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Evidence of hierarchies in cognitive maps

STEPHEN C. HIRTLE
State University of New York at Albany, Albany, New York

and

JOHN JONIDES
University of Michigan, Ann Arbor, Michigan

Previous research suggested that the apparent hierarchical organization of landmarks in an
environment will influence subjects' judgments about spatial characteristics of that environment.
We extended this previous work to a natural environment that has no predetermined, well-defined
hierarchical structure. Using an algorithm that generates a hierarchy oflandmarks from recall
protocols, we constructed hypothesized clusterings oflandmarks for a set of subjects familiar with
the space. Then we tested these hypothesized clusters in a series of tasks, all of which required
judgments about distances in the space. The results of these tests suggest that subjects do cluster
landmarks on the basis of nonspatial attributes, and that the clusters have consequences for per­
formance in various tasks that require access to spatial information.

Create an image of the neighborhood in which you live.
When you do this, some buildings and streets are included,
whereas others are ignored. The selection of which land­
marks to include in the image of a neighborhood is surely
based on at least two criteria. One is the spatial proximity
of the landmarks. Landmarks that are close together are
likely to be represented together. But we speculate that
your choice is based on more than just spatial proximity.
We suspect that non-Euclidean information also influenced
your selection oflandmarks. A typical person's introspec­
tive image of Ann Arbor, Michigan, for instance, may
have the farmer's market, the train station, and the Broad­
way bridge form a subjective group. To be sure, these
three landmarks are not far from each other physically.
But Euclidean proximity is not the only variable that may
underlie subjective organization: The Bell Tower and State
Street in Ann Arbor are as close to each other as the other
three landmarks, but they are not subjectively part of the
same neighborhood. These introspections lead us to
hypothesize that cognitive maps represent not only spa­
tial information, but also information about some nonspa­
tial characteristics, such as subjective clusters of
landmarks.

Of course, we need not rely solely on introspections
to support this conclusion. There is evidence that impli-
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cates both the spatial and the nonspatial character of men­
tal maps. On the spatial side, various experiments have
shown that both distance and relative location are well­
preserved in mental representations of physical space
(Baird, 1979; Golledge & Zannaras, 1973; Jonides &
Baum, 1978). Thus, some aspects of these representations
may be adequately modeled by a two-dimensional space
that is consistent with a Euclidean metric.

But further evidence indicates that these representations
are more complex, since not all results can be predicted
by a purely geometric model. For example, Cadwallader
(1979) found three nonmetric results in the performance
of subjects: (1) Rank orders of category judgments and
magnitude judgments of distance correlated nearly .70 ac­
cording to Kendall's Tau, (2) over half of the subjects
were intransitive in at least 1 ono trials, when they judged
which of two distances was larger, and finally (3) only
259 of 1,500 estimates were symmetric, with some asym­
metries as great as 40%. Unfortunately, because Cadwal­
lader did not provide baseline performance data for any
of the tasks, it is not known whether the differences
reported were consistent biases or random error. Still, the
data suggest cause for concern about models whose
representations of distance are based on purely spatial
factors.

Further concern about such models is elicited when one
explicitly recognizes the influence of cognitive variables
in the representation of distance. Consider first the demon­
strated effects of reference points. Sadalla, Burroughs,
and Staplin (1980) found distance judgments between a
reference point (a highly salient landmark) and a nonrefer­
ence point to be asymmetrical, with distance from a refer­
ence point estimated as being smaller than the converse.
Furthermore, Holyoak and Mah (1982) found that dis­
tances are judged differentially depending on their prox-

208



imity to a reference point. Specifically, distances near a
referent are overestimated.

There are other cognitive effects on distance judgments.
Sadalla, Staplin, and Burroughs (1979; see also Sadalla
& Staplin, 1980a) found that a route containing high­
frequency names is estimated as being longer than a route
containing low-frequency names, but that prompting for
the names eliminates the difference. Several studies have
shown effects of familiarity, preference, and function on
distance judgments (e.g., Briggs, 1973; Canter & Tagg,
1975), whereas others have shown that various inciden­
tal physical features of a space can alter judgments. For
example, Sadalla and Magel (1980) found that routes with
more turns are estimated to be longer than comparable
routes with fewer turns. And Sadalla and Staplin (1980b)
found that routes with more intersections were estimated
to be longer than those with fewer intersections.

What we have, then, is an emerging picture of some
spatial and nonspatial variables that playa role in the men­
tal representation of physical space. This evidence rules
out the possibility that an adequate model of a mental map
can be built around a strictly Euclidean conception. As
an alternative, consider a model proposed by Stevens and
Coupe (1978), in which spatial areas are arranged hier­
archically, so that judgments across clusters require
knowledge of spatialarrangements within each cluster plus
knowledge of the spatial arrangement of the superordinate
structures. According to their model, processing in a spa­
tial task is assumed to be a function of both spatial mea­
surements and nonspatial (hierarchical) components. The
evidence that favors this model comes from two sources:
studies of hierarchical structure, and studies of the in­
fluence of barriers on spatial judgments.

