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We present statistical tests for departures from random expectation in spatial memory tasks. We
consider two common protocols for spatial memory experiments. In the first one, subjects are allowed
to search a fixed number of sites. In the second protocol, subjects are allowed to search until they
achieve a fixed number of successes. In either of these protocols, the subjects involved may or may not
revisit sites that have been previously searched or exploited. This yields four situations to consider:
fixed number of sites searched or fixed number of successes, with or without revisits. We derive ana-
Iytical expressions for the probability mass functions, expectations, and variances associated with each
type of null hypothesis. We present three statistical tests of these hypotheses: the Kolmogorov-Smirnov
test, the ordinary sign test, and the Z test. We use our results to demonstrate a priori calculation of sam-
ple sizes and statistical power and to consider a mixed model of sampling with and without replacement.

The basis for experiments investigating spatial memory
capabilities of animals is that animals are able to perform
spatial memory tasks better than expected by chance. In
spatial memory experiments, such as radial maze experi-
ments, a fixed number of sites is used. Some sites contain
food, and others do not. Moreover, two experimental pro-
tocols can be used. In the first protocol, animals can ex-
plore a fixed number of sites. We shall refer to this proto-
col as the fixed-number-of-samples/trials protocol. The
data that result from this protocol are the number of vis-
ited sites containing food. In the second protocol, animals
can explore until they have found a fixed number of sites
containing food. We shall refer to this second protocol as
the fixed-number-of-successes protocol. The data that re-
sult from this protocol are the total number of sites visited.

One relevant null hypothesis is that the animals search
at random until they find food-storage sites. In many
cases, animals search without revisiting locations previ-
ously searched; in other cases (e.g., rats that have had their
hippocampus lesioned), the animals do revisit previously
searched or exploited sites. Again, two cases must be dis-
tinguished. In the first case, the hypothesis is that animals
explore the sites at random and without replacement. In
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the second case, we can suppose that animals explore at
random with replacement. Four different situations must
thus be examined. Animals can search with or without
replacement in a protocol where either the number of
trials or the number of successes is fixed. In order to test
the hypothesis that animals search better than at random,
it 1s necessary to know the probability mass functions of
the number of successes (in the fixed-number-of-trials
protocol) or of the number of trials (in the fixed-number-
of-successes protocol) when animals search at random
with or without replacement.

At first sight, this problem looks simple and classic.
One might think that when an animal searches at random
with replacement, the solution is given by the binomial
distribution (in the fixed-number-of-trials protocol) and
negative binomial distribution (in the fixed-number-of-
successes protocol). This first impression is, however, in-
correct. Indeed, when an animal explores a site, it eats
the food, and, thus, the site containing food becomes empty
once it is explored. From the sampling theory point of
view, this problem could be presented as a sampling pro-
cedure that modifies the state of the population. Curi-
ously, this problem seems to be unsolved. Nevertheless,
results given by some Indian statisticians (Basu, 1958;
Chikkagoudar, 1966, Raj & Khamis, 1958) gave a point
of departure from which we were able to derive the dis-
tributions related to these problems.

If an animal searches at random without replacement, the
problem is more simple. In the fixed-number-of-trials pro-
tocol, the result is given by the hypergeometric distribution,
which is a classical result in sampling theory. The problem
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has also been solved in the fixed-number-of-successes pro-
tocol, although we shall show that it is more unusual.

In this paper, we present the probability mass functions
for all common protocols used to test spatial memory. To
do this, we had to derive two new statistical distributions.
The proof for these new results is given in Appendix A.
The probability mass functions allow us to calculate the
random expectations and variances and to use more
appropriate statistics to test the null hypotheses (e.g.,
Kolmogorov-Smirnov test, ordinary sign test, and Z test)
rather than the commonly used ¢ test. These functions also
allow us to statistically distinguish between site revisits
that occur when searching with replacement (see below)
and “errors” (i.e., site revisits) when searching without re-
placement (see below). We also use these results to de-
velop a compound model in which the animal’s behavior
is assumed to be a mixture of sampling with and without
replacement. Finally, we use our results to investigate the
statistical power of the various test options available and
comment on the choice of statistical test.

Note that Appendix B contains a listing of all symbols
used in this paper. The reader may find it useful to refer
to this list from time to time.

MEMORY TASKS WITH A
FIXED NUMBER OF SAMPLES

In food-storing experiments (e.g., Balda & Kamil,
1989; Sherry & Vaccarino, 1989; Shettleworth & Krebs,
1982), the common protocol is to allow animals to search
a fixed number of sites, and the retrievals (“successes”
that the animal achieves are tallied. We shall consider two
different strategies that animals could use to sample their
environment: (1) at random without replacement and
(2) at random with replacement. When animals search
without replacement, they do not revisit sites previously
visited. When sampling with replacement, the animal ran-
domly chooses one site from among all available sites,
without regard to whether that site has previously been
searched. In both cases, we can calculate the distribution
function, the random expectation, and the variance.

Sampling Without Replacement:
The Hypergeometric Distribution

It is known (e.g., Kamil & Balda, 1985; Olson, Kamil,
& Balda, 1993; Spetch & Edwards, 1986) that the num-
ber of correct choices when sampling at random has a
hypergeometric distribution (e.g., Degroot, 1970). The
probability mass function is given by

u )

where X is the number of successes, 4 is the number of
sites that constitute a success (e.g., sites that actually con-
tain food), B is the number of sites that constitute failures

Pr[X=r]= ,¥=max(0,n—B),...,min(4,n),

(e.g., sites that do not contain food), N = 4 + B is the

number of sites, and # is the number of sites that the an-

imal is allowed to search before the trial is terminated.
The expectation of X is given by

—E(X)=24, 2
Hx =E(X)="3 2
The variance (e.g., Degroot, 1970) is given by
2 _ _nAB N-n
O'X—Var(X)—FN_l. (3)

To test whether animals are doing better than a simple
random sampling without replacement, we can use the
following test:

Hy: p < 1y, the expected number of successes is not bet-
ter than expected by chance.

H,: p> uy, the expected number of successes is better
than expected by chance.

