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Quantifying private events:
A functional measurement analysis of equisection

DAVID J. WEISS

California State University, 5151 State University Drive, Los Angeles, Calzfomia 90032

Functional measurement theory was applied to bisection, trisection, and quadrisection of grayness.
Theoretically, these judgments should obey an averaging model. But the overt responses are not a valid
measure of subjective magnitude (since they are made on the physical stimulus continuum), and so they
cannot be used directly to test the model. However, scaling and model testing can both be accomplished
simultaneously using functional measurement theory. If the subject is indeed averaging, then there exists
a monotone transformation that makes the data additive; and this transformation can be computed with
FUNPOT, Weiss's (1973a) computer program which finds polynomial transformations that reduce
selected effects. Further, determination of this transformation also reveals the psychophysical function,
because it gives the relation between subjective magnitude and overt response. For bisection, the
averaging model was successful; it was possible to find a monotone transformation that made the data
additive. This psychophysical function differed somewhat in form from the Munsell scale. It gained
cross-task validity from its agreement with a grayness scale obtained from rating data (Weiss, 1972). For
trisection and quadrisection, the averaging model was not accepted; it was not possible consistently to

find transformations which induced additivity.

A classical issue in psychology is Fechner's
problem: What is the function relating sensations to
stimuli? Because sensations are inaccessible, the
psychophysicist’s problem must be decomposed into
two questions: (1) What is the relation between the
physical stimulus and the private sensation? (2) How
does the private sensation get translated into public
response?

One kind of experimental task is uniquely suited to
answering these two questions. When the response is
made on the stimulus continuum, then the subject
must use the psychophysical function in two ways, to
process the stimulus and to produce the response.
This dual use of the link between stimulus and
sensation can provide sufficient leverage to solve the
psychophysicist’s problem.

Equisection, one of the oldest of the direct scaling
methods. is such a task. The subject is instructed to
find those stimuli which partition a given
interstimulus interval into several subjectively equal
portions. This method has one especially valuable
property. Because responses are made on the stimulus
continuum, the relation between stimulus and
response is natural and meaningful to the subject.
One need not worry about an artificial, possibly
misunderstood, mapping of subjective values onto an
arbitrary response system. 1f it can be assumed that
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the subject is indeed equisecting, then a
psychophysical  tunction can be immediately
determined. An example of this scaling method is
given in Newman, Volkmann, and Stevens (1937). For
the function to be theoretically acceptable, however,
the equisection assumption itself must be verified.

Equisection is a generalization of bisection, a
technique first employed by Plateau (1872). who
asked artists to paint a gray exactly intermediate
between black and white. Although bisection has
since seen many applications, an experimental
critique by Gage (1934) decreased the popularity of
the method. Gage called bisection inconsistent
because ascending and descending stimulus
presentation yielded difterent bisecting values.

Garner (1954) used equisection in an attempt to
develop a loudness scale. Two loudness functions were
determined, one based on fractionation and the other
on equisection. In making successive fractionations, it
was assumed that the subject would set the same
ratio. even though this ratio might not be the one
prescribed by the instructions. Equisection judg-
ments, producing an interval scale with arbitrary
zero, were used to find the value of the ratio and thus
determine the scale. Garner's reasoning was clever,
but he did not dwell upon the central question of
equisection, namely, how to determine whether the
subject is in fact partitioning the interval in a
consistent way. Garner's analysis is unsatistactory
because it rested on the untested assumption that
equisection judgments did yield equal loudness
intervals.

Fagot and Stewart (1970) tested a bisection version
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of Pfanzagl's (1968) axiomatic measurement system.
Five axioms generate a representation theorem
identical to Equation 1, which is presented below. A
sixth axiom, commutativity or lack of response bias,
was determined to be violated by the data. Given this
violation. Fagot and Stewart claim that it is necessary
to assume some specific form for the psychophysical
function in order to construct a scale. Several forms of
biased power tunctions were compared with respect to
fitting the data, but no goodness-ot-tit tests for the
proposed models were employed. The approach of
Fagot and Stewart is unsatistactory, because it rested
on untested assumptions about the form of the
psychophysical function.

Functional measurement provides a new approach
to the study of equisection. The basic assumption is
that equisection obeys an averaging model. However,
this assumption is tested directly in the analysis, and
other untested assumptions are unnecessary. If the
model is correct, then the analysis reveals the
psychophysical function.