Effects of Hierarchies
Direct evidence for hierarchical structure in cognitive

maps comes from the experiments of Stevens and Coupe
(1978). They observed that systematic errors occur in
making directional judgments. For example, most sub­
jects judge Reno, Nevada, to be northeast of San Diego,
California, even though it is actually northwest. Similarly,
Seattle is typically judged to be southwest of Montreal
even though it is, in fact, northwest. In each case, ac­
cording to Stevens and Coupe, the superordinate relation­
ship produces incorrect judgments. For instance, in the
first example above, subjects know that Nevada is east
of California (perhaps by virtue of knowing that Califor­
nia has a coastline on the Pacific, whereas Nevada does
not), and they use this knowledge about superordinate lo­
cation to help in the judgments about subordinates. This
bias, furthermore, occurs both for real-world locations
and for those learned from artificial maps in the
laboratory .

Further evidence of hierarchical clusters in cognitive
maps can be seen in studies comparing within- versus
across-cluster judgments. When measuring the time to
verify directional statements, across-cluster judgments are
made consistently faster than identically distant within­
cluster judgments (Wilton, 1979). Furthermore, congruity
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effects appear for within-cluster but not for across-cluster
judgments (Maki, 1981). Finally, priming occurs for ci­
ties within states, but not for neighboring locales (Stevens,
1976). For example, a judgment about which of the pair
Ohio and California is farther west facilitated a judgment
about Cleveland and San Francisco, but not a judgment
about Indianapolis and Reno. A spatial scanning model,
unlike a hierarchical model, would have predicted that
both pairs should be facilitated, given an appropriate
control.

Extending the notion of clustering to a poorly differen­
tiated area, Allen (1981) found that across-cluster dis­
tances were judged to be consistently longer than identi­
cal within-cluster distances as measured through a
forced-choice task. However, the error rate was extremely
high, with over 60% misclassification of distances at a
1:3 ratio. Thus, it is unclear if the results were due to
an incorrect perception during the original learning or to
an extremely strong clustering effect during the recall.
In either case, the presence of boundaries altered the dis­
tance judgments.

To summarize, then, there are three basic clustering
results. First, orientation judgments across clusters are
both facilitated and biased by the superordinate relation­
ship. Second, judgments can be facilitated by priming
within a cluster. Third, distance judgments and the time
to make distance judgments are influenced by cluster
boundaries.

Effects of Barriers
A second source of evidence of clustering comes from

studies on the effects of barriers. The primary dependent
measure in barrier studies has been the judged distance
between landmarks, either measured directly or derived
from rank order data. Although the results of barrier
studies are mixed, the general effect of barriers is that
distances across barriers are overestimated in contrast to
comparable distances that do not cross a barrier. Con­
sider the following sources of evidence.

Kosslyn, Pick, and Fariello (1974) found that distance
estimates between locations that crossed a barrier were
exaggerated, when the distance estimates were extrapo­
lated from rank order data. In a similar study, Newcombe
and Liben (1982) also found exaggeration with rank order
data but not with visual estimates. Cohen, Baldwin, and
Sherman (1978) found overestimates across barriers
within a summer camp when they used magnitude esti­
mation, but found mixed effects when they used a recon­
struction task. Thorndyke (1981) replicated the primary
finding on a larger scale by demonstrating that "clutter"
between cities increases estimated distances. All of these
studies are consistent with a hierarchical model of the
representation of space. All one need assume is that bar­
riers create superordinate clusters whose distance from
one another is exaggerated.

To summarize, then, one could argue that it would be
a serious error to characterize the mental representation
of physical space as a Euclidean survey map. Instead,
there is experimental evidence showing that, in addition
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to acquiring spatial knowledge of an environment, one
also acquires information that is used to build a multilevel
structure of the space. This structure includes hierarchies,
reference points, distance knowledge, and semantic in­
formation about landmarks in the space (see also Hirtle,
1985).

The goal of the present experiment was to extend this
model to account for the mental representation of spaces
whose landmarks do not fall into well-defined clusters.
Previous work by Stevens and Coupe (1978), Mak (1981),
Witon (1979), and others has established the viability of
a hierarchical model for spaces in which the hierarchies
are unambiguous and are indicated clearly by obvious fea­
tures in the stimuli (e.g., state boundaries). This was a
useful beginning, since a failure to implicate hierarchical
representations for such clear hierarchies would have cast
serious doubt on the viability of this class of models. Hav­
ing established this, though, it is appropriate to extend
the application of these models to spaces in which a
hierarchical organization may besuspected, but not clearly
demonstrated.

In an important sense, our goal is much like the goal
of memory researchers who have tried to implicate the
use of organizational processes in the encoding, storage,
and retrieval of verbal material. Here also, the first suc­
cessful experiments included materials whose organiza­
tional structures were unambiguous (e.g., instances of
items from a small number of well-defined categories).
Later work then extended these early findings by develop­
ing methods of testing for subjective organization of ran­
domly selected items, and by demonstrating that the struc­
ture of subjective organization had implications for
performance in various tasks, such as free recall.

