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Bases of acceptability ratings
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The extent to which subjects used a probabilistic or a distance judgment process in rating
the acceptability of concept exemplars was studied. After viewing 100 descriptions of airline
uniforms chosen as fashionable by the public, subjects rated all possible uniforms for their
public acceptability. The uniforms were described in terms of four three-valued qualitative
(e.g., type of fabric} or quantitative (e.g., jacket length) attributes, with 20 subjects assigned
to each description type. The results indicated that the majority of subjects in both groups
used some form of probabilistic decision rule, with very few, if any, using a rule based on
distance from a prototype. A data analysis technique which permitted examination of the
behavior of individual subjects documented a significant amount of inter- and intrasubject
variability in the number of aspects incorporated into the judgment process, in the number of
different judgment rules utilized for different aspects, and in the types of decision rules used.
It was concluded that subjects in earlier studies might well have been attending primarily to
frequency differentials but that various methodological difficulties with the acquisition pro­
cedures and with the level of data analysis produced ambiguous and sometimes contradictory
results.

Until recently, most studies investigating conceptual
behavior utilized deterministic or logical class concepts.
These concepts permit inference of the conceptual class
of an object, given knowledge of the relevant attributes
and the rule or relation (e.g., conjunction) to be used in
partitioning the set of stimulus objects (Bourne, 1974).
In contrast, many recent experiments used probabilistic
concepts, sometimes referred to as natural or semantic
concepts because of their similarity to real-world cate­
gories. With a probabilistic concept, the subject cannot
determine with certainty the "correct" conceptual class
of any stimulus object (cf. Reed, 1972). Since with
deterministic concepts the rule and relevant attributes
were well defined, the major interest of researchers was
in the way subjects identified the relevant attributes
(Levine, 1975; Millward & Wickens, 1974) or in the way
subjects learned the rule relating the relevant attributes
to the response classes (Bourne, 1974). While some
researchers have exhibited similar interests in studies
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using probabilistic concepts (e.g., Dansereau & Brown,
1974; Homa & Vosburgh, 1976; Keele, 1973; Peterson,
Meagher, Chait, & Gillie, 1973; Posner, 1973), others
have asked a question which did not arise in earlier
studies of deterministic class concepts, namely, what is
the nature of the decision rule by which subjects classify
stimulus objects? The experiments that addressed this
question (Barresi, Robbins, & Shain, 1975; Beach,
1964a; Hyman & Frost, 1975; Neumann, 1977; Reed,
1972; Reed & Friedman, 1973; Rosch & Mervis, 1975)
have not been able to answer it with any degree of
precision and, in many cases, the answers are contra­
dictory. A similar state of affairs exists in recognition
memory studies where conceptual behavior is involved
(e.g., Bransford & Franks, 1971; Franks & Bransford,
1971; Neumann, 1974; Reitman & Bower, 1973; Hayes­
Roth & Hayes-Roth, Note 1).

Thus, to date, we appear to have no better statement
of what is learned than that of Attneave (1957), who
considered it likely that the subject "learns something
about at least three characteristics of the class: (a) its
central tendency; (b) how its members may differ from
one another, Le., in what properties, or on what dimen­
sions; and (c) its dispersion, i.e., how much its members
may differ from one another on the several dimensions
of variability" (p. 87).

Although one of the difficulties in determining
precisely what subjects learn in a probabilistic concept
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task may be attributed to the large number of closely
related decision strategies that are possible (Reed, 1973),
there are other problems of a more methodological
nature. First, it is not clear how much of the variance in
answers to the question of what is learned can be at­
tributed to differences in stimulus materials and tasks.
Stimuli have varied from random dot patterns (Barresi
et al., 1975; Hyman & Frost, 1975), to polygons,
tone sequences, and columnar patterns generated from
Markov rules (Aiken & Griffin, 1972; Dansereau &
Brown, 1974), to stimuli with well-defined quantitative
dimensions (Neumann, 1977; Reed, 1972; Reed &
Friedman, 1973), and to stimuli with well-defined
qualitative dimensions (Beach, 1964a; Neumann, 1974;
Hayes-Roth & Hayes-Roth, Note 1). Studies in which
concepts varied along quantitative stimulus dimensions
have usually produced results supporting a decision
strategy incorporating a measure of distance from a
prototype, whereas the results of studies using qualita­
tive stimulus dimensions tend to support decision
models based on likelihood judgments derived directly
from the probability distribution of stimulus values.
Studies using random dot patterns have produced mixed
results.

A second source of difficulty in assessing the results
of research on probabilistic concepts is the significant
intersubject variability in how stimulus information is
used in making classifications (Hyman & Frost, 1975;
Reed, 1972; Reed & Friedman, 1973). There is evidence
that, in generating a response, subjects vary in the
degree to which they attempt to utilize all of the avail­
able stimulus information (Beach, 1964a). Unfortu­
nately, the methods that have been used to determine
the strategy used by an individual subject have been
quite imprecise, varying from verbal reports to cor­
relational evidence. In the case of the correlational
evidence, the predictions of different decision strategies
are highly correlated, making discrimination of strategies
very difficult (Hyman & Frost, 1975).

The research reported here addresses the question
of what is learned in a way which minimizes the above
difficulties. First, the question of the effect of type of
dimension, qualitative or quantitative (numeric), is
explored directly. Second, a new methodology is intro­
duced which permits both a direct assessment of the
behavior of an individual subject and an assessment of
each subject's behavior with respect to each stimulus
dimension. Finally, the characteristics of the stimulus
distributions used for acquisition simplify the predic­
tions of the main classes of decision models, making a
discrimination between them less difficult.