In this test, i, is given by Equation 2 and g is the true ex-
pected number of success.

What is important about the knowledge of Equation 3
is that we can test inferences about the expected number
of successes out of # sites searched using a Z test rather
than a ¢ test, as is commonly employed (e.g., Healy &
Krebs, 1992; Hilton & Krebs, 1990; Olton & Samuelson,
1976; Spetch & Edwards, 1986). This is important since
the Z test is more powerful (i.e., better able to reject a
false null hypothesis) than the ¢ test. This null hypothe-
sis is thus tested with a probability level & by using a
Z ratio. The following decision rule is used:

X-py

Jox /v

where X is the sample mean (i.e., the mean of the num-
ber of successes achieved for the v subjects) and Z, _, is
the 1 —a order quantile of a standard normal variable.

Reject Hy if Z = >Z o

Sampling With Replacement:
The Hyperbinomial Distribution

The normal approach to sampling with replacement is
to recognize that since each sample is either a success or
a failure, the sample constitutes a “Bernoulli trial.” The
expected number of successes in 7 Bernoulli trials is nor-
mally given by the expectation of the binomial distribu-
tion np (where » is the number of samples and p is the
proportion of samples that constitutes a success). The vari-
ance of this expression is npg, where g is 1 —p. However,
in the case of spatial memory experiments, these expres-
sions are not useful because once a site containing food
is emptied, it is not refilled and hence cannot be exploited
again (as is the assumption behind the use of the bino-
mial distribution). In Appendix A (see Theorem 1), we
derive a new distribution, which we call the hyperbi-
nomial distribution. The probability mass function of the
number of successes in n total samples when sampling
with replacement is given by (see Appendix A, Theorem 1)
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where & denotes the number of successes, and 4, B, N, and
n are defined as they were for Equation 1. S{? is the Stir-
ling number of the second kind (Abramowitz & Stegun,
1957, p. 824) and is defined simply as
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The expectation of £ is given by

u¢=E(§)=A[ - )] ®)
N"
The variance is given by
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Again, since the variance of the distribution is known
we can use a Z test in place of a 7 test.

To test whether animals are doing better than a simple
random sampling with replacement, we can also use a
mean test:

Hy: < pg, the expected number of successes is not bet-
ter than expected by chance.

Hy: p> pg, the expected number of successes is better
than expected by chance.

In this test, y, is given by Equation 5 and u is the true
expected number of success.

This null hypothesis is thus tested with a probability
level by using a Z ratio. The following decision rule is
used:

X

——2>7Z >

Vo /v

Reject Hy if Z =

where X is the sample mean (i.e., the mean of the num-
ber of successes obtained for the v animals).

MEMORY TASKS WITH A
FIXED NUMBER OF SUCCESSES

In spatial memory experiments that utilize a radial arm
maze, one common protocol (e.g., Balda & Kamil, 1988;
Hilton & Krebs, 1990; Ilersich, Mazmanian, & Roberts,
1988; Olson, Kamil, & Balda, 1993; Roberts & van Veld-
huizen, 1985; Spetch & Honig, 1988) allows the animals
to continue sampling until they have achieved a certain
number of successes (commonly, but not necessarily, this
number is all possible successes). In this case, Equations
1-6 are not useful in calculating the random expectation.
What we need to know is how many sites we should
expect the animals to search before they find this num-
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ber of successes. Again, we must consider two cases:
sampling without replacement and sampling with re-
placement.

Sampling Without Replacement:
The Negative Hypergeometric Distribution

When animals sample without replacement, it can be
shown that the number of sites sampled until the »th suc-
cess has a negative hypergeometric distribution (see
Johnson, Kotz, & Kemp, 1992, p. 241):

[N—-r—kj[r+k—l)
B-k k , k=0,,...,B,

(2 )

where Y is the number of sites searched to find exactly r
successes, and 4, B and N are as defined above. The ex-
pectation of Y is given by

1y —E(Y>—r{‘j+11 (8)

PrlY =r+k]=

The variance is given by
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In this case, a Z test can still be used. To test whether an-
imals do better than a simple random sampling without
replacement, we test the following hypotheses:

Hy: 1 2 uy, the expected number of sites searched is not
less than expected by chance.

H|: 1 < iy, the expected number of sites searched is less
than expected by chance.

Note that i denotes here the expected number of trials to
obtain r successes. If animals search more efficiently
than using a simple random sampling, the number of
sites visited will be smaller than p.

This null hypothesis is tested with a probability level
o by using a Z ratio. The following decision rule is used:

Reject Hy if Z=1—H <7,
ol /v

where Y is the sample mean (i.e., the mean of the num-
ber of trials for the v animals).

Sampling With Replacement:
The Negative Hyperbinomial Distribution

Now, suppose that the animals sample with replace-
ment. Normally, the number of failures until the rth suc-
cess is given by the negative binomial distribution. How-
ever, we cannot use the negative binomial result since
food-storage sites are not refilled after each success. To
deal with this situation, we present a new distribution,
which we call the negative hyperbinomial distribution. In
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Appendix A (Theorem 2), we derive the probability mass
function for this distribution. We show that the probabil-
ity mass function of the number of sites searched until the
rth success, when sampling with replacement, is given by

Prfn=r+k]=

4} » mingt.8) B (i+r-1)
i+r—1) S , k=0,1,...,
(r]NH'k lg(,) ( ) ; r+k-1

(10)

where 7 is the number of sites searched, r is the number
of successes at which the sampling is terminated, and 4,
B, and N are defined as above. The expectation of 7 is
given by

r—1
1
= =N) ——.
b =EM=N 3 7L (1)
The variance is given by
r-1 :
2 _ B+j
o, =Var(m=NJY, . (12)
" o (4= j)

Again, a Z test can still be used. To test whether animals
do better than a simple random sampling with replace-
ment, we test the following hypotheses:

Hy: p 2 o, the expected number of sites searched is not
less than expected by chance.

H,: p<u,, the expected number of sites searched is less
than expected by chance.

Again, u denotes the expected number of trials to obtain
r successes. This null hypothesis is tested with a proba-
bility level o by using a Z ratio. The following decision
rule is used:

Y -y,
1/0,2,/v

where Y is the sample mean (i.e., the expected number
of trials for the v animals).

