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Attention bands in absolute identification

R.DUNCAN LUCE, DAVID M. GREEN, and DANIEL L. WEBER
Harvard University, Cambridge, Massachusetts 02138

If both the number of one-dimensional signals and their range are sufficiently large (about 7 and
20 dB for loudness), the information transmitted in absolute identification is not much increased by
increasing either variable (Miller, 1956; Braida & Durlach, 1972). The data can be represented in terms
of Thurstonian discriminal dispersions in which the variance is proportional to the square of the
signal range in decibels (Durlach & Braida, 1969; Gravetter & Lockhead, 1973), but it is by no means
obvious what sorts of mechanisms would lead to this model. An alternative is proposed, namely,
that there is a roving attention band, about 10 to 15 dB wide, such that signals falling within the
band are represented by a sensory sample size about an order of magnitude larger than when the same
signal falls outside the band. With reasonable choices for parameters, including the subjective
continuum growing as a power function of intensity with an exponent about .3, this nicely accounts
for the data. In an attempt to examine the change of performance with range, we replicated the
Braida-Durlach experiment with many additional points. These data are not, however, adequate to

decide between the two models.

When 10 or more one-dimensional signals are
spread over a sufficiently large range (e.g., 20 dB or
more in auditory intensity), subjects in absolute
identification (AI) experiments do not perform as
well as one would anticipate from data on compar-
able pairs of signals. No satisfactory explanation has
been given. The purpose of this paper is to propose
one.

The earliest systematic evidence demonstrating this
are Garner’s (1953) and Pollack’s (1952) auditory
data, which, together with similar data from other
modalities, were widely disseminated via Miller’s
(1956) classic ‘‘The magical number seven, plus or
minus two: Some limits on capacity for processing
information.”’ Garner used from 4 to 20 pure tones
of intensities spaced equally in decibels over a 95-dB
range. To a first approximation, performance, as
measured by the information transmitted, grows
linearly to about 2.3 bits, after which it remains
constant. The data points are shown in Figure 1.

This is not what one would expect if a Thurstonian
model were correct. If each signal is represented by a
random variable that is independent of the ensemble
of signals used and if responses are determined by
categories whose boundaries lie somewhere between
the mean representations of successive signals, then
the information transmitted should grow much more
steadily.

A recent study by Braida and Durlach (1972)
presents another equally inexplicable, but we suspect
related, finding. In the part of their study of interest
here, they used 10 pure tone signals spaced equally in
decibels over their range, which was varied from
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Figure 1. Information transmitted vs. information input in
loudness absolute identification for a 95-dB range. The input was
controlled through the number of equally probable signals. The
data are from Garner (1953); the figure is from Miller (1956,
Figure 2).

2.25 to 54 dB. Their analysis, described in detail in
the Appendix, involved computing a d’ measure for
successive pairs of signals and summing it over all
10 signals to give an overall measure, A’, of accuracy.
For small ranges it grows linearly, but gradually it
decelerates—see the data points of Figure 2.

Durlach and Braida (1969) had postulated a
Thurstonian model in which the mean scale value
grows linearly in decibels. This implies that A’
should grow linearly with range in decibels, which is
wrong. We have verified that a power function
growth does not predict the data either. To deal with
this, they suggested, as did Gravetter and Lockhead
(1973) independently, that the variance of the signal
representation grows linearly with the square of the
range in decibels. Although partially accounting for
their results—it fails to explain why comparable mag-
nitude estimation (ME) results lie systematically
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Figure 2. Total sensitivity vs. intensity range R (=dB/10) for
loudness absolute identification as reported by Braida and
Durlach (1972, Figure 4d).

below the Al ones (see Braida & Durlach, 1972,
Figure 6f) or why d’ is appreciably larger at the
extremes of the range than in the middle (see their
Figure 2)—we do not consider it a very satisfying
explanation. No reason is offered eitheér as to why
the range should directly affect the variability of the
representation of a signal or as to why it should
be the square of the range in decibels. The account
seems wholly ad hoc. '

AN ATTENTION MODEL

Luce and Green (1972, 1974) have discussed
psychophysical models in which the signal is
represented on each of J channels as indepen-
dent Poisson processes with a parameter u that
is an increasing function of signal intensity.
They have argued that if signals are of sufficient
duration, subjects probably take a fixed sample size
x on each of J channels and use it to estimate the
Poisson parameter, and hence the intensity, by
observing the total time required to get the sample.
This timing behavior is to be contrasted with count-
ing the number of firings during a fixed time interval,
which appears to occur when the signals are very
brief. Later work (Green & Luce, 1974) on ME led us
to propose that the size of the total sample, k = Jx,
may very well not be a constant when the signals span
a sufficiently large range. The intuition is that the
CNS cannot fully monitor all 30,000 peripheral audi-
tory neurons and that it distributes its attention by
fully monitoring a band between 10 and 20 dB at a
given frequency and by monitoring the rest of the
range much less completely. Roughly, we estimated
the two sample sizes to differ by a factor of from 5 to
10. We also were led to suggest that the attention
interval tends to be centered at the location of the
preceding signal, although, by altering the distribu-
tion of signals from a uniform one, this was shown
not to be inevitable.