Reed (1972, 1973) proposed that there are two
general classes of decision models, probability models
and distance models. Probability models utilize decision
rules similar to those found in nonparametric statistical
techniques. The value of a stimulus attribute has only
nominal relevance and is not used in the decision func-

tion. Only the relative frequency of occurrence of each
of the dimension valuesis incorporated into the decision
function. Distance models use a logic that is more
similar to parametric statistical techniques in that the
value of each stimulus attribute is incorporated into the
decision function along with the frequency of its occur­
rence. Examples of probability models are the cue­
validity model of Beach (I 964b), the attribute frequency
model of Neumann (1974), the schematic model of
Hayes-Roth and Hayes-Roth (Note 1), and the family
resemblance model of Rosch and Mervis (1975). Ex­
amples of distance models include the proximity,
average distance, and prototype models presented by
Reed (1972, 1973) and the rule model presented by
Hyman and Frost (1975). The experiment reported
below provides information about the relative incidence
of usage of these two classes of decision models and
explores the effect of type of dimension value, qualita­
tive or numeric, on the usage frequency.

Table I displays the information about stimulus
dimensions that is pertinent to distinguishing between
classes of models. In the experiment, subjects were
shown a sample of 100 uniforms that were members of a
conceptual class, "attractive" uniforms, and then asked
to rate some new and some old uniforms with respect
to the degree to which each one belonged to the class.
The stimuli had four dimensions. For subjects in the
qualitative-dimension group, the dimensions were
color, fabric, pants type, and sweater type. For subjects
in the numeric-dimension group, they werejacket length,
boot height, number of buttons, and number of pockets.
Recall that probability models predict that subjects
should be sensitive only to the relative frequency of
occurrence of dimension values and should tend to rate
stimuli as a function of the relative frequency of the
dimension values displayed. For example, a stimulus
with four high-frequency (HF) values should receive a
higher rating than a stimuluswith four medium-frequency
(MF) or four low-frequency (LF) values. In addition,
one would expect subjects to adopt this decision strat­
egy irrespective of dimension type. That is, relative
frequencies can be computed for both quantitative and
qualitative dimensions.

The prototype-distance model, which Reed (1972)
and Reed and Friedman (I973) concluded their subjects
were using, makes quite different predictions. The
prototype model assumes that subjects calculate a
measure of central tendency (usually the mean) for each
stimulus dimension frequency distribution. The proto­
type for a conceptual class is an abstract entity with
dimension values equal to the means for each dimension.
When asked to rate the degree to which a particular
stimulus fits a category, subjects determine the distance
of the test stimulus from the prototype. Stimuli that
are close to the prototype would be given high ratings;
stimuli that are more distant would be given low ratings.
Since the mean value on each numeric-valued stimulus
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Table 1
Stimulus Dimensions, Their Values, and the Frequency of the Values

Dimension

Relative Jacket Boot
Acquisition Acquisition Length Height Number of
Frequency Frequency Color Fabric Pants Sweater (in.) (in.) Buttons Pockets

High 60 Blue Mohair Flair V Neck 33 9 4 3
Medium 30 Orange Wool Straight Crew Neck 32 10 5 2
Low 10 Gray Nylon Leotards Turtleneck 31 II 6 1
Mean 32.5 9.5 4.5 2.5

dimension in Table I is midway between the HF and MF
values, the stimulus with four MF values is just as close
to the prototype as the stimulus with four HF values and
should, therefore, receive the same rating. Since LF
values are further from the dimension mean than HF
and MF values, the stimulus with four LF values should
receive a much lower rating. In addition, one would not
expect a distance model to be used as a basis for re­
sponding when the stimulus dimensions are qualitative
and truly discontinuous since calculation of a mean
(or median) would be logically untenable.

The distributions of stimulus values and the covaria­
tion of values across dimensions were selected to simplify
predictions from the models. First, many more stimuli
were used during the acquisition phase of the experi­
ment than in most previous experiments, Beach's (I 964a)
experiment being a significant exception. Use of a large
number of stimuli permitted several desirable 'controls.
As can be seen in Table I, the distributions were delib­
erately skewed so that the prediction that subjects
would rate most highly the dimension values close to
the central tendency would not be confounded with any
tendency of subjects to rate a middle scale value most
highly. The large number of acquisition stimuli allowed
10 presentations of the LF values even with the skewed
distributions. In addition, use of a large number of
acquisition stimuli made it possible for stimulus dimen­
sions to be pairwise independent. Some previous studies
had rather unusual conjoint frequencies of dimension
values. Nonindependence of stimulus dimensions is
obviously a common, but not universal, occurrence
in the natural world, but its presence complicates
discriminating between decision models. An example of
the difficulties that can arise can be found in the Reed
(1972) and Reed and Friedman (1973) experiments, in
which the combination of a small number of acquisition
stimuli, skewed distributions, and dimensional depend­
ence leads to the prediction that some test stimuli,
for example, a person 30 years of age making $12,000
per year or a person 40 years old with one child, would
not belong to either conceptual class.

A second property of the stimulus dimension distri­
butions in Table I is that, for the numeric dimensions,
there is homogeneity of variance. Since distance is a
function of the variance of a distribution, unequal
variances produce unequal effects of dimensions on

distance from the prototype unless subjects use some­
thing like a z transform in calculating distances. It is not
at all clear how subjects adjust for unequal variances,
so it was decided that the most reasonable course of
action was to use equal variance distributions.