Reject Hy if Z = <Zgy,

Example 1

In this first example (Edwards, 1994), there are 8 sites.
One site contains food and the seven others donot: N = 8,
A =1, B = 7. Twenty animals (v = 20) are allowed to
search until they find the site containing food (» = 1).
Results are given for the first day and after 6 days of
training in Table 1.

The sample mean number of trials ¥ needed to find
the site equals 4.45 for the first day and 1.25 after 6 days
of training.

To test whether animals do better than a simple ran-
dom sampling with replacement, using Equations 11 and
12, we get 1, = 8 and 0% = 56. For the first day, Z =
—2.12153; after 6 days, Z = —4.0339. These two Z ratios
are smaller than the 0.05 order quantile of a standard
normal variable (Z; os = —1.64), and, thus, A} is rejected
in both cases. Thus, we can say that since the first-day
animals are doing better than a simple random sampling
with replacement.

To test whether animals do better than a simple ran-
dom sampling without replacement, using Equations 8
and 9, we get 1, = 9/2 and o5 = 21/4. For the first day,
Z = —0.09759; after 6 days, Z = —6.34335. On the first
day, the Z ratio is larger than the 0.05 order quantile of a
standard normal variable (Z, o; = —1.64); however, after
6 days, the Z ratio is smaller than Z; s = —1.64. So, on
the first day, H,, is not rejected; however, after 6 days, H,
is rejected. Thus, we can conclude that, after 6 days, ani-
mals perform better than sampling without replacement.

In this case, 20 animals are used, but, normally, we re-
quire at least 30 animals (v 2 30) to use a Z test. How-
ever, it is very common in spatial memory experiments to
have sample sizes of less than 30. Where the experimenter
is unwilling to make the normality assumption required
of such a parametric test, there are alternative nonpara-
metric tests available (see Examples 3 and 4).

Remarks on Example 1. Note that the data are paired
because they come from the same animals at two distinct
times. For this reason, if we want to test whether the an-
imals improve their performance, we must take into ac-
count the lack of independence between the successive
observations. In this case, we might use the paired ¢ test
or the Wilcoxon signed rank test (see, e.g., Gibbons, 1993,
pp. 4-5), both of which can be used for paired data. In
Example 1, the Z test is applied at a precise time to verify
whether animals are doing better than expected by chance.
In this case, the lack of independence does not greatly
affect the validity of the test. (However, it would be a prob-
lem if we used a Z test to test the results every day until
we found a significant difference.)

In this example, and the examples that follow, we are
concerned with testing the one-tailed hypothesis that the
animal performs better than expected by chance. A re-
viewer pointed out that two-tailed tests may also be of
interest. Indeed, as that reviewer noted, animals follow-
ing a “win-shift-lose-stay™ strategy in any of the proto-
cols presented here, could reliably lead to results that are

Table 1
The Number of Sites Searched Until the Animals Discovered the Site Containing Food

Animal Number

Trials 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Dayl 6 § 5 5 4 3 5 4 1 7
Day6 1 1 1 1 1 1 2 2 2 1

4 5 1 2
1 1 1 2

Note—There were 8 sites in total. Data from Edwards (1994).



worse than expected by chance. Extending the Z test (or
any of the tests that follow) to consider the two-tailed hy-
pothesis can be easily accomplished and is not affected
by the calculation of the random expectation.

CALCULATING SAMPLE SIZES

Equations 1, 4, 7, and 10 give the probability mass
functions for the four hypotheses of interest. Knowledge
of the probability mass function allows us to calculate
exact probabilities for any event or subset of events that
we desire. One property that knowledge of the probabil-
ity mass function allows us to calculate is the theoretical
variance of the distribution. Knowledge of the theoreti-
cal variance allows us to calculate, a priori, the sample
size needed to detect a difference of some particular size.

Example 2

Suppose, as in Example 1 (i.e., animals search among
eight possible sites for one hidden item, they search until
they find the site containing food), that we want to test
whether animals perform better than would be expected
if they were using a simple random sampling design
without replacement until an item is found (N=8,4 =1,
B=7,r=1).

Assume that we wish, a priori, to be able to detect a
significant difference if our observed sample mean is, for
example, d =1 less than expected if animals are search-
ing using a simple random sampling design without re-
placement. In that case, we should need

d ____ -1
Joi [y 214
2
v>[1.64 21/4)

-1
v >14.1204.

~1.64>

That is, if we wished to be able to detect a departure from
random performance with a magnitude of 1 site sampled,
then we would need a sample size of at least 15 animals
to detect this difference at the o = 0.05 level on a one-
tailed test. Similar calculations can be performed for any
of the situations demonstrated below.

KOLMOGOROV-SMIRNOV TEST

There is some question as to whether parametric tests,
such as the Z and ¢ tests, are appropriate for testing the
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hypothesis in the case of actual spatial memory experi-
ments. The logic of using a parametric test is that we are
dealing with distributions of sample means, which the
central limit theorem tells us must be approximately nor-
mally distributed. The distribution of sample means con-
verges to a normal distribution as the sample size be-
comes large. It is generally accepted that the sample size
must be greater than 30 to ensure convergence. For ex-
perimenters who are leery of making the normality as-
sumption without such a large sample size (it is unusual
to have such large sample sizes for these types of exper-
iments), it may be more appropriate to use a nonpara-
metric test, such as the Kolmogorov-Smirnov test.

The Kolmogorov-Smirnov test is desirable in that it
does not require normality—it is distribution-free. This
test is applicable because the exact distribution under the
null hypothesis is calculable (see Conover, 1980; Gib-
bons, 1985).

Example 3

To illustrate the use of this test, consider the following
experiment. Ten animals are allowed to find two food items
hidden among 16 sites (4 = 2, B = 14, N = 16) (Edwards,
1994). The animals are allowed to sample until they have
found both items (» = 4 = 2), at which point the exper-
iment is terminated. Table 2 gives the number of trials re-
quired for two successes for the first day and after 6 days
of training.