Functional Measurement Analysis

The equisection task involves first integrating the
stimulus information, and then producing the
response. It is assumed that an averaging model
describes the integration process:

\I/(Rij) = wi, ¥(Si+ wr ¥(S;). (1

Here. Rjjis the overt response to the stimulus pair Sj,
presented in the left spatial position, and §Sj,
presented in the right; W is the psychophysical
function, giving the relation between a physical
stimulus and its internal sensation value. The weights,
wp, and wg, depend on the sectioning required (for
bisection they would presumably be equal) and
possibly on spatial position, but they are assumed not
to depend on stimulus context. Since this is an
averaging model, the weights are assumed to add to 1,
although this assumption is not used in the analysis.
In other experimental situations, particularly when
stimuli are presented serially, the weight parameter
can retlect temporal order (Weiss & Anderson, 1969).
Interpretation of the weighting in Equation 1 as an
order parameter allows the dismissal of Gage's (1934)
objection to bisection (Weiss, 1973b, Appendix 1).

According to functional measurement methodol-
ogy. additive models such as Equation 1 can be
evaluated using analysis of variance to test goodness
of fit (Weiss & Anderson, 1969). A factorial design is
set up. with the presumed additive components
detining the tactors. In equisection, the factors are the
lett and right stimuli. as already noted. The additive
model is supported it the factors do not interact
statistically.

This analysis does not require that the two weights

in Equation 1 be equal, nor is there any need to do so.
As long as the weights are constant, the model is
additive, and it will reveal the psychophysical
function. For present purposes, therefore, bisection
will be used in this more general sense. As a
consequence, the present analysis automatically
allows for position or order effects.

It is not the overt response that is additive in
Equation 1, but rather the unobservable subjective
value associated with it. But if the model is correct,
then a transformation exists that renders the data
additive, and that transformation is linearly related to
Y. Hence, the problem of finding the psychophysical
function is reduced to finding a transformation that
makes the data additive. This transformation
problem can be solved using the FUNPOT computer
program developed by the writer (Weiss, 1973a). The
present paper applies this functional measurement
analysis to the continuum of grayness.

METHOD

Apparatus

The stimuli were 1.59 x 2.22 ¢m neutral-value Munsell chips,
matte tinish, ranging from very black to very white in quarter steps
on the Munsell scale. Each chip was glued to the head of a 2.54-cm
tack, and the tacks were mounted on a continuous beit. Five such
belts, each with a complete series of 31 chips, were mounted behind
a brown screen that had a circular hole in front of each belt so that
one chip was visible at a time through each hole. The stimuli to be
judged were always presented on the two outer belts. The subject
chose his responses by turning the interior belts. One response belt
was used ftor bisection, two for trisection, and all three for
quadrisection; the holes for belts not used were blocked. Between
trials, while the experimenter adjusted the two outer belts, a shutter
blocked all of the holes.

Design

The present experiment employed a 3 by 3 by 3 design. The first
factor was section; its three levels were bisection, trisection, and
quadrisection. The other two factors were stimulus factors whose
levels were reflectances ot 3%, 20%, 59%, and 9%. 36%. 90%,
respectively. The levels were chosen so that when the factors were
crossed, the resulting interval would be wide enough to allow
quadrisection responses.

Subjects

Each of nine paid subjects was run individually in six t-h
sessions. The first session consisted of two replications of the
bisection sets, the second and third of one replication of trisection
and quadrisection, respectively. The next three sessions were a
repetition of the first three.

Instructions

The subjects were told that for each pair of graynesses to be
presented to them they were to select graynesses that broke up the
grayness interval into two, three, or four equal parts. Instructions
were read each day for that day’s condition. On the first day, it was
explained that there was no objectively correct answer, since a
personal continuum was involved. The terms ‘intermediate
grayness' and ‘‘grayness midway between’” were used to help define
the judgment required.

Responding was self-paced, with the rate dependent upon the
number of ¢quisection responses required. Responses were made
rather slowly, as the nature of the task fostered readjustment. A



typical bisection judgment required about 20-30 sec; a set of
quadrisection responses required about 1 min.

Further details of procedure are in the author's dissertation
(Weiss, 1973b).

RESULTS

Bisection

Raw reflectance responses. The mean raw
reflectance responses for bisection are shown in the
upper left panel of Figure 1. Plots for the individual
subjects, given in Weiss (1973b), were all virtually
jidentical to the group plot. The data are distinctly
nonparallel, with the lines diverging markedly for the
lighter stimuli. Nonparallelism is the graphic analog
of nonadditivity, and so the nonparallelism was
expected because the physical reflectance scale is not
a valid measure of subjective magnitude. For each
subject. the F ratio for interaction was signiticant and
sizable.