Reed (1972) and Reed and Friedman (1973) found
that the fit of the prototype model to their data could
be improved by weighting the stimulus dimensions by
their objective validity for discriminating between
conceptual categories. They also found, however, that
subjects differed in their sensitivity to objective validity
differences and in the degree to which they applied
validity standards derived from extra-experimental
experience (see Reed and Friedman, 1973, p. 160, for
examples). We attempted to minimize ambiguities in
interpretation of the results due to dimension differ­
ences in objective and subjective validity or importance.
Dimension-value distributions were identical across
distributions so that the objective validity or importance
was the same for all dimensions. To minimize subject­
related differences in dimension validity, the dimensions
and their values were chosen so that, in our opinion,
there would be no strong extra-experimental bias.

One final aspect of the experimental design should be
noted. Interspersed among groups of concept exemplars
presented during acquisition were blocks of test trials
with feedback. The test trials provided subjects with
practice in using the rating scale. For the test trials with
feedback, stimuli were chosen such that the most viable
probability and distance models would predict the same
rating. In effect, the test trials with feedback only told
the subject that the more HF values displayed in a stim­
ulus, the higher should be its rating. None of the stimuli
contained MF values, the values about which the models
make differential predictions. Another function of the
test trials with feedback is that they provide both a
means of assessing the degree to which each subject is
discriminating among stimuli immediately after acquisi­
tion and a means for determining the degree to which
forgetting takes place during the final test series.

METHOD

Subjects
Students in introductory psychology classes at the University

of Colorado elected to participate in the experiment as partial
fulfillment of a class requirement. The experimental design
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called for two groups of 20 subjects each, but a total of 44
students participated since the data for four subjects were
discarded because of failure to follow instructions. Of these
subjects, three indicated on a postexperimental questionnaire
that they had responded either randomly or only on the basis of
a preexperimental personal preference. One subject gave the
same response for all test stimuli.

Procedure
The concept learning task was presented in the context of

a cover story. The story asked the subject to imagine being a
member of a futuristic society who was applying for a job as a
marketing analyst for an airline. According to the story, the
airline was designing new unisex uniforms for its workers. The
subject was to discover what kinds of uniforms the public
found appealing by viewing, on a display screen, descriptions of
uniforms selected as attractive by a sample of the public. During
test trials, the subject rated each uniform description on a scale
from 1 to 5, with 1 indicating a low public rating and 5 indi­
cating a high public rating. The instructions emphasized that the
subject's personal preferences were irrelevant, since the corpora­
tion was interested only 'in the public opinion and the subject's
ability to gauge it.

Acquisition. During the acquisition phase of the experiment,
subjects were presented with uniform descriptions corresponding
to the choices of the sample of 100 members of the public. As
explained below, only 44 unique descriptions were used as
sample stimuli during acquisition. Each sample stimulus was
presented for 3 sec, with no response required. Interspersed
with the sample stimuli were 34 practice test trials with feed­
back. On these test trials, the subject was givenas much time as
required to respond. Following the response on the feedback
trials, the correct response was superimposed for 2 sec on the
display screen below the uniform description just rated.

The stimulus presentation order was completely random with
the exception of restrictions on the blocking of the types of
trials, sample stimulus, or test with feedback. Before each
change in type of trial, the subject was informed of the transi­
tion. Thus, it was very clear to subjects which stimuli should be
used in forming a concept of an attractive uniform and which
were being presented to test the adequacy of their concept and
familiarize them with the rating scale. There were six unequal­
size blocks of trials: 40 presentations of sample stimuli, 9 test
trials with feedback, 30 more sample presentations, 9 more
tests with feedback, the remaining 30 exemplars, and a final
block of 16 tests with feedback.

Test. Following acquisition, subjects were tested in three
different ways, two using the display terminal. First, each
subject rated, without feedback, the entire set of 81 possible
uniform descriptions. The presentation order was completely
random and responding was self-paced. After these tests, subjects
were presented with the three valuesof each stimulus dimension,
one dimension at a time. For each dimension, they were asked to
indicate the dimension value they thought to be ideal. Third, a
postexperimental questionnaire also asked subjects to rank order
the dimension values on each dimension.

Stimulus Materials
The stimuli were represented to the subjects as verbal descrip­

tions of some attributes of uniforms. Subjects in the qualitative­
dimension group saw descriptions using the dimensions of color,
fabric, pants style, and sweater style. Numeric-dimension sub­
jects had descriptions in terms of jacket length, boot height,
number of buttons, and number of pockets. A stimulus was a
set of four dimension labels horizontally arrayed across a viewing
screen with a dimension value listed below each label. The
values for the dimensions used are displayed in Table 1. Since
each of the four dimensions had three values, 81 unique stimuli
were possible for each stimulus set.

Skewed frequency distributions of the dimension valueswere
used to define the concept for the numeric dimensions. For

each dimension, the direction of skew was determined randomly
and the acquisition frequencies of the dimensions values were
assigned appropriately. For the qualitative dimensions, the
frequency-value pairings were randomly made, since there was
no natural ordering of values. The resulting frequency-value
pairings may be seen in Table 1.

Of the 81 possible stimuli, only 44 unique stimuli were used
in the acquisition phase of the experiment. The individual
stimulus frequencies in the set of 100 stimulus presentations
in acquisition ranged from 1 to 13. The stimuli used during
acquisition were chosen to meet two restrictions. First, the
marginal frequencies of stimulus dimension values were equal to
those shown in Table 1. Second, all joint frequencies of pairs of
dimension values were equated at their expected frequencies for
all dimension pairs. For, example, the joint frequency of a HF
value on one dimension with a MF value on another dimension
was 18, .6 X .3 X 100.