In this case, the small number of animals used does not
ensure convergence, so we may prefer not to use a Z test.
We want to test whether animals search better than if they
were using a simple random sampling design without re-
placement. So, the hypotheses are:

Hy: F(x) < Fy(x), the cumulative distribution function is not
greater than the distribution function when sampling
without replacement.

H,: F(x) > Fy(x), the cumulative distribution function is
greater than the distribution function when sampling
without replacement.

F(x) denotes the cumulative distribution function of
the distribution from which the data come, and Fj(x) de-
notes the cumulative distribution function under the null
hypothesis—in this case,

Fy(x)= S PrlY = 1,

j=r
where Y is defined as in Equation 7. Table 3 gives, for the
first and sixth day, the observed cumulative distribution

Table 2
The Number of Sites Searched Until the
Animals Discovered the Two Sites Containing Food

Animal Number

Trials 1 2 3 4 5 6 7 8 9 10
Day 1 10 14 15 12 12 9 10 8 9 6
Day 6 4 3 2 4 2 3 3 2 4 4

Note—There were 16 sites in total. Data from Edwards (1994).
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function F,(x), the cumulative distribution function
under the null hypothesis F;(x), and the differences be-
tween F, (x) and Fy(x). The Kolmogorov-Smirnov statis-
tic is given by T~ = max_[F, (x)—Fy(x)].

On the first day, T— = 0.25, the tabulated value for
v =10 and a = 0.05 is 0.369, and thus the decision is:
“fail to reject Hy.” After 6 days of training, T~ = 0.95,
the tabulated value does not change, and the decision is:
“reject Hy.”

Thus, with no prior experience with the experimental
set-up, the animals do no better than expected by chance.
However, after 6 days of experience with the set-up, the
animals do considerably better than random.

Exact Method for Critical Values

The Kolmogorov-Smirnov test is normally used with
continuous data, not discrete data of the type produced by
spatial memory experiments. However, it can be shown
that for discrete distributions, the Kolmogorov-Smirnov
test becomes very conservative (Pettit & Stephens, 1977).
Thus, if the test suggests rejection of the null hypothesis
using the tabulated value, then we can have a great deal
of confidence in this result. However, when the differ-
ence between our observed and expected distributions is
not large, we will not be able to afford the use of such a
conservative test. To overcome this problem, Conover
(1972) presents an algorithm for calculating the exact
critical value for the Kolmogorov-Smirnov test. This
method can be up to three times more powerful than using
tabulated values for the Kolmogorov-Smirnov test, es-
pecially when the sample size is small. The only problem
with this method is that it can require significant com-
putation time, even for large computers. This algorithm
is clearly explained in Conover (1980, pp. 350-353).

ORDINARY SIGN TEST (MEDIAN TEST)

Another way to test the hypothesis that animals are
searching at random (with or without replacement) is to

Table 3
Kolmogorov-Smirnov Test for the Data in Table 2
Dayl Dayé6 Day 1 Day 6
Trials F,(x) E,(x) Fy(x) F,(x)—Fy(x) F,(x)—Fy(x)

1 0.0 0.0 0.00 0.00 0.00
2 0.0 0.3 0.01 —0.01 0.29
3 0.0 0.6 0.03 —0.03 0.58
4 0.0 1.0 0.05 —0.05 0.95
5 0.0 1.0 0.08 —0.08 0.92
6 0.1 1.0 0.13 —0.03 0.88
7 0.1 1.0 0.18 —0.08 0.83
8 0.2 1.0 0.23 —0.03 0.77
9 0.4 1.0 0.30 0.10 0.70
10 0.6 1.0 0.38 0.23 0.63
11 0.6 1.0 0.46 0.14 0.54
12 0.8 1.0 0.55 0.25 0.45
13 0.8 1.0 0.65 0.15 0.35
14 0.9 1.0 0.76 0.14 0.24
15 1.0 1.0 0.88 0.13 0.13
16 1.0 1.0 1.00 0.00 0.00

Note—Shows the cumulative distribution of the data and the distri-
bution expected under the null hypothesis.

use the ordinary sign test to test hypotheses about the me-
dian performance (see Gibbons, 1985, pp. 100-104). This
test is distribution-free; moreover, it is the most power-
ful test for testing the value of a quantile (e.g., the me-
dian; see Lehmann, 1986, pp. 106-107).

Example 4

Consider the following experiment on 6 humming-
birds using a radial arm maze protocol (Healy & Hurly,
1995). Each bird was presented with eight flowers con-
taining sucrose solution. When a bird had visited four of
the flowers, it was interrupted by the experimenter and
chased away. On return, the bird was then observed until
it had visited the four flowers that still contained sucrose
solution. Table 4 contains the number of successes
achieved in the first four flowers visited. In this case, we
have 4 = 4, B=4, N= 8, and n = 4; 6 animals were
used to conduct the experiment (v = 6).

We want to test whether animals search better than if
they were using a simple random sampling design with-
out replacement. Table 5 gives the cumulative observed
function F, (x) and the cumulative function F(x) under
the hypothesis that animals search at random without
replacement:

Fy(x)= 3 Pr[X = j1,
=0

where X is defined as in Equation 1.

Examining Table 5, we see that the median under the
hypothesis that animals search at random without re-
placement is M, = 2. If M denotes the median of the dis-
tribution from which the data come, the null hypothesis
to testis Hy: M <2 versus H;: M > 2.

From Table 4, we observe that 3 animals get exactly two
successes, 3 get more than two successes, and 0 less than
two successes. To do the ordinary sign test, we consider
only the three cases where the number of successes is dif-
ferent from two. Under H,, the probability of getting three
results larger than two in three experiments is given by

N w
= S5°=.125.
d (3]

Since p > o = .05, H,is not rejected. Thus, we fail to
reject the null hypothesis that animals search at random
without replacement.