The raw data were processed according to the
proposed model. If a transtormation could be found
which rendered the data additive, then the model
would be supported, and the transformation would
lay claim to the title of psychophysical function.
Transtormation was made on each subject’s data
individually, since there is no reason that different
individuals should have identical psychophysical
functions.

Munsell transformation. Since the Munsell (1967)
scale is based on an impressive volume of data,
reflectance values were replaced by Munsell values
and subjected to a similar analysis. If the Munsell
scale is valid and an additive model is correct, then
- these Munsell values should appear additive.
Individual-subject analyses uniformly rejected the
Munsell transtformation, although some reduction in
the interaction F ratios did occur. The group plot of
the Munsell values, shown in the upper right panel of
Figure 1, reveals that the Munsell scale is not extreme
enough; the lines diverge for the lighter stimuli.
However, the Munsell transformation does provide
considerable improvement over reflectance values; the
lines are much closer to parallelism than in the raw
data.

Polynomial transformation. To find the transfor-
mation which induced additivity, the polynomial
method of Bogartz and Wackwitz (1971) was
implemented via FUNPOT, a computer program
written by Weiss (1973a). The routine solves
analytically for the coetficients of a power series
expansion of specified degree, tollowing a suggestion
made by Anderson (1962). Arbitrary components of
an experimental design may be reduced. This allows
an exact statistical test of the model with the
transformed data.

The program worked in an iterature manner. A
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Figure 1. Group mean responses for bisection. Each curve
corresponds to one value of the right stimulus. The upper left and
upper right panels, respectively, show raw data and Munsell
transformed values. The lower left panel shows the data
transformed via FUNPOT to the additivity criterion. The lower
right panel shows the data transformed via the extended version of
FUNPOT.

second-degree polynomial was applied to the data,
and the transformed data were analyzed with a
reduction of one degree of freedom for the critical
interaction term. It the F ratio was significant, a
third-order polynomial was applied and the
significance test carried out with an additional
reduction of one degree of freedom. This iteration
continued until the interaction was reduced to
nonsignificance or until the degrees of freedom were
used up. An additional linear transformation gave the
transtformed data the same range as the raw data; this
had no effect on the F ratios.

FUNPOT was applied to each subject’s bisection
data separately. The algorithm was extremely
successful. With two analyses per subject, the
statistical criterion for additivity, nonsignificance of
the interaction, was achieved in 17 of 18 instances.
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Figure 2. Group-transformation function for bisection, shown as
open circles. Filled circles and Xs are two sets of marginal means
scale values from a grayness averaging study (Weiss, 1972). Solid
line is the Munsell scale of value.

The transtformed data were then averaged to yield the
lower left panel of Figure 1. The lines appear almost
parallel. which retlects the success of the
transformation.

Transformation function. In order to determine
the purest form of the transformation function, the
FUNPOT algorithm was extended. The stopping
criterion was suspended and the routine proceeded
until no degrees of treedom remained. This extension
reveals the best polynomial transformation in the
sense that it forces additivity necessarily. The
extended transtormation produced the parallel lines
in the lower right panel of Figure 1.

The success of the bisection model meant that the
extended transtormations could be considered as true
psychophysical functions. The average transformation
values are shown as open circles in Figure 2. These
points were generated by finding for each reflectance
the mean transtormed value, averaged over subjects,
from the extended transformations of the bisection
data. Since the physical values used as responses did
not occur equally often, the various points in the
graph represent different numbers of responses.
Retlectance values above 50% comprised less than
12% of the responses for bisection; thus, the scatter in
the parts ot the upper end of the reflectance scale
reflects unreliable data. There were two reflectances
which had fewer than five total occurrences over all
nine subjects. and these two points were omitted from
the graph.

Cross-task validation. The transformation func-
tion from the bisection task appears orderly over most
of its range. Also shown in Figure 2 are two sets of
marginal means scale values from a previous
tunctional measurement study (Weiss, 1972) which
employved grayness stimuli in an averaging task with a
rating response. These previously validated scale
values, shown as tilled circles and Xs, determine a

tunction which is similar in form to the bisection
function. This agreement across two judgmental tasks
supports the legitimacy of the bisection scaling and
justities the labeling of the transformation function in
Figure 2 as a psychophysical function. While the
linear relation between the sets of points from the two
experiments is not pertect, it is quite strong. A
measuring rod for this agreement is the disagreement
of both functional measurement scales with the most
widely accepted grayness function. The curved line in
Figure 2 is the Munsell scale of value, which is not
linearly related to the grayness scale as validated in
the present work.