A total of 16 stimuli were used for the test trials with feed­
back.These stimuli can be grouped into five classes: a stimulus
with four HF values, four stimuli with three HF and one LF
values, six stimuli with two HF and two LF values, four stimuli
with one HF and three LF values, and a stimulus with four LF
values. The five classes will be designated by the number of
HF values (zero to four) present in the stimulus. All 16 stimuli
were used in the final block of 16 test trials with feedback. In
the first two blocks of nine test trials with feedback, the 4HF,
the OHF, two of the 3HF, two of the IHF, and three of the 2HF
stimuli were used.

Appantus
The experiment was conducted using the CLIPR real-time

computing facility at the University of Colorado. Stimulus
sequencing and presentation, timing control, and data collection
were under computer control. Up to six subjects participated
simultaneously at independent stations. Each subject was pre­
sented with instructions and stimuli on a CRT display terminal
and responded using a set of response buttons. Subjects were
run asynchronously and each subject had a different random
order of stimuli.

RESULTS

The basic data are the ratings of the 81 uniform
descriptions by each subject on the fmal block of test
trials with feedback and during the test phase.

Analyses of Group Data
Data from the test trials with feedback. For stimuli

containing only HF and LF values, the most commonly
discussed decision models assign ratings that are a simple
linear function of the number of HF values, viz., the re­
sponse should equal the number of HF values plus one.
After subjects had completed viewing the 100 sample
presentations and practiced responding for two blocks
of nine test trials with feedback, they were tested on
16 stimuli in the last block of test trials with feedback.
In general, subjects were not very accurate in making
exactly the response predicted by the models. They were
exactly correct on only 55% of the trials. However, each
subject's average responses corresponded very well
(with some regression toward the mean) to the correct
model-predicted responses for each of the five stimulus
types defined by the number of HF values. Table 2 pre­
sents the mean response to each stimulus class and the
proportion correct on the class both for the last block
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Table 2
Stimulus Ratings (R) and Proportion of Correct Responses (P) For Stimuli Used on Test Trials With Feedback

Qualitative Dimensions Numeric Dimensions

Final Block of Test Final Block of Test
Stirn- Cor- Trials With Feedback Final Test Series Trials With Feedback Final Test Series Average
ulus rect
Class Response P R P R P R P R P R

4HF 5 .75 4.60 .75 4.60 .65 4.45 .65 4.30 .700 4.487
3HF 4 .58 3.66 .55 3.86 .52 3.75 .49 3.68 .534 3.737
2HF 3 .59 3.06 .59 3.07 .42 3.06 .46 2.88 .517 3.015
1HF 2 .44 2.49 .55 2.36 .50 2.45 .49 2.24 .494 2.384
OHF 1 .55 1.65 .60 1.75 .35 1.75 .50 1.80 .500 1.737

of 16 test trials with feedback and for the same stimuli
when tested during the final series of 81 trials in the test
phase. Two analyses of variance, one on average rating
and the other on proportion correct data, indicated that
the only effective variable was the number of HF values
in the stimulus. For the average ratings, all stimulus
classes differed from each other [F(4,152) =138.18,
P < .001, standard error of the difference between
means (SED) = .131]. For proportion correct, the
4HF stimulus differed from the other classes, producing
an overall significant difference [F(4,152) =4.74,
P < .005, SED = .056]. Type of stimulus dimensions
(qualitative vs. numeric) and time of rating had essentially
no effect on either average stimulus rating or proportion
correct (p > .25 in all cases). Finally, additional analyses
of the data from these 16 stimuli indicated that, for all
four stimulus dimensions for each of the groups, uni­
form descriptions containing the HF value of a dimen­
sion were rated significantly higher than descriptions
containing the LF value [smallest F(l ,19) = 11.08
P < .005]. This means that each dimension was being
used by at least some subjects in generating rating
responses.

Data from the test phase. Separate within-subject
analyses of variance were conducted for the qualitative­
and numeric-dimensions groups. Each factorial analysis
had four factors, the four stimulus dimensions, each
with three values. Thus, a rating response of a uniform
description is assumed to be some function of the
responses to each of the four dimensions, and signifi­
cant variability associated with a dimension implies some
subjects are attending to the dimension. The analyses
of the average ratings of the 81 test trial stimuli (includ­
ing the 16 stimuli which had also been used on test

trials with feedback) varied as a function of the dimen­
sion values displayed for all four dimensions for each
group (all ps < .005). Table 3 presents the mean ratings,
Fs, and SEDs for the test trial data. Note that for all
dimensions, descriptions displaying HF values pro­
duced significantly (all ts ~ 2.76, p < .01) higher mean
ratings than those with MF values and, except for the
color, sweater-type, and boot-height dimensions, MF
values produced significantly (all ts ~ 2.41, p < .05)
higher average ratings than LF values.

There were two small interactions, one for each
group, in the analyses of variance of the test trial data.
For the qualitative-dimension group, the value of sweater
type had less effect on stimulus ratings when the LF
value of fabric was present than when the HF or MF
value of fabric was present [F(4,76) = 3.20, P < .025] .
Similarly, when the LF value of boot height was present,
the value of the number of buttons dimension had less
effect [F(4,76) = 2.65, P < .05]. None of the other
interactions was statistically significant.