The last study, along with several others (Luce &
Green, 1972, 1974b), also suggests that the growth of
the Poisson parameter with sound intensity is
approximately a power function with the exponent y
in the range from .15 to .60 over subjects, usually
between .20 and .30. We assume this form.

The following AI model was programmed for
computation.'

(1) The n signals are spaced equally in decibels

over arange of R dB.

(2) Each signal is equally likely to be presented.

(3) The attention interval is A dB wide independent
of its location.

(4) If a signal lies outside the attention inverval,
the sample size is K; if it lies within the interval,
the sample size is K, (K, > Kg).

(5) The Poisson parameter is a power function,
with exponent y, of the ratio of signal intensity
to threshold intensity.

(6) Category boundaries are located at the geo-
metric mean of the Poisson parameters of suc-
cessive signals.

(7) The subject responds by giving the category
number containing the estimate of the Poisson
parameter computed from the sample.

Let PG| I) denote the probability that the
response to the signal of intensity I;,i = 1, - - -, n,
is category j or less when the sample size is K,,m =
0,1. Using the normal approximation to the gamma dis-
tribution and defining

IR( .1
8G,j) =1 - 10"—‘( ! 2), 1)

it is easy to see that

. ~ (Km8.)
PGl =7 ®0,1), m=0,l Q)
where ¢(0,1) denotes the normal density with mean
0 and variance I. Since a randomly presented signal
falls in the attention interval with probability A/R,
we see that average response probability is

P.GIIDR + PG IT) (1 -3) A<R

_ R
PGIL) = (3)
PGl I, A2R.
And the information transmitted is given by
- PGl
= Iy B !
T= nzlzj P( | I))log, i)_(J) . 4)

If we convert these average probabilities into z scores
and substitute into Equation § of the Appendix, we
compute Braida and Durlach’s A’.
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FIT OF THE MODEL TO DATA

The parameters n and R are determined by the
experiment. This leaves the parameters A, K,, K,
and y to be estimated; however, we were limited in
our choices by earlier estimates of all of them. On the
basis of ME data for loudness, we felt that A should
lie between 10 and 20 dB; K, should be in the range
10 to 30, and K, in the range 60 to 200; and on the
basis of a number of different auditory intensity
experiments, we felt that the average value of y
should lie between .2 and .3. With these constraints
in mind, we attempted to fit both the Garner and
Braida-Durlach data. The former was easily fit well,
as can be seen in Figure 3. The latter proved to be
much more tricky, and the estimates are much less
sure. The problem is illustrated by the two sets of
parameter values shown in Figure 4.

The growth of the theoretical A’ with R is
nonmonotonic: for ranges up to the attention band,
the growth is linear, after which there is a rather
sharp drop followed by a more gradual rise. The
nature of the fall and rise depends primarily on
K./K, and y. The data points are simply not
sufficiently closely spaced in the region of our
estimate of A (and are averaged over three subjects)
to be able to test the predicted dip of the theory.

We mention two further aspects of the Braida-
Durlach data in relation to this model. First, they
found for each range that the values of d’ near both
the least and the most intense signals were larger than
in the midrange. They refer to this as an ‘‘edge
effect.”’ We would expect this if the attention interval
were not distributed uniformly over the range, but
rather tended more often to be located at the maxi-
mum and minimum of the range. Why this should
happen is not, however, clear.

Second, the curve of A’ computed from ME lies
appreciably below that from AIl. In discussing
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Figure 3. Garner’s data as fit by the model described in the
text with the four parameter values shown,
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Figure 4. Braida and Durlach’s data as fit by the model with
two sets of four parameter values.

sequential and drift effects in magnitude estimation,
Luce and Green (1974a) were led to postulate that
the sample size in ME is half of that in an Al
experiment because in order to carry out the com-
putations of ratios on successive trials the subject
computes two independent estimates of each signal.
This means that the standard deviation of the esti-
mate is 1/v/2 larger than in Al, which accounts for
the observed difference. Usually, feedback is used in
Al and not in ME, and so it is often thought to
account for the differences in observed variability;
however, Braida and Durlach did not employ feed-
back in either the Al or the ME experiments used
for this comparison.

ABSOLUTE IDENTIFICATION AS
A FUNCTION OF SIGNAL RANGE

Since the attention band model suggests some
rather perculiar behavior for ranges between 10 and
20 dB and since the Braida-Durlach data are not very
detailed in that region and are averaged over subjects,
we decided to replicate their experiment with more
values of the range, especially in that region,
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Procedure

Four observers, all Harvard students, were run individually or
in groups of two or three in a quiet room. They were paid $2.25/h.