We have used this parallel between spatial and verbal
memory as a heuristic to guide our present research. The
first aim of our experiment was to measure subjective
clusters for a real space whose cluster organization was
not obvious. Then we collected data from performance
tasks that required absolute and relative judgments of dis­
tances to test whether the subjective organizations that
were uncovered had psychological reality as representa­
tions that were used in various tasks.

METHOD

Background About the Ordered Tree Algorithm
General description. Before describing the methodology of our

study in detail, including the performance assessments of cluster­
ing, we find it worthwhile to review the procedure by which we
assessed subjective organization (McKeithen, Reitman, Rueter, &
Hirtle, 1981; Reitman & Rueter, 1980). Although this procedure
has proved to be successful in revealing underlying organization
for verbal material, its use with spatial memory is novel.

The technique was developed to explain regularities in free-recall
data, in contrast to earlier clustering algorithms based on similari­
ties (e.g., Johnson, 1967). In the context of free recall, subjects
carefully memorize a list of items and then recall the items repeat­
edly, each time starting with any item and proceeding in any order.
The input to the analysis algorithm consists of these recall protocols.
The algorithm's output is a structure known as an ordered tree, an
example of which is shown in Figure 1. The tree represents clusters

Recall Orders

l.abcdefgh

2. h g de feb a

3. g h d e f b c a
4. c bad e f h g

abcdefgh

Figure 1. Tree diagram for < (a(bc» [def] (gh)».

that the algorithm has uncovered from the recall orders. The clusters
may be of one of three types: (1) unidirectional, in which items
are recalled in only one order, (2) bidirectional, in which items can
be recalled in one order or its inverse, or (3) nondirectional, in which
there is no restriction on recall order.

The rationale for the analysis algorithm is to recover an internal
structure that is modeled by an ordered tree. The basic assumption
is that the obtained recall orders are a sample of all possible orders
that may have been produced by a particular tree given that infor­
mation can be properly represented by a tree and that all the items
from one cluster are recalled before the subject moves on to another
cluster.

The ordered tree algorithm proceeds by examining the recall
strings for items that are recalled contiguously, regardless of order.
These clusters, both discrete and overlapping, are then written into
a lattice, and, finally, the lattice is written as a tree (the tree can
also be represented as a series of parenthetical expressions, where
square brackets {I ]} indicate unidirectionality, angle brackets {<
>} indicate bidirectionality, and parentheses {( )} indicate non­
directionality). The structure within a lattice can imply that a cluster
is either nondirectional or directional. Of the directional clusters,
to distinguish bidirectional from unidirectional, the individual strings
are examined to determine whether both orders or only a single
order actually occurs. In the example of Figure 1, DEF is unidirec­
tional, with the order indicated by the arrow.

There is one final note to offer on the algorithm. A variety of
strings are needed to adequately sample the tree. In order to in­
duce variety, subjects are cued with various items. That is, they
are asked to recall all items, but to start with the cue and those that
go with it. Because cuing presumably disrupts the tree structure,
the algorithm examines only the uneued portion of cued trials for
both clusters and ordering information.

Application to cognitive maps, Previously, the ordered tree al­
gorithm has been applied to memory organization for common
words, computer programming keywords, physics symbols, and
college course keywords (McKeithen, Reitman, Rueter, & Hirtle,
1981; Reitman & Rueter, 1980). In order to apply the algorithm
to cognitive maps, we required data consisting of linear orders of
landmarks in the space. We obtained these in much the same way
that previous experimenters who used the algorithm had: Subjects
were asked to memorize and recall landmarks in central Ann Arbor
consisting of 24 buildings, 2 plazas, 4 streets, a bridge, and a river,
for a total of32 landmarks. These are shown in Figure 2. Subjects
were then asked to recall the landmarks a total of 14 times, for which
10 of the recall protocols were cued with various landmarks.

Unlike the states or countries previously studied, the area studied
has no predefined hierarchies or strict boundaries. However, several
intuitive regions can be identified: a Central Campus area surround­
ing the Diag; a downtown area centered on Main 51.; a Medical
Center surrounding the University Hospital; and the Farmer's Mar­
ket area.

Although most Ann Arbor residents would recognize these neigh­
borhoods, the exact number of neighborhoods recognized and the
corresponding boundaries fluctuate with individuals. Liberty Plaza
is seen by some as being properly included in the downtown sec­
tion and by others as being near Campus. CCRB, a recreation build-
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Figure 2. Map of central Ann Arbor indicating the relative locations of landmarks.

ing, is considered by some to be in the Medical Center and by others
to be in the Central Campus.