The average ratings across subjects within a group
indicate that all dimensions were used by some subjects
in generating responses and that subjects were generally
distinguishing between HF and MF values and between
MF and LF values. For the group data, the rating differ­
ence between HF and MF values tended to be greater
than the difference between MF and LF ratings, even in
cases where both rating differences were statistically
significant (the two exceptions were for the number of
pockets and number of buttons dimensions). The
prototype model predicts that dimension values equally
distant from the dimension mean should produce equal
ratings. As can be seen in Table 1, the HF and MF values
are equally distant from the mean and should therefore

Table 3
Mean Test Trial Stimulus Ratings as a Function of Stimulus Dimension Values

Dimension

Jacket Boot Number of
Value Color Fabric Pants Sweater Length Height Buttons Pockets

HF 3.370 3.315 3.385 3.211 3.322 3.176 3.183 3.448
MF 2.809 2.909 2.863 2.880 2.857 2.846 2.924 3.007
LF 2.631 2.587 2.563 2.720 2.580 2.737 2.652 2.304
F(2,38) 24.23 26.02 22.41 8.69 29.37 7.94 18.26 68.77
SED .111 .101 .124 .120 .098 .115 .088 .098
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Table 4
Wustrative Data: Average Ratings and Rank Orderings of Dimension Values For Four Subjects

Qualitative Dimension Group: Dimension

Color Fabric Pants Sweater

Subject 1: MSe = .336
HF Value 3.481 3.333 3.148 2.963
MFValue 2.519 2.704 2.815 2.778
LF Value 2.259 2.222 2.296 2.519
F(2,16) 33.28 24.92 14.79 4.00
p< .001 .001 .001 .05
Ranking" HF > MF= LF HF > MF > LF HF = MF > LF HF = MF = LF

Subject 12: MSe = .012
HF Value 3.000 3.333 3.333 3.333
MF Value 3.000 2.333 2.370 2.370
LF Value 2.037 2.370 2.333 2.333
F(2,16) 675.97 702.97 702.97 702.97
p< .001 .001 .001 .001
Ranking" HF = MF > LF HF> MF= LF HF > MF= LF HF > MF = LF

Numeric Dimension Group: Dimension

Jacket Length Boot Height Number of Buttons Number of Pockets

Subject 5: MSe = .230
HF Value 4.037 3.333 3.111 3.556
MFValue 3.259 3.185 3.148 3.593
LF Value 2.111 2.889 3.148 2.259
F(2,16) 110.23 6.01 .05 67.70
p< .001 .025 .001
Ranking" HF > MF > LF HF= MF > LF HF = MF > LF

Subject 8: MSe = .000
HFValue 3.000 3.000 3.000 3.000
MFValue 2.000 2.000 2.000 2.000
LF Value 2.000 2.000 2.000 2.000
p< .001 .001 .001 .001
Ranking" HF > MF = LF HF > MF= LF HF > MF= LF HF > MF= LF

-Basedon t tests usingMSError to estimate the standard error of the differenceand with p = .05.

produce equal ratings. The results of the present study
are clearly inconsistent with this prediction when the
data analysis is at the level of group means.

Individual Subject Analyses
When the data from individual subjects are examined,

a somewhat more complicated picture appears. Not
every subject attended to all four stimulus dimensions
and the relative desirability of HF, MF, and LF values
could vary across dimensions for any given subject. Four
examples of data for individual subjects are given in
Table 4, and summaries of the performance of individual
subjects are given in Tables 5 and 6.

The data in Tables 4, 5, and 6 were compiled from
analyses of variance on each subject's test trial data,
with stimulus dimensions as the only factors in each
analysis. The error term for all F tests was the four­
way interaction, but essentially identical results were
obtained by pooling all interactions for use as an error
term. On the basis of these analyses, each subject could
be typified by the number of stimulus dimensions for
which the subject's responses varied significantly
(p < .05) as a function of the dimension value present

in the stimulus being rated. Most subjects attended to
three of four stimulus dimensions, an average of 3.1 for
the qualitative-dimension group and an average of
2.9 for the group with numeric dimensions. The distri­
bution of subjects attending to four, three, two, and one
dimensions for the qualitative-dimension group was,
respectively, 11, 4, 2, and 2; one subject did not appear
to be using any dimension as a basis of responding. The
distribution for the numeric-dimension group was
6, 8, 4, and 2, with all subjects attending to at least one
stimulus dimension. The data presented in Tables 5 and
6 did not appear to vary as a function of number of
stimulus dimensions utilized by a subject, so only the
overall data are presented.

Recall that the acquisition stimuli were selected so
that there was pairwise independence for stimulus
dimensions, that is, there was no information in the
two-way interactions and the three-way interactions
were minimal. For the 40 individual subject analyses,
there were a total of 400 possible two- and three-way
interactions. Only 29 of the interactions were significant
(p < .05). The modal number of interactions per subject
was 0, the median number per subject was 0, the mean



number per subject was .725, and the maximum number
observed for anyone subject was 5. It seems safe to
conclude that, except for an occasional subject with
some extra-experimental bias toward a particular combi­
nation of dimension values, the decision rules used by
subjects involved an additive function of ratings for
individual dimensions.

The four subjects selected for Table 4 are not neces­
sarily typical of all 40 subjects. The data for these four
subjects do, however, clearly indicate the complexity of
the processing which subjects attempted and the dangers
and difficulties present in making generalizations about
concept formation and utilization processes. For ex­
ample, Subject 1 of the qualitative-dimension group
attended to all four stimulus dimensions in generating
stimulus ratings but used the frequency differentials of
the values differently across dimensions. It is difficult
to say anything about the decision rule used by this
subject other than that it was sensitive to frequency
differentials.