Each intensity range was centered at about 60 dB SPL, and
the 10 signals were equally spaced in decibels. The signals, which
were delivered binaurally through TDH-39 earphones, were
1,000-Hz, 500-msec tones. A digital attenuator controlled the
intensity values. The minimum step on the attenuators was
0.25 dB. For all stimulus ranges, the center of the range was as
near 60 dB as could be achieved, 60+0.125 dB.

Usually, the same range was used throughout the 1,200 trials
of a 2-h session, and it was never changed in less than 600 trials.
A brief rest was provided after every 100 trials and a longer one
after every 300. Prior to each block of 100 trials, each signal was
identified by the numbers 1 through 10 as they were each presented
twice in ascending order. For each range, each signal occurred
about 120 times.

The observers responded by using a single digit on a 16-key
calculator keyboard; they could alter their responses which were
displayed visually, prior to registering them. The same electronic
display also served to indicate the signal interval and to provide
information feedback. All experimental operations were controlled
by a PDP-12 computer, which paced the experiment to the group
response.

Observer D.W. had 9 weeks and the other three observers had
2 weeks of training in an absolute identification task involving six
intensity levels; and then they had 3 days of practice on the
10-signal, 4.5-dB range.

Results

In working with these data in relation to the two
models, we concluded that it is unwise to use the A’
measure because it is too unstably influenced by
estimates of small probabilities. So we have confined
our analysis to the amount of information trans-
mitted, which for the attention band model exhibits
the same qualitative characteristics in somewhat
attenuated form.

The Braida-Durlach model predicts

T = R(BR? + C) ™%,

where R is the range in bels. We selected B and C so
as to minimize

m %
1 2

RMS ={_2 (To;— Tp,j ,
5 X (Toi=Tp)

where T, ; and T ; are the observed and predicted
values of the ianormation transmitted for the ith
range.

The equations for the attention band model were
given above. As there are four parameters, y, A, K,,
and K, we used a slightly less than optimal procedure.
For each of several plausible values of A, we searched
for triples of y, Ko, and K, that yielded a minimum
RMS value; however, we only searched in regions
suggested by other estimates of such parameters
(these were mentioned above). We found that the
data pretty well determined the ratio K,/K,, but with
that held fixed various K,, y pairs were about equally
satisfactory. Thus, the choice of parameters actually

Table 1
Parameters of the Attention Band and Braida-Durlach Models
and RMS Measures of Goodness of Fit to Absolute-
Identification Range Data

Sub- Attention Band Braida-Durlach

ject A A K, K, RMS B C RMS
DM. .271 15.8 26 78 .087 .193 92.8 .101
1C. 275 16.8 18 72 075 .259 824 .076
DW. .258 10.1 11 130 .096 .500 734 .144
J.R. .330 83 11 116 .120 .478 51.5 .093

given is somewhat arbitrary. Finally, we selected that
value of A which gave a minimum RMS value, where
we only looked at A values which were plausible
from a plot of the data.

The resulting estimates and RMS values are shown
in Table 1, and the data and theoretical curves are
shown in Figure 5. In terms of RMS values, the
attention model has a slight edge, especially since
the estimates are not fully optimal; however, it has
two more parameters. It is exceedingly difficult to
tell whether the data have a cusp as predicted.

Although the two models appear about equally
satisfactory in accounting for the anomolies in
absolute identification data when the range is large,
we would argue that the attention band model has
several points in its favor and certainly bears more
investigation. First, it provides a way of accounting
for the edge effect in absolute identification data
(a tendency to locate the band at the extreme values)
and for the responses in magnitude estimation to be
less variable when a signal is close to the preceding
one (a tendency to locate the band at the last signal).
Second, it is conceptually similar to the critical band
concept for frequency, and we must entertain the
hypothesis that they are two aspects of the same
phenomenon. The tuning curves of the auditory
system, for example, suggest that only some small
subset of fibers is maximally sensitive to changes in
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Figure 5. Information transmitted as a function of range for
four observers together with theoretical predictions of the atten-
tion band model (solid line) and the Braida-Durlach model (dashed
line). The parameter values shown are for the attention band
model.
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frequency from a given frequency and intensity. It
therefore makes sense for the central nervous system
to monitor intensively this group of fibers. Similarly,
a particular subset of fibers is maximally sensitive
to changes in intensity at a given frequency and
intensity. And so these subsets may also receive
differential treatment in intensity discrimination.
And third, it seems to us intuitively more satisfactory
to have range play an indirect role in the variability
of stimuli—increasing the probability that a signal is
represented by a small sample—than to postulate a
direct effect of range, as in the Braida-Durlach
model.