In addition, where one lives or spends time influences the per­
ception of space. Medical students might represent the University
Hospital in a way very different from that of nonmedical students.
Those who use a car as their primary mode of transportation seg­
ment areas differently from those who primarily walk. Thus, it is
crucial that the analysis be performed individually, defining a
separate tree for each subject.

Design
The subjects participated in a series of tasks. Day I of the ex­

periment consisted of having subjects memorize the stimuli, produce
the free-recall protocols, and construct maps of the landmarks. Day 2
consisted of a speeded classification task and a nonspeeded distance­
judgment task. The subjects were run individually on both days.
The subjects returned 6 weeks after the first pair of sessions to repeat
the free-recall task in order to assess the stability of the clusters.

Subjects
Six female University of Michigan undergraduates (seniors) and

graduate students, ranging in age from 21 to 30 years, participated
in the experiment. All subjects had spent at least 2.5 years on the
Ann Arbor campus and had used walking as their primary mode
of travel in and around the campus and downtown areas. The sub­
jects, each of whom was pretested for knowledge of buildings in
the town, were chosen from a voluntary subject pool and were paid
$14.00 for a total of 4 h of participation.

Ann Arbor. The final 32 were chosen to span four subjective neigh­
borhoods: Downtown, Central Campus, Farmer's Market, and the
Medical Center. These neighborhoods overlap to a large extent and
were chosen only to provide a heterogeneous space. We neither
tried to induce these neighborhoods, nor did we later uncover con­
sistent clusters among these four groups. The subjects were pretested
on a subset of these buildings, along with a few landmarks not part
of the recall set, in order to assess their knowledge of Ann Arbor.

Distance judgment tasks. Triplets of points were created by
assigning two anchors to a target, such that the distances to the
anchors from the target were approximately equal and such that
the anchors were in different directions from the target. Thus, two
matched pairs were created from each triplet (target to Anchor 1,
and target to Anchor 2), with the three points forming an isosceles
triangle. The 64 pairs thus classified included distances that ranged
from 173 to 895 m. The short pairs, of which there were 28, were
less than 427 m, and the long pairs, 36 in number, were greater
than 527 m. The standard that served as the criterion to discriminate
short from long pairs was defined as the distance (466 m) between
two particular buildings that were located in the center of the space,
but that were not part of the recall set. Another 8 pairs, meeting
the above distance constraints, were added to the 64 key pairs to
form a test set of 72 pairs. An additional 48 pairs constituted a prac­
tice set. The practice and test pairs were randomized separately.
The sets were randomized twice, once for the relative distance judg­
ment task and once for the distance estimation task. The randomi­
zation occurred with the constraint that no landmark appear in the
same position on consecutive trials.

Stimuli
Memory task. The landmarks shown in Figure I were gener­

ated by asking a set of judges to name all prominent landmarks in

Procedure
Pretest. The subjects were first asked to fill out a questionnaire

that was used to determine their familiarity with a list of landmarks
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in Ann Arbor. These data were collected for future studies and were
not analyzed. Next, the subjects were shown individual color photo­
graphs, in which any identifying signs had been blackened, and were
tested for knowledge of the landmarks used in the experiment. Each
photograph had a red X indicating a building that the subjects had
to identify. The X also marked a location on the building that was
to be used as the referent for later distance judgments that subjects
made. In each case, the X marked the main entrance, if there was
one, or the center ofthe building, if there was not a main entrance.
The subjects were required to identify correctly all buildings in order
to continue with the task.

Memory task. The subjects were given 3 x 5 cards with the name
of a landmark on each one. They were instructed to memorize the
32 stimuli with two goals in mind: to be able to recall each item
and to be able to sketch a map locating each item. It was stressed
that no omissions would be allowed during recall or map drawing.
The subjects were instructed to spread the stimulus cards out on
the table for memorization, and they were told that sorting the stimuli
alphabetically would be disadvantageous for map drawing.

Free recall. The free-recall session consisted of 14 trials, 10 of
which were cued with preselected cues. The subjects were first re­
quired to complete two consecutive perfect free recalls before be­
ginning the cued trials. The remaining two free recalls occurred
on Trials 8 and 14. On cued trials, the subjects were instructed to
start recall with the cue and those landmarks that went with it, recall­
ing all the objects in the recall set. 1 The cues were presented ver­
bally. All recall protocols were recorded on cassette tape.

Map drawing. Having completed the free recall, the subjects
were requested to draw a map from memory four times, starting
wherever they wished on a blank sheet of 8 1/ 2 x II in. (21.6 x
27.9 em) white paper. Finally, the subjects were requested to con­
struct a map of only the 26 buildings and plazas, on a 91-cm-square
sheet of paper, using wooden blocks, on each of which was printed
the name of a landmark. The construction task differed from the
map-drawing task in both reducing the memory load and allowing'
easy alterations in placement.