In contrast, Subject 12 of the qualitative group
presents an interesting case of a very orderly decision
rule but one which is inconsistent with any simple
decision models. If all 81 ratings given by Subject 12
are examined, one can see that, with the exception of
one response (probably the result of a lapse of attention),
the following procedure generates the ratings: Consider
the HF values of fabric, pants, and sweater along with
both the HF and MF values of color as "desirable"
values and then calculate the rating for a stimulus by
counting the number of desirable values present and
adding one to the count. Subject 12 did not verbalize
this procedure on the postexperimental questionnaire
and may have been unable to verbalize it, but it de­
scribes his protocol exactly.

Subject 8 in the numeric-dimension group was very
much like Subject 12 but with three important differ­
ences. First, the relative desirability of HF, MF, and LF
values was consistent across dimensions. Second,
Subject 8 made no "errors" in using her rule. Third,
she was able to verbalize her rule. "First I set up a model
of 33-9-4-3 as perfect or a rating of 5. If there was one
deviance (sic) from this model rating (sic) was 4, two
deviances (sic) 3, three-2, four-I. If all four were
different from the model, this was what the public
would dislike most." There was one subject in the
qualitative-dimension group who behaved just like
Subject 8, and there were several other subjects in both
groups who were similar, both in the type of rule (but
with less precision in its application) and in their ability
to verbalize it.

The last subject included in Table 4, Subject 5
of the numeric-dimension group, is like Subject 1 of
the qualitative group, except that he did not attend to
all four dimensions. The number of buttons dimension
was almost completely ignored, and there is an interest­
ing shift in relative desirability from the jacket length
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dimension to the number of pockets dimension. Jacket
length is a continuous variable, yet Subject 5 did not use
a central tendency as a standard since the HF value
produced higher stimulus ratings than the MF value.
On the other hand, the number of pockets dimension is
an integer variable and it would appear that 2.5 pockets
is an ideal number for this subject. Subject 5 was only
one of several subjects in the numeric-dimension group
who had this type of protocol.

Strategies used by subjects. In spite of the degree of
within- and between-subject variability in the way
ratings were generated, some defmite patterns appeared
in the group data. First, when subjects were required to
choose an ideal dimension value for each dimension
following the test trials, 77 .5% of the choices by subjects
in the qualitative-dimension group (an average of 3.1
dimensions per subject) were of HF values. Subjects in
the numeric-dimension group chose the HF value on an
average of 2.25 dimensions (56.25%). Both of these
means were significantly greater than the chance value
of 1.33 (33.3%) [t(19) = 8.68, p < .001 and t(19) = 3.40,
P < .005 for the qualitative and numeric groups, re­
spectively] . This finding lends some degree of individual
subject validation to the finding, reported above, that
HF values received a mean rating on the test trials that
was higher than the ratings for either MF or LF values.
One additional point about these data: the average
number of HF values chosen differed significantly for
the two groups [t(38) =2.51, p<.025]. This was the
only measure on which the two groups differed signifi­
cantly in the experiment and there is no ready explana­
tion for this finding.

In examining the data for the individual subjects,
two criteria were observed for giving consideration to
an ordering of dimension values obtained from average
test trial rating of uniform descriptions. First, as noted
above, an ordering was included in the analysis only if
there was adequate evidence that the subject was in­
corporating the dimension value in the response genera­
tion process, viz., only if the dimension produced
statistically significant rating variance. For the
qualitative-dimension group, 77.5% of the 80 orderings
met this criterion, with 72.5% meeting the criterion for
the numeric-dimension group. The second criterion for
including an ordering in the analyses summarized in
Tables 5 and 6 was that ordering of HF, MF, and LF
values be reasonable given the acquisition trials and test
trials with feedback. This criterion was that the HF value
receive a higher rating than the LF value (HF > LF)
and that the MF value receive an average rating which
was neither significantly (p < .05 on a t test) higher
than the HF value rating nor significantly lower than the
rating of the LF value (HF ~ MF ~ LF). Of the order­
ings that met the first criterion, approximately 86%
in the qualitative-dimension group and approximately
93% in the numeric group met the second criterion.
The data of Tables 5 and 6 are based on the more than
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"For two subjects, the rating of the MF value did not differ
significantly from the rating of either the HF or the LF value,
despite significant rating variance on that dimension and a
significantly higher rating for the HF as compared to the LF
value. Thus, the entries in this column do not sum to 1.0.

Table 5
Distributions of Rank Orderings of Dimension Values For
Dimensions With Significant Rating Variance and For Which
the Values Were Ranked With HF > LF and HF ;;. MF ;;. LF

Source of Ordering

HF =MF > LF .148 .310
Group Q HF > MF =LF .227 .430

HF > MF > LF .625 .260

HF =MF > LF .118 .456*
Group N HF > MF =LF .140 .368*

HF > MF > LF .742 .140*

50 orderings for each group that met these criteria.
An additional problem arose in classifying each

ordering. Subjects were not, for the most part, per­
fectly consistent in generating ratings. Thus, in many
cases there was some doubt as to whether the subject
was discriminating between two dimension values.
Different types of errors in classifying rank orderings of
dimension values are introduced by using nominally,
but statistically nonsignificant, differences in mean rat­
ing and, alternatively, orderings based on only the rating
differences that are statistically significant. Examples
of the nature of this problem can be seen in Table 4.
Because no good solution to this problem is apparent, the
first column (Raw Rating) for each group in Tables 5
and 6 is based on orderings using the numeric differences
(without regard to size of the differences) in ratings,
while the second column (Significant Rating) is based on
orders produced by statistically significant differences.