Marginal means scaling. Functional measurement
studies (e.g., Weiss, 1972) usually use the marginal
means of the factorial design as direct estimates of the
scale values of the associated stimuli. Weiss (1973b,
Appendix 2) has shown that these estimates are
linearly related to transtormation function values if
Equation 1 (or Equation 3. presented below) is true.
For the present study, however, these values cannot be
compared, since the stimulus design employed only
three levels on each factor. As scale values are
determined only up to a linear transformation, a
larger number of stimuli is required to determine a
useful marginal means scale.

Trisection and Quadrisection

The three-tfactor design which incorporated the
higher sectionings did not yield results consistent with
the additive model. The basic problem was that
additivity-inducing transformations could not be
consistently achieved.

The raw data for trisection and quadrisection (given
in Weiss, 1973b) were characterized by large stimulus
interaction, similar in form to that shown for bisection
in Figure 1. As there were two responses generated for
each trisection and quadrisection presentation (the
central quadrisection response was not used), two
separate three-tactor subdesigns were available for
analysis.

Application of FUNPOT produced limited success.
With 18 data sets examined (2 subdesigns for each of
9 subjects), the additivity criterion was met in 11
instances. The Munsell transtormation was even less
successtul; additivity was achieved in only two cases.

A critical test of Equation 1 involves comparing the
transformation  functions obtained from each
subject’s subdesigns. It an obtained function is truly
the psychophysical function, then the two functions
trom a given individual should be linearly related. The
extended version of FUNPOT was used to generate
these functions because it gives the purest estimate of
the transtformation function, if one exists.

The pair of transformation functions for each
subject was examined (they are shown in Weiss,
1973b). The functions seemed to be monotone over



the range ot most of the data, but the individual pairs
of functions were decidedly not linearly related. This
meant that Equation 1 did not fit the equisection
data.

The locus of the model’s failure appears to be in
trisection and quadrisection. Extended transforma-
tion was applied to each section separately. The pairs
of transformation functions for trisection did not
agree well and appeared somewhat irregular. The
functions for quadrisection were quite irregular, and
there was virtually no relation between transformed
values for the two subdesigns.

Quadrisection paradox. The failure of the model
for quadrisection is especially puzzling, because
quadrisection may be considered logically as
successive bisection, and was so considered by the
subjects. To explore the discrepancy, a direct
comparison of the center quadrisection responses with
the bisection responses was made. Although these
center responses were not used in the primary
analyses, a possible source of the difficulty with
quadrisection is that errors in these first judgments
were compounded as the other responses were made.
For each subject, a three-factor design was
constructed: the factors were bisection vs.
quadrisection and the two stimulus factors. The
critical term in this analysis is the three-way
interaction, which tests whether the stimulus
interaction diftered for bisection and the central
-quadrisection response. This critical term was
significant for only two of the nine subjects, and it was
not large in either case.

Thus, the locus of the problem for quadrisection
must be the exterior responses. These later bisections
are of smaller intervals than the original bisections,
and a purely speculative explanation of the ditficulty
is that the discrete steps of the response scale induce
computational rather than impressionistic strategies
for dividing these smaller intervals. Because the
response steps, which were equally spaced in Munsell
value, are not subjectively equally spaced, such a
strategy would distort the averaging process. There is
no direct evidence for this explanation, but it is
consistent with the increasingly poor performance of
the model for trisection and quadrisection.

Multiplicative model. Anderson (1970) proposed a
multiplicative model in which the response is adjusted
so that its ratio to one stimulus appears proportional
to the ratio of the other stimulus to it. This model can
be written,

W(Rjj) = WHSHW(S). (2)

where w is a constant of proportionality. This model,
although only approximate, is of interest since it is
monotonically equivalent to the additive model for
bisection, but not for trisection or quadrisection. The
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model’s major prediction is that when the
additivity-inducing transformation 'is applied, the
interactions between the stimulus factors and the
section factor will vanish, because the section factor
which determines w has the same multiplicative
relation with the stimulus factors that the stimulus
factors have with each other. However, this
multiplicative model implies, like the additive model
of Equation 1, that the trisection and quadrisection
data can be transformed to additivity. The present
data, therefore, argue against this multiplicative
model.

DISCUSSION

This paper has shown that Fechner’s problem can
be solved by applying functional measurement theory.
The logic of this approach “consists in using the
postulated behavior laws to induce a scaling on the
dependent variable™ (Anderson, 1962). In the present
case, the behavior law is the simple averaging model
for bisection. Since the overt response is on the
physical scale, it requires transformation to the
psychological scale of sensation. The averaging model
provides the scaling frame for this transformation.
The computational basis is provided by the writer’s
FUNPOT program (Weiss, 1973a).