DISTINGUISHING “ERRORS” FROM
SAMPLING WITH REPLACEMENT

We sometimes have a case where animals do revisit sites
that they have previously investigated or depleted, but we
do not believe that these animals are sampling with re-
placement. Rather, we think that the animals are sampling
without replacement, but that they make occasional “er-
rors.” These revisits are often simply treated as errors and
ignored in subsequent analyses. That is, researchers test
the null hypothesis that the animals were sampling with-



Table 4
The Number of Successes in the First Four Sites Searched
Bird Number
1 2 3 4 5
Trials 2 4 2 3 2 3

Note—Data from Healy and Hurly (1995).

out replacement, even when there are some sites that are re-
visited. In this section, we consider this problem further.

Perhaps the simplest way to approach this problem is
to test whether the number of sites that are revisited is
different than we expect by chance under the null hy-
pothesis of sampling with replacement. In the case of a
fixed number of trials, the distribution is obtained imme-
diately from Equation A1 (see Appendix A). Equation A1l
is the probability mass function for the number of unique
storage sites searched when making n random samples
with replacement from a population of size N. If we let
¥ denote the number of sites visited more than once, in
arandom sample with replacement of size n, from a pop-
ulation of size N, then the probability mass function for
the number of sites visited more than once is given by

Pr[¥=#]=Pr[®=n—r], (13)

where @ is defined as in Equation Al. Thus, we can use
Equation A1l to conduct a Kolmogorov-Smirnov test as
above, or we can use Equations A2 and A4 (see Appen-
dix A) to conduct a Z test (whichever is justified) to test
the null hypothesis that the animals are revisiting sites at
a frequency expected by chance when sampling at random
with replacement. If we reject this hypothesis and find that
the animals are revisiting sites, but less frequently than
we expect by chance, then we may choose to ignore the
revisits. We would then test the null hypothesis that, aside
from the errors, the animals were performing better than
we would expect if they were sampling at random with-
out replacement. To do this, we proceed as above.

We note that the probability that  sites were visited &
times is given by Feller (1968, p. 112). This problem is
called the classical occupancy problem. This bivariate
probability mass function could allow us a more precise
approach to testing the errors hypothesis. We shall not
develop this problem further in the present paper.

In the case of a fixed number of successes, if we denote
{ as the number of trials needed to visit exactly r distinct
sites, we can derive the probability mass function of {
from Equation 10 by taking 4 = Nand B = 0. The prob-
ability mass function of {is given by

N! (r-1

Pr[C:r'f'k]:W rak—1»

k=0,,....

This problem is known as inverse sampling with replace-
ment and was studied by Basu (1958). The expectation of
{is given by

_ r—1 1
E()= NEO—N-J"
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The variance is given by
r—1

Var@)=NY —I .
=N LN

If T denotes the number of sites visited more than once
that are needed to visit exactly r distinct sites, we have

Prlt=k =Pr[{=r+kL,k=0,1,...

As in any of the above examples, these results can be
used to construct a Z test, a Kolmogorov-Smirnov test, or
an ordinary sign test.

COMPOUND MODEL

Another means of dealing with the “problem of errors”
would be to construct a compound model. The logic of
such a model proceeds as follows. The two simple models
(sampling with and without replacement) may appear to
be an oversimplification of animal behavior. Indeed, in
most of the cases, we may expect that animals search
without replacement but occasionally make mistakes. This
kind of behavior suggests the use of a compound model.
The simplest compound model is formed by assuming
that, in the case of a fixed number of trials, the probabil-
ity mass function of the number of successes is a linear
combination between the probability mass functions of the
with- and without-replacement schemes. For instance, for a
fixed number of trials, we can define variable # such as

Pr[W=r]=APr[X=r]+ (1 — D) Pr[é=7r],
r=1,...,nwith0<A<l,

(14)

where Pr[X = r] and Pr[£ = r] are defined as in Equations
1 and 4. The expectation and variance come directly:

E[W] = AE[X] + (1 — A) E[£)
and
Var[W] = Avar[X] + (1 — )Var[£] + ME[X]— E[W])?
+(1 = A)E[E] — E[W])~

In the same way, we can define a variable U for which
the probability mass function is linear combination be-
tween the with- and without-replacement distributions
for the fixed-number-of-successes scheme by using Equa-
tions 8 and 11 in place of Equations 1 and 4 above.

This model may look unrealistic, but our discussion of
this model can be extended to any compound model with

Table 5
Sign Test for the Data in Table 4
Successes F,(x) Fo(x)
0 0.000 0.0143
1 0.000 0.2429
2 0.500 0.7571
3 0.833 0.9857
4 1.000 1.0000

Note—Cumulative distribution of the data and the distribution expected
under the null hypothesis.
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at least one unknown parameter. Indeed, if a compound
model is used to test a hypothesis, parameter A will be a
“nuisance” parameter. To test the compound hypothesis,
we must use a two-step procedure. In the first step, we con-
duct an experiment to estimate A. In the second step, we
conduct another experiment to test the model. If we sup-
pose that animals have a behavior that is a mixture of sam-
pling with and without replacement, the expected number
of successes will be intermediate between the expectations
of both replacement protocols. So, if animals are search-
ing according to the model given by Equation 14, in the
best case (i.e., animals make no mistakes, A = 1), the ex-
pectation will be just sampling without replacement
(Equation 1). Thus, it makes sense to first test the simple
(noncompound) model. We can test directly that animals
are doing better than a simple random sampling without
replacement (the best case). The estimation of parameter 4
is not necessary to test this null hypothesis. If and only if
that test fails, then a compound model is called for. If a
more complex and probably more realistic compound
model is used, this model will also have at least one nui-
sance parameter to estimate, and the estimation of this
parameter will interfere with the test in such a way that it
may be more useful to test if animals are searching at ran-
dom without replacement.

WHICH EXPERIMENTAL
PROTOCOL TO USE?

The examination of experimental protocols and of the
varied ways to test a hypothesis leads to a fundamental
question: How do we best organize a spatial memory ex-
periment? This question leads directly to many practical
questions. Is it preferable to use a fixed-trials or a fixed-
samples protocol? It may be tempting to use a fixed-
number-of-successes protocol with » = A4, because this
test may yield more “information.” We shall show that,
from a statistical viewpoint, this first impression is false.
Another important problem is the allocation between the
sites containing food and the sites that do not contain
food (ratio A/B). For the fixed-number protocol, which
value should we choose for n? For the fixed number of
successes, which value should we choose for »?