The data in Tables 5 and 6 permit three basic conclu­
sions. First, the three different order types, HF > MF =
LF, HF = MF > LF, HF > MF > LF, occur with approx­
imately equal frequency. The data in Table 5 do not
demand this conclusion, but, in the light of the problems
in classifying orders noted above, the conclusion seems
reasonable.

The second conclusion is based on the data in Table 6.
The majority of subjects produced more than one
ordering type. It would take a very strange pattern of
errors in classifying orders to alter this conclusion.

Finally, the type of dimension, qualitative or nu­
meric, has no effect on either the overall incidence of
order types or upon the proportion of subjects produc­
ing more than one order type. The data in Table 5 sup­
port this conclusion [largest t(38) = 1.367, p>.1 0],
as do the data in Table 6 (X2 < 1 for both raw ratings
and significant ratings).

Questionnaire data. The data from the questionnaires
filled out by subjects paralleled the data presented in
Table 5. The questionnaire allowed subjects to give two
dimension values an equal rating but it is not clear
that subjects always took advantage of this possibility.
Of the 160 orderings produced by subjects, 75% of the

Table 6
Proportions of Subjects Producing One, Two, or

Three Types of Rank Orderings

orderings had HF > LF. Of these orderings, 86% had
HF > MF, 79% had MF > LF, and 65% had
HF > MF > LF. Note that the percentages are not
directly comparable to the data in Table 5 since, in the
case of the questionnaire data, the category HF > MF
includes, in addition to the ordering HF > MF = LF,
the two orderings HF > MF > LF and the ordering
HF > LF > MF. Presumably, some of the examples
of orderings of the latter two types reduce to
HF > MF = LF if consideration is given to the possibility
that a subject may not have used the procedure for
representing ties. A similar caution is in order for the
category MF > LF.

DISCUSSION

The data from the stimuli used for the test trials
with feedback indicate that subjects were using a con­
ceptual decision rule which was based primarily on
information from the acquisition exemplars. It is un­
likely that subjects learned very much in a rote fashion
from the first two blocks of nine test trials with feed­
back. With the exception of the 4HF and OHF stimuli,
each of the 16 stimuli used for the test trial with feed­
back blocks appeared only once during the first two
blocks. Ratings of these 16 stimuli during the final
block of test trials with feedback and during the final
test series exhibited a stable pattern and level of per­
formance: very clear discrimination between HF and LF
values on all four stimulus dimensions and low but much
greater than chance accuracy in making the "correct"
response. A conceptual mode of responding based upon
the relative frequency of HF and LF values in the acqui­
sition exemplars is more compatible with this data than
a rote recall mode.

The results of the present study are incompatible
with the view that more than a very few subjects, if
any, used a decision rule based on distance of the
to-be-rated stimulus from either a prototype or the
exemplars presented during acquisition (the average
distance model). The basic problem for all distance
models is that type of dimensions, qualitative or nu­
meric, had no effect on the types of decision rules
used by subjects. In order for distance models to pre­
dict this absence of a dimension effect, it is necessary
to make two assumptions: that subjects can make
distance judgments on the dimensions used in the
qualitative group and that the psychological distances
between values on the qualitative dimensions are ex-

Source of Number of Types
Ordering 2 3

G Q Raw Rating .50.44 .06
roup Significant Rating .33 .61 .06

G Raw Rating .53.42 .05
roup N Significant Rating .37 .53 .10

Raw Significant
Rating RatingOrdering



tremely similar to the corresponding psychological
distances on the numeric dimensions. While it is clear
that subjects can judge the similarity to two values on a
qualitative dimension, a procedure equivalent to making
a distance judgment, it is also clear that subjects can
make these judgments using a variety of psychological
dimensions. For example, it is possible to compare the
similarity of mohair, wool, and nylon on the basis of
durability, softness, cost, frequency of usage in clothing,
washability, etc. The similarity of any two values on this
fabric dimension depends completely on the particular
psychological dimension the subject selects for a basis of
judgment. Thus, to predict an equivalence between
qualitative- and numeric-dimension results, it is neces­
sary to assume that the correct proportion of subjects
chose an appropriate combination of psychological
dimensions which had the correct similarity relation­
ships between values. We feel that such a large number
of generally dubious assumptions is inappropriate when
a viable alternative exists. We prefer to simply assume
that subjects were using only frequency of values in
generating ratings.

It could be argued that models based on distance
judgments should be applied only to situations where
the stimulus dimensions have a compelling quantitative
characteristic which the great majority of subjects would
use in making judgments. The stimuli for the numeric
group seem to be such a case. However, prototype
models which use the mean as a measure of central
tendency encounter a serious problem with the data of
this group. Such a prototype model predicts that HF and
MF values should produce equivalent ratings. The data
clearly contradict this prediction; an average of 5Q%, to
88% (cf., Table 5) of the dimension value orderings
produced by subjects in the numeric dimension group
rated HF values higher than MF values.

