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Notes and Comment
Kubovy on "A possible basis for conservatism

in signal detection and probabilistic
categorization tasks": Some comments

A. E. DUSOIR
City ofLondon Polytechnic

Old Castle Street, London, £1 7NT

Kubovy (1977) argues that subjects fail to maximize
expected payoff in detection tasks because they mis­
represent the posterior probabilities. However, the
paper contains some mistakes and omissions.

Here is the background. Stimuli S10 Sz are presented
with probability (1 - y),y; the subject responds r. or
r z; event sjrj implies monetary outcome 0ij' The Sj
are represented internally by distributions fj(x), and
the subject is supposed to choose a criterion, c, on X
and respond r10 r. as x < c or x > c. The likelihood
ratio is given by I(x) = fz(x)/fl(x). (3 = I(c) is the
likelihood ratio at criterion. {3* is the likelihood ratio
at c", the value of c which maximizes expected payoff.
By a well-known argument

(3* = I(c*) = [(1 - y)/y][(oll - 012)/(OZZ - OZI)].(1)

"Conservative" criterion placement is {3~{3* as{3*~ 1.
(1) Kubovy writes: "Consider an observer who is

ideal in all respects but one: his or her knowledge
. of the distributions is deficient. Suppose that such a
deficient observer were placed in a signal detection
situation with an a priori probability of signal plus
noise of 0.25, and a symmetric payoff matrix. Since
the calculation of f3* does not require any knowledge
of the distributions, our deficient observer will do so
correctly, choosing a criterion (3* = 3. Because the
posterior probability of observation x is equal to
I(x)/[I + I(x)], where I(x) is the likelihood ratio of
x, the criterion (3* = 3 corresponds to a posterior
probability of 0.75."

This is clearly wrong. By Bayes' theorem the pos­
terior probability of Sz conditional on x is given by

n(x) = yfz(x)/[yfz(x) + (1- y)fl(x)]

= ([y/(1-y)]1(x)}/{[y/(1-y)]1(x)+ I}. (2)

n(x) = I(x)/[I(x) + 1] only if y = 0.5, which case
Kubovy is explicitly not considering. In fact, for any
symmetric payoff scheme [(011 - 012) = (022 - 021))

n(c*) = 0.5.
Thus, Kubovy's Figure 1 is mislabeled, at least as

far as the y i= 0.5 conditions are concerned. The
figure, in fact, plots l(c*)/[l + l(c*)] against
I(c)/[I + I(c)].

(2) Kubovy writes of the Green and Swets (1966,
p. 90) data, in which an isosensitivity curve was
traced out (1) by varying payoff, y = 0.5, and
(2) varying y, payoff fixed and symmetric: "Both
conditions ..... show a pattern of radical probability
judgment. We note a discrepancy, however, between
the two conditions: the values-variable condition
produces the greatest degree of conservatism, and
hence implies more radical posterior probability
judgments. If the data for the two conditions had
been collected from the same observer at approx­
imately the same time, his misconception of the dis­
tributions would be expected to be the same in both
conditions. In such a case, a discrepancy would
suggest that the hypothesis about the misconception
of the distributions is incorrect, or at least that some
additional factors counteract the effect of radical
judgment in the probabilities-variable condition. We
do not know, however, when the data were collected
from this observer, and therefore need not speculate
further on the source of the discrepancy. "

Unfortunately, Kubovy appears to have reversed
the two sets of data; in Green and Swets (1966,
p. 90), it is the probabilities-variable condition which
produces greater conservatism. Figure 1 embodies
the error as well as the text.

(3) In the last quotation, Kubovy ignores the very
relevant data of Galanter and Holman (1967, Experi­
ment 1). Like Green and Swets, they compared the
effects of varying payoff (y = 0.5) and varying y
(payoff symmetric); but they ran two subjects rather
than one and are quite explicit about the temporal
contiguity of the two conditions. The data appear
in Table 11: for one of the two subjects (SI), as in
the Green and Swets data, I(c) and ltc") appear to
be related by different functions for the two condi­
tions, though this time with the values-variable con­
dition producing the greater conservatism. Thus, this

Table 1
Data Taken from Galanter and Holman (1967), Experiment 1

l(c)/(l(c)+I)