These are questions of experimental design, which can
be posed as a power problem. The power of a statistical test
is the probability of rejecting H,, given that the alterna-
tive hypothesis, H, is true (for a fixed level of ). We shall
see that a general optimal design (most powerful) does not
exist but that, for each alternative hypothesis, one can de-
terminate a particular optimal test. To illustrate this prob-
lem, we will consider two examples. For simplicity, in these
two examples, we will illustrate this procedure using a
Z test. Similar calculations can be made for other statis-
tical tests.

Example §
Suppose that we want to test the hypothesis H|, that
animals search at random with replacement against

H, that animals search in accordance with the com-
pound model given by Equation 14 with a fixed value for

'In the fixed-number-of-trials protocol, hypothesis H,
will be rejected if

— 0'5

T

where Z,_, is the quantile of the I — ¢ order of a stan-
dard normal distribution function. The power of H| is
given by

(a| H)=1 F[ L‘_E(W)j
ower =1-F| ———=|.
p FNT 1 (—Var(W)/v

F(e) is the probability distribution function for a stan-
dard normal random variable.

In the fixed-number-of-successes protocol, hypothe-
sis H, will be rejected if

The power for H, is given by
L,—EU) ]

(| H)=F| ———=
powergys (@ | H; [ ,7Var(U) v

If we calculate the power for the fixed-number-of-
successes protocol using Equation 14 (but replacing Equa-
tions 1 and 4 with Equations 8 and 11) with A = 0.6, N =
8, and v = 30, we find that the most powerful experi-
ment consists of taking 4 = N = r = 8 with a power of
0.950412. For the fixed-number-of-trials protocol, the
best experiment consists of taking 4 = N = n = 8 with
apower of 0.714743. The fixed-number-of-successes pro-
tocol is, in this case, more powerful. So, perhaps some-
what counterintuitively, the best experiment consists of
beginning with food in all the sites and letting the ani-
mals search until all the sites have been visited.

Example 6

Suppose, in the fixed-number-of-samples protocol,
that an animal is able to retrieve directly a limited num-
ber, ¢, of sites containing food and next searches at ran-
dom without replacement. If X, denotes the number of
successes after sampling # sites, we have

Ly sr=1...,min(4,n), if n<c

)

where I, takes the value 1 if D is true and 0 if not. Thus,

Pr[X.=r]=
,r=max(¢c,n—B),...,
min(4,n), if n>c,




n, if n<e,
BXIS)  mo-o)
n—c)(Ad-c
AL A S
N-0) ,ifn>ec,
and
0, if n<e,
Var(X )=
(Xo) (n—c)(A-¢c)B N-n i
5 ,if n>ec.
(N-¢) N-c-1

Suppose now that we want to test the null hypothesis
H, that animals search at random without replacement
against the alternative hypothesis H, that animals’ be-
havior can be described by the probability mass function
of variable X, where

Pr[X; = r] = APr[X, = r] + (1—4) Pr[X = 7],
where X is defined as in Equation 1. Thus,
E(X;) = AE(X,) + (1-ADEX).
The most powerful Z test for these two hypotheses can

be determined. Indeed, with the Z test, we shall reject H, if

X> L= BN+ Zy_gy Vo)
The power is the probability that we reject H, given

that H, is true. Thus,
h—ﬂ&)]

power (| HO:I_F[\/W
A

For the alternative hypothesis H, it is thus possible to
determine the best choice of 4 and B, and then to obtain
the most powerful test (see below).

Suppose, in the fixed-number-of-successes protocol,
that an animal is able to retrieve directly a limited num-
ber, ¢, of sites containing food and next searches at ran-
dom without replacement. If ¥, denotes the number of
trials needed to find r sites containing food, we have

Loy » if r<e,
N-r—-k\(r+k-1-c
B-k n-r
N-c¢
A~c

r,if r<e,

E[Y.]=

_ 3 N-c+1 .
(r c)A_c+1,1fr>c,

Pr[Y, =r+k]=

, if r>c,

with

and
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0, if r<c,
Var[Y,]=
(r—c)(A—c+1—r)(N——c+1)B, frec.

(A—c+1)*(A-c+2)
We can also define the variable Y) in the following way:
Pr[Y,=r+ k] = APr[Y, = r + k]
+ (1 = APr[Y=r+ k),

where Y is defined as in Equation 7. The expectation and
variance of Y, are easily derived. The most powerful
Z test for these two hypotheses can be determined. In-
deed, with the Z test, we shall reject H,, if

Var(Y)

Y<L,=E(Y)-Z,, ot

Thus,
Ly~E(¥,)
powerpyr(a | H))=F Var(r) /v .
A

If, for example, N = 100, v = 30,and A = 0.2, we find
that the best fixed-number-of-trials protocol experiment
is A = n = 4 with a power of 0.988358. The best fixed-
number-of-successes experiment protocol is 4 = r = 4
with a power of 0.96032. Unlike Example 5, here, the
fixed number of trials protocol is preferable. But even if
a fixed-number-of-successes protocol was to be used,
the best choice of  is not » = 4 = N, as in Example 5.

These two examples are very simple, but they show that
there is no optimal experiment to test the two simple hy-
potheses we presented. The optimal protocol can only be
defined as a function of the alternative hypothesis. To con-
struct a powerful experiment, it is thus important to guess
how animal “memory” will be expressed. A calculation of
power can also be useful to determine the best protocol. A
general discussion of tests of power can be found in Cox
and Hinkley (1982). Conover (1972) discusses a calcula-
tion of power for the Kolmogorov-Smirnov test.