In all of the above calculations and discussion, it has
been assumed that subjects would use the objective
values of the numeric dimensions in calculating a mean.
We are aware that some researchers believe that scaled
dimension values and some other measure of central
tendency should be utilized in assessing the descriptive
power of distance models. We agree that decades of
psychological research and many recent studies have
shown the need for psychological scales and the power
of multidimensional scaling techniques in recovering
psychological spaces. Indeed, it is likely that the "fit"
of a distance model to the group data and to some
individual subject data could be improved by these
procedures. On the other hand, it is not clear what
would be gained by the application of these procedures
to the data of this experiment. Individual subjects
clearly behave differently than the group data would
lead us to believe, some subjects clearly are not using a
decision function based on distance from a measure of
central tendency (e.g., Subject 8 in Table 4), and using
scaled dimension values still does not address the issue
of the equivalence of the data from numeric and qualita­
tive groups. It seems to us that it is much more parsi-
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monious and accurate to simply point out that subjects
are generally sensitive to differences in the frequencies
of occurrence of values and they adopt a variety of
decision functions utilizing frequency differentials and
probably, in some cases, dimension values.

Individual subjects were unwilling or unable to
utilize all of the information they possessed. From the
questionnaires, it was quite apparent that most subjects
knew that the three stimulus values on each stimulus
dimension occurred with different frequencies. However,
to map reliably the 15 stimulus-equivalence classes
generated by all combinations of HF, MF, and LF values
on the four dimensions into five response classes is an
arduous, if not impossible, task. Not one of the 40
subjects did it. Subjects solved the problem by reducing
the number of stimulus-equivalence classes in one or the
other of two ways, by ignoring some stimulus dimen­
sions or by ignoring frequency differentials within
dimensions. Notice that the rule used by Subject 8 in
Table 4--count the number of HF values and add one to
generate the correct response-works perfectly for the
test trials with feedback of Table 2. As Table 6 indicates,
the majority of subjects were not consistent across
dimensions in how they reduced the stimulus class-to­
response mapping problem. The variables responsible
for this shift in strategy are not known. Stimulus dimen­
sion type, however, was not one of them in the present
study, nor was particular dimension within a type.

The results of Reed (1972) and Reed and Friedman
(1973) appear to be in conflict with those of the current
study. However, there are a number of possible reasons
for the differing results. First, there are methodological
differences, including those cited earlier which involve
characteristics of stimulus dimension distributions.
Furthermore, Reed used a classification task rather than
a rating task, as was used in the present study. While
rating of a stimulus with respect to both categories is
not required as an operation that is logically prior to
classification, the models which fit the Reed (1972)
and Reed and Friedman (1973) data assume the subject
rates a stimulus with respect to each of the available
categories as a basis for classification. Thus, it does not
seem the task difference is the most promising basis
for reconciliation.

Another difference between the Reed (1972) and
Reed and Friedman (1973) studies and the present one
is in the data analysis. All of Reed's conclusions are
based on analyses of group data. The group data for the
present study, as displayed in Table 3, are completely
in accord with a frequency model, which assumes ratings
are a simple function of stimulus dimension value fre­
quencies. Such a model predicts that HF values should
produce higher ratings than MF values and that MF
values should, in turn, produce higher ratings than LF
values. In addition, these group data are clearly incom­
patible with a prototype-distance model, predicting that
HF and MF stimulus values should produce equal rat­
ings. But, as has been stressed above, not one of the
40 subjects responded in complete agreement with the
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frequency model and several, for example, Subjects 8
and 12 in Table 4, were in direct conflict with it. The
group data do not represent the individual subject data;
they are, in fact, a potentially serious distortion of
individual subject data. Given the unusual dimension­
value distributions, the extra-experimental biases, the
varying objective dimensional validities, and other
characteristics of the Reed (1972) and Reed and
Friedman (1973) studies, it is possible that their sub­
jects used a mixture of strategies which fortuitously
produced averaged group data compatible with distance
models.

At the outset, we noted an apparent lack of progress
in extending our knowledge beyond Attneave's (1957)
summary. In one sense, the results of the present study
serve to accentuate our ignorance. Still, there are some
optimistic notes. First, it is possible to examine in detail
an individual subject's performance in probabilistic
concept learning tasks and make some sense out of it.
The individual subject is more complicated than we
typically allow in our theories, but there is order.
Second, the results of the present study demand that,
in studying the acquisition and utilization of concepts,
we attend not only to what is learned but to how the
learned information is used. Subjects in the present
study clearly knew much more than they utilized in
rating stimuli. Finally, Attneave's (1957) evaluation
of what is learned specifies the notion of a central
tendency prototype or schema. The results reported
here indicate that subjects do not necessarily learn a
central tendency. It is indeed possible for the subject
to calculate one if it is required or advantageous, from
a record of frequencies (probabilities or strength) per
stimulus value. In fact, there is no evidence that subjects
have anything in memory before they begin rating
stimuli except the memories of some of the exemplars
they have experienced. It is entirely possible that sub­
jects do not normally judge test stimuli against a proto­
type or schema, frequency or central tendency, but
against the raw memory events, as with the average
distance model (Reed, 1973). While it is beyond the
scope of this paper to prove this assertion, we claim that
there is no evidence of the necessity of a schema to
account for the data of any concept learning experiment
currently in the literature. A frequency model which
assumes every act of remembering is a conceptual infer­
ence based on independent episodic memory traces will
handle the data adequately.

REFERENCE NOTE

I. Hayes-Roth, F., & Hayes-Roth, B. A schematic model of
abstraction. (Tech. Rep, MMPP 74-2). Ann Arbor, Michigan:
University of Michigan, Department of Psychology, December
1973.
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