I(c*)/ Subject

'Y °Il °12 °21 °22 (l(c*)+I) 1 2

.1 2.0 -2.0 -2.0 2.0 .9 .705 .660

.3 2.0 -2.0 -2.0 2.0 .7 .602 .560

.5 2.0 -2.0 -2.0 2.0 .5 .506

.7 2.0 -2.0 -2.0 2.0 .3 .384 .368

.9 2.0 -2.0 -2.0 2.0 .1 .308 .293

.5 2.5 -2.5 - .1 .1 .962 .729 .741

.5 1.5 -1.5 - .1 .1 .938 .650 .686

.5 2.0 -2.0 -2.0 2.0 .5 .470 .506

.5 .1 - .1 -1.5 1.5 .062 .392 .325

.5 .1 - .1 -2.5 2.5 .038 .280 .211
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difficulty does need to be taken seriously, and any
explanation in terms of "some additional factors"
has to allow either condition to produce greater
conservatism.

(4) Kubovy's nonformal presentation of his model
lumps together several related but nonequivalent
models which need to be distinguished. One possi­
bility (model A) is that the subject bases his choice
of criterion on subjective likelihood ratio, Is; that is:

A (i) there is a bijection ls(x) = s[l(x)]

A (ii) the subject chooses c such that ls(c) = f3*.

Another possibility (model B) is that the subject's
choice is based on subjective posterior probability,
or equivalently and rather more simply on subjective
posterior odds: that is, if Q(x) = [y/(1 - y)]l (x) is
the objective posterior odds,

B (i) there is a bijection Qs(x) = t[Q(x)]

B(ii) the subject chooses c such that Qs(c) = Q(c*).

The models are certainly not equivalent. Model A,
for example, implies

(3)

whereas B implies

l(c) = [(1- y)/y]e1{[y/(1- y)]f3*}, (4)

which is equivalent to Equation 3 iff t is a similarity
transform, t:Q(x)-+aQ(x). Similarly, model A implies
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dependence of f3 on discriminability, which Kubovy
needs to explain. Also, Dusoir (Note 1) reports 12
12-point isobias plots obtained in a signal detection
task with feedback, of which six show a Spearman
e corrlation between d' and f3 of greater than 0.5;
this underestimates the failure of subjects to keep f3
constant, of course, since deviation from prediction
can be systematic though nonmonotonic, for example,
if subjects keep false alarm rate p(r2 I s.) constant
instead. Thus the data from isobias plots, like that
from isosensitivity plots discussed above, suggests
that something is wrong with Kubovy's idea as
embodied in models A and B.

Of course, one way out of the isobias predictions
is (model C):

C (0 there is a function ls(x) = u[f1(x),f2(x)]

C (ii) the subject chooses c such that ls(c) = f3*.

In this case, equal objective likelihood ratios at
different discriminability levels need not have one
and the same subjective representation and f3 need
not stay constant. Evasiveness is not the sole motiva­
tion for model C, which arises naturally from the
following kind of assumption. We have density func­
tion f(x) and, for any discriminability level a,
f1a(x) = f(x - lAa), f2a(x) = fla(x - da), so that all
the distributions are identical up to x-shift. The sub­
ject represents f(x) by subjective density function
h(x) = g[f(x)]. Clearly, ls(x,da) is functionally
related to l(x,da) if

f(x-da) f(x ' -da') g[f(x-da ) ]
-----+----

f(x) f(x') g[f(x)]

Q(c) = [y/(1- Y)]S-l(f3*),

whereas model B implies

(5)
g[f(x' - da' )]

g[f(x ')]
(7)

In fact, Kubovy's argument quoted in section 2
above is valid only for model A. However, the same
data can be used to check model B, since it implies
that all the symmetric payoff conditions should share
the same Q(c) = t -1(1) up to error variance. This is
clearly false (Table 2): Q(c) shows a large and per­
fectly systematic variation with y.

This argument aside, both model A and model B
share an important prediction which Kubovy does
not discuss. If an isobias curve is traced out by keep­
ing bias conditions (including y and payoff) fixed and
varying discriminability, then l(c) = f3 should stay
constant across discriminability (see Equations 3 and
4). Evidence on this point is far from adequate (see
Dusoir, 1975, for a review), but probably not so
inadequate that it can be ignored. Creelman and
Donaldson's (1968) data, at least, show a very clear

Q(c) = t- 1{[y/ (1 - y)]f3*}. (6)
that is, if g is a similarity transform, which contra­
dicts the assumption that h(x) is a density function,
unless h(x) = f(x). Consequently, A (i) must be false,
and we are led to C (i). Though model C removes
the problem of the isobias data, however, it does
nothing to remove the problem of the isosensitivity