CHOICE OF STATISTICAL TEST

In the past, significance tests of the null hypothesis in
spatial memory experiments were often conducted using
a ¢ test. The ¢ test is a parametric test that uses the sam-
ple variance as the estimate of the theoretical variance.
We have shown that if parametric statistics are to be
used, it is possible to use the Z test since the theoretical
variance is now known and does not need to be estimated
from the data. This provides a more powerful test of the
null hypothesis and also allows us to calculate, a priori,
the sample size necessary to detect a departure from ran-
dom behavior, of any given size. A mean test is not the
only possible solution. If the aim is to test whether animals
search better than at random, we can formulate different
null hypotheses. It is possible to conduct a test on the
mean (Z test), the distribution function (Kolmogorov-
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Smirnov test), or the median (ordinary sign test). These
tests may lead to different conclusions because they do
not test exactly the same null hypotheses. The nonpara-
metric tests are particularly useful in the case of the small
sample sizes that are often used in spatial memory exper-
iments. The Kolmogorov-Smirnov test has two advantages.
First, it is valid for small sample sizes regardless of how
the data are distributed. Second, because it is a goodness-
of-fit test, it is more sensitive than a test of departure
from the sample mean. That is, it is possible that our sam-
ple mean will not deviate from the theoretical mean, but
the animals may still be behaving differently from ran-
dom. A goodness-of-fit test can detect this, whereas a test
of the mean cannot. If Conover’s (1972) method is to be
used, then, unfortunately, the Kolmogorov-Smirnov test
can become difficult, especially if Equation 4 or Equa-
tion 10 is used. As an alternative to the Kolmogorov-
Smirnov test, a more easily implemented and very power-
ful test is the ordinary sign test (Lehmann, 1986). Indeed,
once the median of the distribution is known, this test can
be done by hand using a simple binomial table.

DISCUSSION

In this paper, we provide the mathematical tools nec-
essary to test for departures from random behavior using
any of the described common experimental protocols. In
the past, only tests for a fixed number of samples were
conducted, and then only in cases of sampling without
replacement (using the well-known hypergeometric dis-
tribution). Experiments that were conducted using a
fixed-number-of-successes protocol had to be analyzed
as if they were conducted using a fixed-number protocol,
so that the data were in a form that could be readily as-
sessed with statistics. The results presented in this paper
alleviate this problem. Furthermore, we present results
that allow us to distinguish between sampling with re-
placement and errors that occur when animals are other-
wise sampling without replacement. Whatever the con-
clusion (i.e., sampling with or without replacement), we
have presented tools to test the appropriate null hypoth-
esis. We have also presented results that allow the test-
ing of compound models, as well as a priori calculation
of statistical power that is essential for conducting well-
designed experiments.

Finally, we have described several hypothesis tests in
this paper, but we must be very careful to understand ex-
actly what each is testing. Suppose that we detect a de-
parture from the random expectation, have we really
demonstrated spatial memory? The answer is no. What
we have demonstrated is a departure from the random
expectation, not the mechanism for accomplishing that
departure. For example, an animal’s performance might
be different from the random expectation if it had a site
bias such that it only stored and retrieved food from a
certain area in the experimental arena. Then, a calcula-
tion of random expectation based on all available storage
sites is not appropriate, since the animal only uses some

smaller proportion of the total available. For this reason,
experiments such as that conducted by Kamil and Balda
(1985) are particularly well designed. In that experiment,
Kamil and Balda allowed the animals (Clark’s nutcrack-
ers) to store only in sites selected by the experimenters
(atrandom), but they had to retrieve from among all sites.
In this way, any site bias will not enhance the animal’s per-
formance, and the calculations of random expectation
presented in the present paper will be useful in demon-
strating spatial memory.
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APPENDIX A
Sampling With Replacement

In Appendix A, we derive Equations 4, 5, 6, 10, 11, and 12. Let us start by stating the problem generally.
Suppose that we are sampling from boxes. In some boxes, there is a reward; in others, there is not. Suppose
that when a reward is sampled, it is removed from the box. Suppose further that we judge a sample to be a
“success” if we receive a reward and a failure otherwise. We seek an expression for the distribution function
of the number of successes resulting from sampling a fixed number of boxes. We also seek the expectation

and the variance of this random variable.

Before deriving these expressions, we need to know the distribution of the number of distinct boxes ex-
plored. This is different from the number of boxes explored, in that we are not interested in boxes that have
already been sampled at least once. More formally, we ask, What is the distribution of distinct boxes sampled
in a simple random sample with replacement in a finite population? This is a classic problem that has been
treated within the context of sampling theory by Basu (1958), Raj and Khamis (1958), Chikkagoudar (1966),
and Konijn (1973, chap. IV). This problem was also solved within the context of the “classical occupancy
problem” of “urn models” (see Johnson, Kotz, & Kemp, 1992, p. 418). We give here some results needed for

further developments.

If ® denotes the number of distinct boxes sampled by drawing » samples at random with replacement from

a population of size N, then

Pr@=r]=—N g
(N=r)IN"

where S{ is the Stirling number of the second kind.

E[®]= N(l

E[®(N - ®)]=N(N - 1)(

N-1)"

n-1

Var[(D]=N—+(N—1)(

THEOREM 1

N r=1,...,min(n,N), (AD)
_(N_-l)"). (A2)
NII
(N-D" _(N-2)" ) (A3)
N" N"
N—2)"_(N—1)2”. (A2)

Nn—l N2n-—2

Suppose that we are sampling from boxes with replacement. In some boxes, there is a reward; in others,
there is not. Suppose that when a reward is sampled, it is removed from the box. Suppose further that we judge
a sample to be a success if we receive a reward and a failure otherwise. Let there be A boxes that contain re-
wards and B boxes that contain no rewards (N = 4 + B).

