the pattern of results
from the present studies. Higher order units, recall dur
ing recognition, and matching of encodings at study and
test may all contribute to cuing advantages and interactions
of these with word frequency effects.

In addition, various kinds of strategies may be involved,
some of which may be quite complex. For instance, in
some cases, subjects may initially probe with item infor
mation only, and if that does not allow discrimination,
they may then probe with associative information (Atkin
son & luola, 1974; Humphreys & Bain, 1991). Further
investigation regarding the contribution of these factors
in recognition is reserved for future research.
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NOTES

I. Two other minor variations on Experiment I were also carried out.
The pattern of results was essentially the same for all three cases, so
only Experiment 1 is reported. In one of the unreported variations, the
cue in cued recognition was on the left on half of the trials and on the
right for the other half (and the test item was identified with question
marksabove it). In the second variation, fast and slow presentation rates
were varied at .75 and 8.0 sec/pair. The patterns of results for these
two experiments were essentially identical to those of Experiment 1,
indicating that the results are very reliable.

2. The SAM model was originally developed as a search model of
recall by Raaijmakers and Shiffrin (1980). The recognition model does
not involve a search mechanism, but takes the same name as a matter
of theoretical heritage.

3. The term cue is used throughout both in a generic sense and in
the specific sense of referring to the cue in cued recognition test pairs.
The dual usage of the term is unavoidable. We will try to avoid ambig
uous use of the term as much as possible.

4. We have also looked at a model in which the single-item test vec
tors are weighted by 'Yi and the convolution vector is weighted by 'Ya
prior to summing and probing. The difficulties in handling thecued dis
advantage seem only to increase.

There are various versions of TODAM that were not applied to the
data. In particular, there are two aspects of the model that we did not
investigate. First, Weber (1988) introduced weights at both storage and
retrieval, which could vary independently. Making this assumption would
certainly have produced a better fit, but it probably would also have
resulted in a rather unconstrained version of the model with many ad
ditional free parameters. Second, effects of presentation time could also
have been modeled in terms of probabilistic encoding (Murdock, 1989;
Murdock & Lamon, 1988). Increasing vector weights 'Yi and"ya should
produce similar results, and in addition, it allows storage to vary in
dependently for item and associative information, an aspect thai seems
crucial for the present data.

APPENDIX A
Expectations and Variances for SAM

Equations are given for the expectations and variances for tar
gets and distractors for each of the four test conditions. In the
equations, the following parameters are used: a, b, c, and dare
context, interitem, self-, and residual retrieval strengths. Cue
weights are as follows: We for context; w. for the test item in
single-item recognition, Wp for each item in a double-item test
(pair, associative); Wq and Wt are the weights on the cue and
test item in cued recognition. The 8(w) terms are adjustment
factors, reflecting the fact that E[X2] *- E[X]2. We assume that
for any strength with mean M, the probability that the true
strength equals YiM is pi. That is, P[S = YiM] = pi. 8(w) is
then defined: 8(w) = Eyfpi, for any w.

Given the variance assumptions from the text, 8 terms are cal
culated as follows: 8(w) = [(I +v)W+ I +(1 -v)1/3, where v =
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·5. The ex terms in the text are then calculated from the 8 terms
that appear in the equations below.

For single-item recognition, target and distractor expectations
are

In the equations, 'Yi and 'Ya are weights on item and associa
tive information, K is the number of pairs, and N is the item
vector length.

For all test conditions, the expectations for distractors are zero:
E[X] = E[AX] = E[XY] = E[AD] = O. For single-item rec
ognition,E[A] = 8(wc)8(ws)aWe[bW, +cw,+(N-2)dW,] ,

E[X] = 8(wc)8(ws)NaWedW"

and target and distractor variances are

VAR[A] = a2We[8(2wc)8(2ws) -81(wc)81(ws)]

. [(N_2)d2w'+b2w,+c2W,],

VAR[X] = [8(2wc)8(2ws)-81(wc)81(ws)]Na2Wed2w,.

(AI)

(A2)

(A3)

(A4)

E[A] = 'Yi.

The variances for target and distractor are

(
I N+ I )

VAR[A] = A+ N'Yf+~'Y~,

VAR[X] = A,

(BI)

(B2)

(B3)

For cued recognition, expectations for target and distractor are where

E[AB] = 8(wa)8(wq)8(wt)awe [bWqcWt +cWqbWt+ (N-2)dWqdw,j,

(AS)
(84)

Each item is stored as a vector with N elements. A word pair
AB is represented as the matrix given by vector multiplication
of the a and b vectors. Memory is represented as the sum of
K such matrices representing the K pairs. Recognition is based
on the match of the test item to the memory matrix M, given
by the matrix dot product of the test matrix T with the memory
matrix M.

The expectation of the match of a given cell in M to the cor
responding cell in T is II- and the standard deviation of this match
is a, both of which may vary as freeparameters. Assuming that
the cell match distribution is normal in form, the second, third,
and fourth raw moments are

E[AX] = 8(wc)8(wq)8(wt) aWe

[bWqdWt+dWtcWq+(N -2)dWqdWt]. (A6)

The variances are

VAR[AB] = Vtqa2We[(N- 2)c2Wqb2W, +b2Wqc2Wt + d2wqd2wt] ,

(A7)

VAR[AX] = Vtqa2We[(N- 2)c2wQd2wt +b2wQd2w, +d2w'I(/2w],

(AS)

where

Vtq = 8(2wc)8(2wq)8(2wt) - 81(wc)81(Wq)81(Wt). (A9)

For pair recognition,

E[AB] = 8(Wc)81(wp)aWe[2bWPcWp + (N-2)d2wp] , (A10)

E[XY] = 8(wc)81(wp)awcNd2wp, (All)

VAR[AB] = Vtp~We[2c2Wp~wp+(N-2)ttwP], (AI2)

VAR[XY] = Vtp~wcNttwp, (AI3)

where

VtP = 8(2wc)81(2wp)-81(wc)lJ4(wp). (AI4)

And for associative recognition, E[AB] and VAR[AB] are the
same as listed above for pair recognition.