An important property of functional measurement
is that it provides a validational base for the model
and its associated measurement scales. The use of
factorial design gives the constraints for determining
the transformation. as well as degrees of freedom for
testing the model. The early attempts to use bisection
as a key to the psychophysical law lacked this
validational power. Much the same criticism applies
to the more recent nonmetric methods, such as
conjoint measurement (Luce & Tukey, 1964), since
these also fail to provide an adequate test of goodness
of fit (Weiss & Anderson, 1972).

The validity ot the bisection sc ale is underscored by
the good agreement between the present bisection
scale and the averaging scale from a previous study in
which a direct rating response was used (Weiss, 1972).
Both tasks yielded a grayness scale that diftered
slightly from the Munsell scale. This agreement is
important because the two tasks are quite different in’
their psychological nature. It provides a cross-task
validation of the present psychophysical function for
grayness.

It should also be noted that the test of the model is
powerful. When the same procedure was applied to
the higher order sections, the test of fit was not
satistied. This illustrates that the FUNPOT algorithm
tfor processing the data does not automatically
produce a scale. This empirical verifiability is an
important aspect of tunctional measurement. To be
sure, the failure of the equisection model for the
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higher sections detracts trom the torce ot the bisection
scale; generalization across sections would have
enhanced the validational support for the scale. This
empirical ditficulty should not be held against the
theoretical argument that it Equation 1 is true, then a
psychophysical scale can be determined.

The present bisection scale for grayness agrees
tairly well with the standard Munsell scale. However,
the bisection scale appears to be somewhat more
concave. Historically, the Munsell scale of value
(Munsell. Sloan, & Godlove, 1933) was originally
based on just-noticeable-ditterence data used together
with the method of ‘“‘equal value steps™ (successive
bisections ot a large interval). Later it was modified by
using data based primarily on estimates of the ratio of
two grayness intervals (Newhall, 1940). This adjusted
scale. in current use, is slightly more concave than its
predecessor, but the present results suggest that the
adjustment did not go far enough. The Munsell
determinations were characterized by careful
procedures and high intersubject agreement.
However, they lack a validity criterion and so leave
unanswered the basic issue of whether the subjects
could pertform as instructed. The advantage of the
bisection scale is that it provides a test of whether
subjects can indeed partition the interval consistently.

The present grayness scale differs radically from
results obtained with magnitude estimation. Stevens
and Galanter (1957) report an exponent of 1.2 for a
power tunction fit. Since the present data in Figure 2
are negatively accelerated, a power function fit would
have an exponent substantially less than 1. This
disagreement is no surprise as Stevens (1971) has
repeatedly condemned *‘partition scales,” including
bisection and ordinary rating scales. But these
partition scales have been able to meet validity
criteria, whereas magnitude estimation has not
(Anderson, 1974, Section 1V.B.4). On this basis,
therefore, it would seem that the functional
measurement approach provides the better basis for
solving Fechner's problem.!
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NOTE

1. Use of the transtormation approach introduces a certain
indeterminacy into the evaluation of a model. When monotone
transtormation 1s routinely incorporated into the data analysis. a
class of models is tested rather than a specific model. In the present
case, this class of models may be derived from what Aczél (1966)
calls the quasilinear weighted mean. The general expression for
such models is:

wi gt (Wisp) +wRpg T (W(Si)
‘P(Rij):g[ b —& ’J, &)
LT YR

where g(x) is a function which determines the specitic model. If
g(x) = x. then Equation 1 results. If g(x) = eX, a geometric mean
model is produced. Similarly, one may write a harmonic mean
model. with g(x) = 1/x. or a root-mean-power model, with g(x) =
x1/P. The analysis-of-variance test of additivity does not distinguish
among these models. Once the transformation causes the data to
satisfy the additivity requirement, the choice among models is
arbitrary. And the psychophysical tunction is arbitrary, as well, for
the right side of Equation 3 is not additive. Additivity is achieved by
taking gl of both sides of the equation; thus the
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additivity-inducing transformation is the composition g 1¥ so that  with those from the instructed averaging study (Weiss, 1972)
the psychophysical tunction is confounded with the model. When a  supports the assumption of arithmetic averaging.

specitic model is assumed, then W can be determined. Although an

element of arbitrary convention is logically inherent in the form of

any law, practical leverage can be obtained by requiring cross-task (Received for publication August 12, 1974;

generality. For example, the accord of the bisection scale values revision accepted November 25, 1974.)