If £ denotes the number of successes in n samples then,

min(n,B+r)
) Pr[§=r]=(A] Ly i!( B sz’, r=0,..., min(n,A). (AS)
r/N" I i-r
(i1) E[£]= A[l - M] (A6)
n n 2n
(i) Var[g]zA[(N “DTHA-DW -2 (V-1 ] (A7)
N N

PROOF. (i) Let @ be the number of distinct boxes sampled. The probability that we obtain » successes in n
samples can be obtained from the hypergeometric distribution by conditioning on ®:
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AY B
Pr[§=r|q>]=£’)[‘l’_“’j

r =max(0,® - B),...,min(P, 4),

and thus,
—p4d
B[] ®]=® .
and
_pAB N-®
Var[§|(I>]—<I>N2 N1

We obtain the unconditional probability by
min{n,B+r)
Prié=r]= Y  Pr[é=r|@=ilPr[®=i], r=0,..,min(n4).

i=r

However, from Equation Al we know Pr[® = /], so we get

min{n,B+r) F_ _
2 rj\i—r N! S(,)

Pl [N) (N=iIN" "

i

min(n,B+r) ;
:(A] 1 2 l![ B ]S:l)a r:o,,,_,min(n,A)-

Pr[é=r]=

n .
rJN i=r i—-r

(ii) We obtain the unconditional expectation from Equation A2:

E[£]=E[E[¢|@]]
o]

=A(1——(N_1)"].
N

(iii) Finally, the unconditional variance can be obtained using Equations A3 and A4:

Var[&]=E[Var[&| @]+ Var[E[¢| @]
_AB 1 AV
_4B 1 (N=1)"=(N-2)"
N N-1 N"

+(i)2 (N-1)) +(N-)(N=2)" (N-D*
N Nn—l NZn—Z
iy (N1 +(A-D)(N=2)" AN-1*

Nn N2n *

N(N—l)[

THEOREM 2

Suppose that we are sampling from boxes with replacement. In some boxes, there is a reward; in others,
there is not. Suppose that when a reward is sampled, it is removed from the box. Suppose further that we judge
a sample to be a success if we receive a reward and a failure otherwise. Let there be 4 boxes that contain re-
wards and B boxes that contain no rewards (N = 4 + B). If 17 denotes the number of samples needed to obtain
exactly r success, then

A , min{4,8) B )
0 Pr[n=r+k]:(r]Nr+k ¥ (i+r—1)!(iij‘:k'_]”, k=0,1,... (A8)
=0
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.. oA min(k.8) glirr-D _

(i1) kg( JN’*" % (i+r- 1)'( ] =1 (A9)
r-1

(i) E[n]= 0%}.. (A10)
iz

' < B+j
i \Y% N
@iv) ar[n]= IZO(A e (A1)

PRroOF. (i) The probability of obtaining the rth success on the n = r + k sample equals the probability that
exactly k failures precede the rth success. This event occurs iff among the first » + k — 1 samples there are

exactly £ failures and the (r + k)th sample results in success. Since the probability of obtaining & failures on
the first » + & — 1 samples is given by Equation A5, we can write

min(k,B)y+r-1 ) (e
Pr[n:r+k]=(r’jl);_ 2 ”(,-_B ljsr(:-)k—lw’ k=01,...,

Nr+k 1 = r+ N
A min(k,B)
=( JNr+k )y (l+r_l)'[ j S k=0,1,....
i=0

(ii) Next, we calculate

= (4 min(k,8) el
zpr[n_r+k] Z( j Z (i+r- 1)1[ ] sl

i=o\r N
A r s
(iR
A ’ B B o0 S(1+r 1)
= —> (i+r-— 1)'[ ) .
[r)N Z i kzl Nt
Since
¢ | q_(N—a-D!
— 5% = , N>a,
Z:,N" k (N=-1)!
we get

= B (4 LB . BYN-i-r)
EOPr[n—r+k]—[rjNi2(1+r—1)!(i)——-—(N_l)!

B
=Y Pr[Y=r+i]=1,

i=0
where Y is defined as in Equation 7.
(iii) Equation A9 can be written
o min(k,B) . ,l
2 N’*" )y (1+r—-l)’( ] S s e —— (A12)
i : w-8-)
j=0

By differentiating Equation A12 with respect to N, we get

o , min(k,B) ( 1) r' r—1 1
i+r— : —
Z V+k) r+k+1 2 (1+r_1)' i r+k—l =7 z

- Mwv-g-52N =577
=0
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Thus,

o0 min(k,B) X r-1
E[nlz(A)Z(”k)r > (i+r—1)’(3)55'+2’:1”=2L.-
r i j=0Ad—J

r+k
=0 N i=0

(iv) By taking the second derivative of Equation A12 with respect to N, we get

2
< (r+k)r+k+1 min(k,B) fore 1 r—1 1 r-1 1
e e e T+ T ——|:
N p = /

k=0 H(N_B_ j=0(N—B_./)
j=0
Thus,
(r+k)(r+k+1)p kB ( ] (i) _ (’1 N ]2 rol
E +1 i +r—-1)! S = +
[n(n+D)]= [ j;o s T GereDU Sl 275 ,-2=0(A 7
So, the variance is given by
r-1 :
Var[] = E[n(n+ D] - B[] -E[n)’ = N Y, —-+
j=0(A—] )
APPENDIX B
Symbols Used Throughout the Paper
Symbol Meaning
A Number of storage sites that contain food
B Number of storage sites that do not contain food
N Total number of storage sites
n Number of storage sites sampled
r Number of storage sites sampled that contain food
v Sample size (i.e., number of animals)
X, Uy, 0'}{ The random variable, expectation, and variance of the number of successes in #» samples
given sampling without replacement
& M, crg The random variable, expectation, and variance of the number of successes in # samples
given sampling with replacement
Y, 1y, 0% The random variable, expectation, and variance of the number of sites sampled until the
rth success given sampling without replacement
1, Uy, OF The random variable, expectation, and variance of the number of sites sampled until the
rth success given sampling with replacement
X Sample mean (over the v animals) of the number of successes in the fixed-number-of
trials protocol
Y Sample mean (over the vanimals) of the number of trials in the fixed-number-of-successes
protocol
NG Stirling number of the second kind
Fo(x) Cumulative distribution function of the null hypothesis for the Kolmogorov-Smirnov test
T- Kolmogorov-Smirnov test statistic
M, Median of the distribution under the null hypothesis
L Random variables representing the number of distinct sites visited in n samples given sam-
pling with replacement
v Random variables representing the number of sites visited more than once in n samples
given sampling with replacement
¢ Random variable representing the number of trials needed to visit exactly r distinct sites
given sampling with replacement
T Random variable representing the number of sites visited more than once that are needed
to visit exactly r distinct sites given sampling with replacement
A Weighting factor for the compound model
w Random variable representing the number of successes in n samples given that sampling
is a mixture between sampling with replacement and sampling without replacement
Z,,Z,_, Quantiles of a standard normal variable
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