E[AD] = 8(wa)81(wp)aWe[bWp~p+cwPdwP+(N-4)d2wp],

(AI5)

VAR[AD] = Vtpa2We[(2c2WPd2wp+~wPd2wp+(N_4)ttwP].

(AI6)

APPENDIX B
Expectations and Variances for TODAM

Each pair AB adds 'Yia+'Yib+'Ya(a*b) to the memory vector
M. Single-item tests probe with the single test vector, cued tests
probe with the convolution plus the test vector, pair tests probe
with the convolution plus both test vectors, and associative tests
probe with the convolution vector.

For cued recognition,

E[AB] = 'Yi+'Ya,

(
2N+ 2 4N+3)

VAR[AB] = VAR[A]+B+ ~'Yf+~'Y~,

N+l
VAR[AX] = A+B+~('Yf+'Y~),

where

[
3N1 +l 2N1+l]

B = 2fV3 'Yf+~'rl K.

For pair recognition,

E[AB] = 2'Yi+'Ya,

VAR[AB] = VAR[AB]+VAR[A],

VAR[XY] = 2A+B.

For associative recognition,

E[AB] = 'Ya,

VAR[AB] = VAR[AB]-VAR[A],

2N+2
VAR[AD] = B+~b1+'rlJ.

APPENDIXC
Expectations and Variances for Matrix Model

(B5)

(86)

(B7)

(B8)

(B9)

(BIO)

(BII)

(B12)

(B13)

(B14)
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m3 = p,3+3rrp"

m4 = 3o"+6rrp,4.

VAR[A] = Vs+(K -1)v+2(K-1)Cs+(K-l)(K-2)C, (C7)

VAR[X] = Kv+K(K-I)C, (C8)

VAR[AB] = V2-(K-I)Vo+2(K-I)C2+(K-I)(K-2)Co,

(C9)

To obtain variances for familiarity of each test probe, vari
ances and covariances must be found for the match of the test
matrix to each pair matrix in the summed memory matrix. The
total variance is the sum of the variances and covariances of
the separate matches of the test matrix to each of the individual
pair matrices. These component variances and covariances are
the V and C terms in the equations listed below.

(CI7)

(CI8)

(CI9)

(C20)

(CI2)

(C21)

(C22)

VAR[AX] = VI+(K-1)Vo+2(K-l)C. +(K-1)(K-2)Co,

(CIO)

(CII)VAR[XY] = KVoK(K-1)Co,

VAR[AD] = 2VI+(K-2)Vo+2C2+4(K-2)C.

+(K - 2)(K- 3)Co•

(Manuscript received September 10, 1991;
revision accepted for publication January 10, 1992.)

V2 = n2(m4-mW+2n3[(m4- mDml].

And for covariances:

C = n3p,4(m2 _ p,2),

Cs = n3p,3[m3-m2p,],

Co = n2p,4(m2+p,2)[m2+p,2(2n-l)],

C. = p,3{n2(m2-p,2)(m3-m2p,)

+n3[(m3 -m2P,)p,2+(m2- p,2)m2P,]} ,

C2 = n2p,2(m3 -m2P,)[m3+m2p,(2n-I)].

The V and C terms are defined as follows: Vand Vs are vari
ances for nonmatching and matching single vectors, and C and
Cs are the corresponding covariances. For double-item tests,
Vo, VI' and V2 are variances for zero, one, and two matches,
and Co, C" and C2 are the corresponding covariances. Equa
tions for these variance and covariance terms are listed as
follows:

V = n2(ml- p,4)(m2 - p,2) +n3[(ml- p,4)p,2 +(m2- p,2)p,4] , (Cl3)

Vs = [nm4+n(n-l)mmnm2+n(n-I)p,2]-n4mlp,2, (CI4)

Vo = n2(ml-p,4)2+2n3[(ml-p,4)p,4], (CI5)

VI = n2(m4-mD(ml-p,4)+n3[(m4-ml)p,4+(ml-p,4)ml],(CI6)

(CI)

(C2)

(C3)

(C4)

(C5)

(C6)

From these, expectations and variances of familiarity distri
butions for the single-item, cued, pair, and associative recogni
tion can be derived. The equations for the variances are quite
complicated. For the sake of simplicity, all of the equations for
expectations are given first, followed by the treatment of vari
ances. Expectations and variances are identical for targets for
cued, pair, and associative recognition. Thus, expectations are
given for A, X, AB, AX, XY, and AD.

E[A] = n'm,p,+(K-1)n'p,3,

E[X] = Kn'p,3,

E[AB] = n'ml+(K-l)n'p,"

E[AX] = n2m2p,2+(K-1)n2p,"

E[XY] = Kn2p.4,

E[AD] = 2n2m2p,2+(K-2)n2p,4.




