Motion parallax as a determinant of perceived depth. Journal of Experimental Psychology, 1959, 58, 40-51.
Kaplan, G. Kinetic disruption of optical texture: The perception of depth at an edge. Perception \& Psychophysics, 1969, 6. 193-198.
Künnapas, T. Distance perception as a function of available visual cues. Journal of Experimental Psychology, 1968, 77, 523-529.
Mace, W. An investigation of spatial and kinetic information for separation in depth using computer generated dot patterns. (Doctoral dissertation, University of Minnesota, 1971). Dissertation Abstracts International, 1972, 32, 6687-B. (University Microfilms No. 72-14, 333)
Mace, W. H., \& Shaw, R. Simple kinetic information for transparent depth. Perception \& Psychophysics, 1974, 15, 201-209.
Schiffman, H. Sensation and perception: An integrated approach. New York: Wiley, 1976.

Wallach, H., \& O'Connell, D. The kinetic depth effect. Journal of Experimental Psychology, 1953, 45, 205-217.

NOTE

1. The moving lattice had a velocity of $1.8^{\circ} / \mathrm{sec}$, and moved for the time required for the observer to make a judgment on a given display. The motion of this lattice was accomplished by changing its position 20 times per second. To the experimenters, the motion looked continuous; and none of the pilot or experimental subjects who commented on the displays said anything to indicate that this motion looked discrete or "apparent."
(Received for publication October 24, 1977;
revision accepted March 28, 1978.)

ERRATUM

Hellström, \AA. Factors producing and factors not producing time errors: An experiment with loudness comparisons. Perception \& Psychophysics, 1978, 23, 433-444-The last sentence on page 434 should correctly read as follows:

Denoting by Z_{1} and Z_{2} the standard normal deviates which correspond to the probability P_{1} for a judgment to fall in category " 1, ," and the probability P_{2} for it to fall in category " 2 "' [i.e., $\mathrm{Z}_{1}=$ $\Phi^{-1}\left(P_{1}\right)$ and $\left.Z_{2}=-\Phi^{-1}\left(P_{2}\right)\right]$, we may note that

$$
\begin{equation*}
\mathrm{Z}_{1}=(\mathrm{D}-\mathrm{T}-\mathrm{b}) / \sigma_{\mathrm{c}} \tag{3}
\end{equation*}
$$

and that

$$
\begin{equation*}
Z_{2}=(D+T-b) / \sigma_{c} \tag{4}
\end{equation*}
$$