Table 2
n(c) for Galanter and Holman's (1967, Experiment 1) Subjects
(SI and S2) and for Green and Swet's (1966, p. 90) Subject (S3)

'Y

.1 .3 .5 .7 .9

51 .265 .649 .887 1.454 4.014

52 .216 .546 1.025 1.360 3.7261.025

53 .244 .600 .880 1.727 4.14.980
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data discussed in sections 2 and 3 above, since, in
that case, f t, f2 stay fixed and their being equal
variance Gaussian distributions implies a bijection
l(x) = +[ft(x),f2(x»), so that we have model A again
with u = s 0 +. This leaves the possibility (model D):

D (i) there is a function Qs(x) = v[y,ft(x),f2(x)]

D (ii) the subject chooses c such that Qs(c) = Q(c*).

10 and d = .35 on Sessions 8 and 9. No bias was
involved: The percentage of influence responses
which constitute overestimates was between 49 and
51."

Now the case under discussion involves f2(x+ 1.0)
= ft(x) = N[O,I] so that

1()
(l/v'2Ti) exn [- Y2(x-l)2]

X = . = exp[x - 0.5] (8)
(1/V2n) exp (- Y2x2)
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What Kubovy did amounts to defining two functions:

Tt(x) = exp(x-0.5)![l +exp(x-0.5)]. (9)

(10)Tt-l [Tt(x) + d],v(x)

u(x) Tt-l[Tt(x)-d]

x q(x),d=.2 q(x),d=.35

.5 .5 .5
1.0 .54 .58
1.5 .59 .70
2.0 .72 .81
2.5 .84 .91

and the posterior probability, since y = 0.5, is

q(x) = p(y < x) = [1- Tt(x)]{+(x) - +[u(x)]}/{+[v(x)]

- +[u(x)]} + Tt(x){+(x -1) - +[u(x)

-1]}/{+[v(x)-I] -'[u(x)-I]}. (11)

Table 3
x,q(x) for Some Positive Values of x (see text)

Table 3 shows some values of x, q(x) for x ~ .5,
and by symmetry q(x) = l-q(l-x), x < .5. Clearly,
p(y < x) ~.5 as Tt(x)~ .5, which justifies the claim
above: Influence responses are systematically related
to the predicted pattern which makes Kubovy's
experiment difficult to interpret.

so that
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Neither the isosensitivity nor the isobias data falsify
model D. On the other hand, it is not easy to test
model D at all.

(5) Kubovy reports an experiment in which sub­
jects made verbal estimates of posterior probabilities.
A general problem with any such experiment in rela­
tion to models A to D is that some further function
seems to be required to link Is(x) to the verbal
responses: only if that function is the identity func­
tion do the verbal responses cast direct light on
I s(x).

However that may be, there is a more specific ob­
jection to Kubovy's experiment. Kubovy is at pains
to argue that what happened on the "influence"
trials was not such as to lead to overestimation of
high posterior probabilities and underestimation of
low ones, which is the pattern predicted and found.
He implies that what matters is that the "influence"
responses did not themselves systematically show this
pattern. This seems naive: it seems quite possible that
subjects in this sort of situation react against the bias
present in the previous trials' "influence" responses,
rather than towards it; so that what matters is whether
the bias in the "influence" responses was systematically
related to the predicted pattern. Now for Group 2,
Sessions 11 and 12, such a systematic relation was
present: that is, the "influence" responses were sys­
tematically opposite to the predicted pattern. If this
relationship were confined to Group 2, Sessions 11
and 12, then the problem for Kubovy would be slight:
the predicted pattern seems to have been found
everywhere else in the data. The problem is that
during all the other posterior probability estimation
sessions (except Sessions 11 and 12 for Group 1)
the same systematic relationship would seem to have
held, though this is not made clear by Kubovy.

Kubovy writes: "The influence responses during
the first four posterior probability estimation sessions
were selected as follows: for each observation x, an
observation y was drawn from the same distribution.
If the difference in posterior probability of y and x
did not exceed a predetermined value, d, the number
100 x p(b I y), rounded to an integer, was used as
influence response. Otherwise, y was sampled again.
For one group of subjects (Group 1), d = .35 on
Sessions 7 and 10 and d = .20 on Sessions 8 and 9.
For the other (Group 2), d = .20 on Sessions 7 and
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NOTE

I. The values given are approximate: unit slope straight lines
were fitted by eye to Galanter and Holman's double probability
plots, and the values in the table were calculated from the nearest
points on the fitted line to the original data points.
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