Relative distance judgment. For this portion of the experiment,
the subjects sat before a CRT controlled by a PDP-I 1/34 computer.
A total of 120 pairs of landmarks, including the 64 key pairs, was
tested. The subjects classified distances as being close or far as com­
pared with a standard that was the distance from the Rackham Build­
ing to the Graduate Library (466 m). Pairs were presented individu­
ally in the following way: The word READY appeared for I sec,
followed by a .5-sec pause, and then the name of the first land­
mark. After 4 sec, the name of the first landmark disappeared. There
was a .5-sec pause, and then the name of the second landmark ap­
peared. The subjects were instructed to respond quickly, but ac­
curately, after the second landmark had appeared. The response
CLOSE was given by depressing a key with the left index finger,
and the response FAR was made with the right index finger on
another key. The next trial began after a 4-sec intertrial interval.
If an incorrect response was made, the first 1 sec of the intertrial
interval contained the message ERROR. Immediate error feedback
was given as an incentive to attend to the question. Cumulative feed­
back about accuracy and speed was given after every 12th trial.
The pause between blocks of 12 trials also provided subjects with
a self-paced rest period.

Distance estimates. The same 64 key pairs, plus 28 practice pairs,
were presented individually on the CRT screen. Both names ap­
peared on the screen, followed by an entry space for the answer.
The subjects typed a response from I to 100 (indicating a distance
magnitude estimate) on a numerical keypad, and then pressed a
return key to enter the response. Trials were subdivided into 20
trial blocks, interrupted by rest periods. The subjects were under
no time constraints for this task.

RESULTS

As discussed above, the experiment had two goals:

(1) to infer individual subjective organizations for land­
mark clusters using the ordered tree algorithm, and (2) to .
provide evidence from the performance tasks that could
test whether the inferred subjective organizations playa
role in a variety of actual judgmental situations. We shall
report the results for each of these aims in turn.

The Ordered Tree Algorithm
Original testing. The free-recall data were used to

generate trees individually for each subject. This raises
a sampling problem, however. The total set of recall pro­
tocols that each subject generated are but a sample of the
total population that could be generated from any tree,
in many cases a small sample. Consider Figure 1, for ex­
ample. There are 16 possible recall orders that can be
generated from this tree, four of which are illustrated.
It is possible, because of such factors as lapses of atten­
tion, that a subject may occasionally recall a string that
cannot be generated by a particular tree, even though that
tree may actually be a reasonable model of that subject's
memory representation. Unfortunately, the ordered tree
algorithm, being deterministic, has no patience for this
sort of thing. It will always construct a tree that is con­
sistent with all recall protocols of a particular set. We im­
plemented a procedure, jackknifing, to guard against this
intransigence of the algorithm. Under this procedure, each
recall string was individually deleted from the set of
strings of a subject. Then a new tree was constructed, and
we calculated the total number of unique strings that it
could possibly generate. This number (actually its
logarithm, called PRO by Reitman & Rueter, 1980) was
compared with the comparable figure when all strings
were included in the original set of recall protocols. If
there was a substantial difference either in PRO for these
trees or in the height of the trees (number of intermedi­
ate nodes), we deleted the outlying string. 2 The jackknife
procedure resulted in discarding three strings for one sub­
ject, two strings for another subject, and one string each
for three subjects. One subject had no strings deleted. The
resulting jackknifed trees are shown in Figure 3.

Even casual observation of the trees reveals that there
is a striking similarity in clusters across subjects. For ex­
ample, four landmarks-Huron River, the train station,
the Broadway bridge, and the Farmer's Market­
frequently appear in the same cluster. Although at no point
do we analyze data across subjects, we expected similar­
ity of this sort. To us, the consistency across subjects sug­
gests that the structures uncovered by the ordered tree al­
gorithm reflect actual clustering in the representations that
subjects have of this space. The similarity arises because
different individuals tend to interact with and perceive an
environment somewhat similarly (at least if they have a
good deal in common, as do students).

Retesting. There is yet another way to assess whether
the obtained cluster organizations reflect lasting represen­
tations of the space. We had subjects return 6 weeks after
initial testing to generate a new set of recall protocols (one
subject had since left school).
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Figure 3. Individual ordered trees derived from the recall data of each subject.
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where Sand T are two trees, Rx is the set of chunks in
tree X, and I I denotes cardinality of the set.

The measure is calculated by dividing the number of
chunks in common by the total number of chunks in the
two trees. The logarithmic transformation is included be­
cause the growth of chunks is not linear. Although there
is some difficulty in judging this measure in absolute
terms, it has been used successfully in a relative manner
(McKeithen et al., 1981).

In the present study, the average similarity across sub­
jects between the original and replicating trees was .681

The subjects were first asked to recall as many of the
landmarks as possible without being prompted. None of
the subjects was completely successful. The average num­
ber of items recalled from the set of 32 items was 23.5,
with a range of 17 to 28. In three cases, an additional item
that was not in the recall set was manufactured by the sub­
ject. Overall, then, one can see that the recall set was lost
from memory, at least partially.