A referee pointed out that in not running a very
large range—say 90 dB—we missed an opportunity
to test a major difference between the models. Ours
predicts that the value of information transmitted
grows slowly with large R, whereas the Braida-
Durlach model is nearly asymptotic by 50 dB. There
is, nonetheless, indirect evidence favoring our model.
For our four subjects, the average maximum informa-
tion transmitted is about 1.7 bits (Figure 5), whereas
the Garner data for R = 95 dB and n = 10 is about
2.2 bits (Figure 1). The difference may be sub-
stantially larger than this for the following reason.
The parameter values used to fit his data are y = .2,
K, = 16, K, = 100, which produces a curve sub-
stantially below those of subjects D.M. and J.C.,
which are the two with comparable values of A, and
so we suspect that had we the relevant data on his
subjects they would be substantially below 2 bits at the
50-dB range. This suggests that there is continued
growth with range, but clearly the data should be
collected to show this.

While the preceding summarizes our arguments as
to the virtues of the attention band hypothesis, we
must report another analysis of the data that reveals
a difficulty in applying it to absolute identification
data. The analysis was motivated by a finding in
magnitude estimation data, that the coefficient of
variation is smaller by a factor of three when the
intensity of the preceding stimuli is near the intensity
of the present stimulus rather than far. This suggests
that we measure in these experiments the percentage
of correct judgments conditional on the decibel
difference between the present and preceding stimuli.
Presumably, if the attention band is located near the
last stimulus and the present stimulus is not very
different from it, a large sample size results and a
higher percentage of correct categorizations should
result than if the present stimulus is far from the pre-
ceding one. The results did not exhibit this pattern,
except, perhaps, for one of the four subjects. Even at
the largest ranges employed, the percentage of correct
responses was often about the same when successive
stimuli were within 10 dB as when they were more
than 20 dB apart. The major effect is that the
extreme stimuli, especially the louder ones, had a

higher percentage of correct responses. This means
either that the attention hypothesis is wrong or that
factors other than the value of the previous stimulus
control its location.

APPENDIX
THE BRAIDA-DURLACH METHOD OF ANALYSIS

Let I,, - -, I, denote, in ascending order, the n
signal intensities of a pure tone; I, was always fixed at
86 dB SPL. Braida and Durlach’s (1972) primary theoretical
quantity, called the cumulative sensitivity function d'(I;I,),
is the distance between the means of the RVs associated
with I, and I normalized by their common standard
deviation. Because d' is obviously additive in their model,
they never actually estimate d’(I;I,) but rather a quantity,
which for clarity we may denote as

i-1
d*(I;,1,) = .Zl d’' (I + u15). (5)
1=

Throughout their paper, the discussion is in terms of the
primed quantities; however, all estimates are actually of
starred quantities. This distinction does not matter if their
model is correct, but does otherwise.

They estimated d* by first averaging the z scores over all
relevant response categories for adjacent stimulus inten-
sities and then adding these estimates:

n-1

1
(AT 2, ) - Al ©)

. i-1
) = 2
k

where pj is interpreted as the category boundary separating
the jth from the (j + 1)st response, and because of the equal
variance normal postulate, zy(pj) is defined by,

2 (py)

PGlIy = J__ " ®0,1). )

To be completely precise, they omitted from Equation 6
all terms involving values of z for which | z | > 2.33, which
corresponds to P values <.01 and >.99. This surely intro-
duces a bias in the results; judging by some calculations
reported in the Appendix of their paper, it is not very
serious.

Two other quantities, also of interest, are:

A’ = d'(Ig,1,) and A* = d*(Ip,1.).

Some of their empirical results can be summarized as
follows:

(1) Plots of d*(I;,1,) vs. log I; are approximately linear,
but with some deviations which they attribute to deviatious
from logarithmic assumption and to an edge effect
[Figures 1d, 3a, 3b, 4a, 4b of Braida and Durlach (1972)].

(2) The above plot is relatively insensitive to the number
n of signals used and their actual distribution so long as
the range is fixed (Figures 2 and 3).

(3) The plot of A* vs. range in decibels is an increasing
function that appears to be approaching an asymptote
(Figures 4d and 6f). -
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(4) Magnitude estimation data, which are analyzed in an
analogous way, yield qualitatively similar results; however,
the function relating A* to range is systematically below
that for absolute identification (Figure 6f).

It should be noted that by estimating d’ by the
necessarily additive d*, they assume, but do not test, that
d’ is additive. In an appendix, they explore how sensitive
their empirical function is to the equal-variance, normaiity
assumption of their Thurstonian model, and they find that
it is relatively insensitive. Thus, the data are, in fact,
consistent with a number of alternative models.
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NOTE

I. We express our thanks to Stephen Burbeck and Brian
Wandell. who wrote the computer programs and carried out all of
the computations reported.
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