The subjects were then shown the 3 x 5 stimulus cards,
given a brief time to memorize the names once again, and
tested with an identical set of cued and uncued trials, as
before. Similarity of the original and replicating trees was
quantified using a measure developed specifically for
ordered trees (Hirtle, 1982; McKeithen et al., 1981). The
measure is defined by:
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Figure 4. Histogram of error percentages by distance category.

or 32 pairs of pairs of landmarks. Since there were six
subjects in the experiment, there were 192 total pairs of
pairs of landmarks that were critical to our analysis.

In order to analyze whether clustering had an effect on
relative distance judgments, we first had to select from
the 192 pairs of pairs those that had one doublet ofland­
marks in the same cluster and the other doublet in differ­
ent clusters. Since the 192 pairs of pairs come from all
the subjects, this is, naturally, a judgment that must be
made for each subject. We used two criteria to make this
judgment:

(1) Consider a pair of pairs T,-A, and T,-Az• One way
in which these landmarks might be related for a subject
is indicated by the following (where the brackets indicate
any of the three types of chunk delimiters):
{... {... T, ... A, ... }... Az... }. In this case, T, and
A, were judged to be a within-cluster pair, whereas T,
and Az were an across-cluster pair. There were 88 such
sets of pairs, with one member of the set classified as
within cluster and the other classified as across cluster.

(2) Consider a triplet of landmarks of the following
form: [... T I ... Al ... Az ... ]. This represents a
unidirectional cluster, with Al always recalled after T I

and Az always recalled after A,. In this case, we judged
A, to be closer in the mental representation to T, than
was Az to T,. This classification may be controversial,
but in terms of the relative distance judgment analysis,
it is conservative, since we are claiming that T,-A z is an
across-cluster pair and T,-A, is a within-cluster pair, and
we are classifying the respective response times and errors
accordingly. If T" A" and Az are, in fact, all members
of the same cluster, our procedure is biased against find­
ing a difference between within-cluster and across-cluster
pairs. This criterion yielded 34 additional pairs of pairs
for analysis. So, of the 192 critical pairs of pairs ofland­
marks in the experiment, 122 participated in the analysis
of relative judgments.

Our definition of pairs as being within versus across
cluster is, then, a relative definition. For example, given
the structure for Subject I, we find Huron St.-Campus
Inn to be an across-cluster pair relative to Campus Inn­
City Hall, whereas it is a within-cluster pair relative to
Huron St.-Bus Depot.3 This judgment was made individu­
ally for each subject. For example, the pairs League­
CCRB and League-Campus Inn were classified, respec­
tively, as within and across cluster for Subject 3, and as
across and within for Subject 6.

Errors. First, we examined the proportion of errors
made by subjects to these 122 pairs of pairs of landmarks.
An error is defined as a judgment by a subject that an
anchor was close to the target (compared with the stan­
dard) when it was, in fact, far, or vice versa. Of the 122
pairs of pairs, 51 actually represented short distances and
71 represented long distances (compared with the stan­
dard). Figure 4 displays the proportion of errors as a func­
tion of whether a distance was actually short or long, and
as a function of whether a pair was within or across
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Relative Distance Judgments
The critical stimuli for this task consisted of 32 triplets

of landmarks; each triplet consisted of two anchors and
a target. The triplets were constructed such that the two
anchors of the triplet were roughly equal in distance from
the target of the triplet. The subjects judged whether a
target/anchor pair was short or long relative to a stan­
dard. Thus, each subject judged 64 pairs of landmarks

10

for four of the five subjects. One subject, Subject 2, whose
tree is shown in Figure 4, had a particularly low similar­
ity between his original and replicating trees, .296.
However, this was due in part to three landmarks: City
Hall, State Street, and Ulrich's. Removal of these three
items resulted in trees whose similarity was .508.

In order to achieve a better sense of the meaning of these
similarity measures, similarities were calculated for all
pairs of original and replicating trees without regard to
the subject who contributed the tree. With the exception
of Subject 2, the similarity from a subject's original tree
to his or her replicating tree was greater than it was to
any other subject's tree. Thus, for all but one subject, the
organization as reflected by the original trees appeared
to remain stable across time. For the remaining subject,
29 of the items remained consistent, whereas 3 of the items
were apparently grouped differently.

Having established the long-term reliability of the trees,
we next sought measures of their validity. This we exam­
ined by testing whether the clusters that are indicated in
the trees help to predict performance in tasks that require
knowledge of the space. Two kinds of tasks were evalu­
ated. One task required knowledge of relative distances
in the space. The other set oftasks, of which there were
three versions, assessed subjects' knowledge of absolute
distance.
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cept of the function, not the slope, varies with the cluster
variable. These overall results are consistent with those
of both Kosslyn et al. (1974) and Maki (1981), although
the effect in our data is somewhat small. The change in
R-square due to cluster was .01, resulting in an R-square
value for the multiple regression of .67. To help verify
that the effect was real, we next examined the maps that
subjects constructed from blocks.

Constructed maps. We recovered distance estimates
from these maps simply by measuring the distances
between landmarks for our critical within- and across­
cluster pairs. These data are, perhaps, more accurate
reflections of the quality of subjects' distance knowledge,
since subjects had not been given feedback about distances
prior to this phase of the experiment, whereas they had
been given feedback prior to the distance-estimation task.
For the map data, the average correlation between esti­
mated and actual distance was.725. Once again, we used
stepwise multiple regression to analyze these data. All
three effects were reliable [F(I,236) = 248.6, P < .001,
for distance; F(5,236) = 21.56, p < .001, for subject;
F(1,236) = 12.93, P < .001, for cluster]. These data are
plotted in Figure 6. The R-square value for all three fac­
tors was .61, and the change in R-square for the cluster
factor was .03.

Sketched maps. The third source of information about
an effect of clusters on distance estimates is the maps that
subjects sketched. Although there were four such draw­
ings per subject, we examined only one, the fourth, since
it presumably was produced after the subjects had grown
accustomed to the 8 V2 x 11 in. restriction on the draw­
ing surface. The distance estimates from these maps were
correlated .627 with the actual distance. Using stepwise
multiple regression, we found a similar relationship, with
all three predictors again showing reliable effects
[F(1,236) = 139.3, P < .001, for distance; F(5,236) =
8.83, p < .001, for subject; F(1,236) = 9.98, p < .01,
for cluster]. The overall R-square was .45, and the change
in R-square for cluster was .03. These data are plotted
in Figure 7.

Figure 6. Scatter plot of constructed map distances by physical
distances.

BOD

o

.--Across
[J-Within

600

o

400

o

200

o/'
o 00

o /0 0
o 0

••~o. 0 c
o 0

• 0 • ~or:
o 0. /. .
• 0

/ ~:J

oL--__-'--__---"--__-----l --'----__

o

20

60

>­z
w
~

~
w 40
uz
;':
<f)

o

Figure 5. Scatter plot of distance judgments by physical distances.

o 0

Absolute Distance Judgments
There were three tasks in which subjects provided data

about absolute distance: (1) They explicitly gave magni­
tude estimates of distance, (2) they constructed maps of
the space from block figures, and (3) they drew sketch
maps. We analyzed each of these sources of data.

Distance estimates. There were magnitude estimates
provided for the 64 critical pairs that were described
above. Overall, these estimates were quite accurate, as
indicated by the mean correlation (.803) between the es­
timated and actual distance. This value is not as high as
that found in previous studies (Golledge & Zannaras,
1973; Jonides & Baum, 1978), but the range of distances
was more restricted in the present study. Here, the ratio
of the longest to the shortest distance was 5.2: 1. For the
aforementioned studies, the ratios of distances were ap­
proximately 23:1 and 115:1, respectively.

The pairs were classified as within or across cluster
using the method described above for the relative distance
task. Then these data were subjected to a stepwise multi­
ple regression analysis including the factors of distance,
cluster, and subject. All three factors yielded reliable ef­
fects [F(1,236) = 375.6, P < .001, for distance;
F(5,236) = 19.69, P < .(XH, for subject; F(1,236) =

7.25, P < .01, for cluster]. The averaged regression lines
for each cluster are displayed in the scatterplot of
Figure 5. Regression lines have been added for the within­
cluster and across-cluster pairs. Note that only the inter-

cluster. It is quite clear that there is an interaction in these
data, as expected: For short distances, subjects tend to
classify a distance as "long" if a pair is across cluster
compared with within cluster, and to do quite the oppo­
site for long distances. This interaction is statistically sig­
nificant [X2(1) = 6.33, P < .05]. In addition, we exam­
ined response times. However, no significant differences
emerged between the times; thus, differences appear only
in the error rates, not in the response times.
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DISCUSSION

Figure 8. Sample network structure. Circlesdenote cluster of land­
marks; lines denote links between clusters.

A second concern is that the structure of landmarks is
not uncovered, but is induced, by the free-recall task. That
is to say, the structure may bea by-product of recall strate­
gies. Later, when subjects reconstruct the space and
produce distance judgments, they may be relying on the
structure recently imposed to access information, and, in
tum, this structure results in the observed biases. Unfor­
tunately, the stability over time does not answer this criti­
cism, because the stability may be due to partial recov­
ery of the original retrieval strategy. The resolution of
this conflict centers on two larger issues. First, there is
a fundamental issue of what structure the ordered tree
algorithm taps. There is converging evidence from several
studies (McKeithen et al., 1981; Reitman & Rueter, 1980)
that the algorithm does in fact tap existing long-term
memory structures. Second, even if the structure was in­
duced (which is unlikely), our data still indicate that non­
spatial information influences spatial judgment. Thus, the
data show that hierarchies can lead to bias in spatial judg­
ments. The exact nature of how hierarchies arise and the
strength of the bias need further research.

Let us examine the claim that subjective clusters in­
fluence knowledge about spatial relationships. To be sure,
we are not willing to conclude that hierarchies of the sort
that we have illustrated are a sufficient representation of
spatial knowledge. They include no explicit information
on actual spatial relationships (e.g., distance and bear­
ing) about which subjects clearly have knowledge. Thus,
the subjective clusters constitute but one piece of infor­
mation in a complex data base that subjects must have
available for spatial information.

How could subjective clusters bias judgments about dis­
tance, as our data demonstrate that they do? Two possi­
bilities suggest themselves. One is that cluster knowledge
causes subjects to mentally misplace landmarks by caus­
ing an exaggeration of intercluster distance (Allen, 1981;
Kosslyn et aI., 1974; Maki, 1981). According to this
alternative, mistakes in distance judgments can be traced
to fundamental misconceptions about the relative locations
of landmarks, misconceptions that in tum are caused by
cognitive knowledge of those landmarks. If this were the
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We have offered evidence of an effect of subjective
cluster membership on performance in several tasks that
require information about distances in a natural space. To
summarize the results from all the tasks, across-cluster
distances tend to beoverestimated, whereas within-cluster
distances are underestimated, relative to each other.

This summary, of course, is based strictly on our mea­
surement of subjective clusters, a measurement that is in­
tuitively pleasing and, apparently, stable over time. But
what if it is basically in error? What if mental represen­
tations of real physical spaces are not truly hierarchical.
Will the ordered tree algorithm impute a fundamentally
incorrect organization to the space?

Yes and no. Consider perhaps the most reasonable
alternative to a hierarchical organization, a network such
as the one illustrated in Figure 8. What would happen if
we were to create an ordered tree structure from recall
data that had actually been a result of such a network struc­
ture? Given adequate sampling of recall protocols, the
resulting tree would be a series of clusters all rooted to
a single nondirectional node. So the good news is that the
ordered tree algorithm would recover existing clusters.
The bad news is that it would impose a hierarchy where
none existed. Of course, the imposed hierarchy is really
a degenerate case (no subordinate nodes), an outcome that
we have not observed and that might have raised our sus­
picions if we had observed it. Since we made predictions
only about clusters and not about intercluster organiza­
tion for our performance tasks, our use of the ordered
tree algorithm appears to be on safe ground. But until a
space of alternative possible organizations has been ex­
plored, one must remain cautious in making too much of
hierarchies such as those pictured in Figure 3. But these
hierarchies, taken together with the performance data, cer­
tainly invite the conclusion that we have recovered some
regularities in the representation of spatial information.

Figure 7. Scatter plot of drawn map distances by physical dis­
tances.



case, the clustering oflandmarks would be evident in the
perceived spatial arrangement and the hierarchies that we
uncovered would be a by-product of how subjects name
locations off their cognitive maps.

A second possibility is that cluster knowledge has its
effect during the process of extracting spatial informa­
tion about landmarks. This may account not only for the
distance judgment data, but also for Stevens's (1976)
response time data. It may be, for instance, that cluster
organization has an effect on accessing the locations be­
fore distance judgments can be made; thus, locations that
cross cluster boundaries would be difficult to visualize
simultaneously. This interpretation implies that landmarks
are not mislocated but rather, due to the mental effort of
traversing a boundary, the points are perceived as more
distant. Ifthe mental effort could be minimized, then the
perceived distance would be less. At present, however,
there are no convincing data to resolve the issue of how
clusters have their impact.

To summarize, then, our data support the view that
mental representations of actual spaces are composed of
both spatial and nonspatial information. Furthermore, the
nonspatial information is hierarchical in nature even for
spaces in which there are no predefined hierarchies. Taken
together with previous data (e.g., Sadalla et al., 1979;
Stevens & Coupe, 1978), our results force an alteration
of a strict mental map model of spatial knowledge. At the
least, such a model will have to provide for the represen­
tation of non-Euclidean information.
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NOTES

I. Cues were used to encouragevarietyin the reeall orders. The phrase
"those that went with it" was included to discourage recall patterns
of the form {i, 1,2, i-I, i+ 1, ... , n}, in which the same linear order
is produced on every trial with the cue inserted at the beginning. No

. other recall patterns were discouraged, and subjects were encouraged
to "mix up" the orders as much as possible.

2. As each recall string is individually deleted in the jackknifing
process, one can calculate a mean and standard deviation for n trees,
each based on a set of n-I recall strings. Outlier recall stringscan then
be determined by calculating a confidence interval about the mean. If
a score falls outside the interval, the corresponding string is deleted
(Mosteller & Tukey, 1977). In building the confidence interval, we
adopted a conservative criterion by setting alpha to _00 I.

3. This quadruplet {Huron St., Campus Inn, City Hall, Bus Depot}
does not consist of any critical triads. In fact, Huron St. does not refer
to a singlelocation,but an entire street. Instead, this examplewas chosen
to convey the relative nature of the across-cluster/within-cluster distinc­
tion, which is independent of the location of the points in the space.
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