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Principal components analysis (PCA) of face images is here related to subjects' performance on
the same images. In two experiments subjects were shown a set of faces and asked to rate them for
distinctiveness. They were subsequently shown a superset of faces and asked to identify those that
had appeared originally. Replicating previous work, we found that hits and false positives (FPs) did
not correlate: Those faces easy to identify as being "seen" were unrelated to those faces easy to re
ject as being "unseen." PCAwas performed on three data sets: (1) face images with eye position stan
dardized, (2) face images morphed to a standard template to remove shape information, and (3) the
shape information from faces only.Analyses based on PCAof shape-free faces gave high predictions
of FPs, whereas shape information itself contribute'd only to hits. Furthermore, whereas FPs were
generally predictable from components early in the PCA, hits appeared to be accounted for by later
components. We conclude that shape and "texture" (the image-based information remaining after
morphing) may be used separately by the human face processing system, and that PCAof images of
fers a useful tool for understanding this system.

Psychological research on face recognition has tended
to divide into two broad approaches. One approach has
been to concentrate on cognitive processes following per
ception and to develop information processing models
(see, e.g., Bruce & Young, 1986; Burton, Bruce, & John
ston, 1990; Ellis, 1986; Hay & Young, 1982; Young &
Bruce, 1991). This approach has been very successful in
delineating the stages involved in face recognition; how
ever, each of these models has assumed some perceptual
processing prior to input. Indeed, some information pro
cessing models explicitly require input in the form of
componential face primitives, but remain uncommitted
about the nature of these primitives (see, e.g., Burton,
1994; Farah, O'Reilly, & Vecera, 1993; Valentine, 1991).

Other research by psychologists has investigated the
perceptual processing offace patterns, demonstrating, for
example, how faces seem to be analyzed holistically rather
than by being decomposed into discrete local features
(see, e.g., Bartlett & Searcy, 1993; Rhodes, Brake, & At
kinson, 1993; Tanaka & Farah, 1993; Young, Hellawell,
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& Hay, 1987). However, this research tends not to con
sider the way in which such perceptual processes deliver
codes suitable for the task ofrecognizing individual faces.
In contrast, a growing body ofresearch by computer sci
entists and engineers has addressed this question explic
itly in the quest for artificial face recognition systems suit
able for security and forensic applications. This research
has progressed largely without considering the psycho
logical plausibility of the coding schemes employed.

The aim of the work presented in this paper is to ex
amine the psychological plausibility of one such scheme
for coding face images for recognition-s-the principal
components analysis (PCA) of face images (Kirby &
Sirovich, 1990; Turk & Pentland, 1991). PCA has a num
ber ofcharacteristics that make it attractive as a potential
model for human face image coding, as we elaborate
below,and recent work (e.g., O'Toole, Deffenbacher, Val
entin, & Abdi; 1994) has shown that PCA ofa set of face
images does a good job of accounting for some aspects
of human memory performance with these same images.
Our work with PCA builds on these earlier studies and
shows that it is possible to improve the psychological pre
dictive power of a PCA-based model by incorporating a
preprocessing stage in which the spatial deviation of
each face shape from the average (its "shape") is coded
separately.

In this introduction we will first consider the evidence
that PCA belongs to the right class of image analysis
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schemes for psychological plausibility and then consider
details of the approach itself. We will then consider the
way in which a PCA-based system might in principle
allow us to implement psychological theories of face
space and norm-based coding. This introduction moti
vates the new experimental and image analysis work pre
sented in this paper.

Evidence for Image-Based Face Coding Schemes
Recently a number of researchers have attempted to

understand how the human visual system analyzes and
stores face images in order to relate image analysis to
psychological aspects of face processing. In these stud
ies, researchers have evaluated a particular candidate for
face primitives with respect to human performance data
on faces. For example, a number of researchers have ex
amined the potential of simple Euclidean measures such
as length of nose, width of mouth, and so on (see, e.g.,
Rhodes, 1988). Combinations of such measures taken
from a large corpus offaces have been used to derive in
dices corresponding to human judgments of sex (Bruce,
Burton, et al., 1993; Burton, Bruce, & Dench, 1993) and
to human judgments of distinctiveness (Bruce, Burton,
& Dench, 1994). In both these projects, the authors con
cluded that primitives based on these Euclidean dis
tances alone are probably insufficient for understanding
internal representations of faces.

A rather different approach, influenced by the 3-D
model-based approach to visual object recognition (see,
e.g., Biederman, 1987) was taken by Bruce, Coombes,
and Richards (1993). These authors examined the psy
chological plausibility of a 3-D surface-based coding
scheme in which each face was described as a spatial dis
tribution of 3-D surface primitives such as peaks, pits,
valleys, and ridges. While it can be shown that variations
in surface descriptions covary with psychological dimen
sions (Bruce, Burton, et al., 1993; Bruce, Coombes, &
Richards, 1993), the observation that face recognition is
highly error prone when faces are displayed as surface
images devoid of texture or pigmentation (Bruce et al.,
1991) suggests that the face primitives used for recogni
tion of faces cannot be based on 3-D shape descriptions'
alone.

For a coding scheme to have psychological plausibil
ity, it must be able to account for the difficulty that peo
ple have with recognizing faces shown in certain for
mats. For example, recognition is extremely difficult
when faces are portrayed as line drawings in which major
(e.g., mouth) and minor (e.g., wrinkles) face features are
traced (Bruce, Hanna, Dench, Healy, & Burton, 1992;

Davies, Ellis, & Shepherd, 1978). It is difficult to ex
plain why such drawings are so difficult to recognize if
our coding of faces is based on Euclidean metric mea
surements, which should be preserved in such drawings.
Recognition of line drawings of faces improves dramat
ically if they contain information about areas of relative
dark and light from the original image, as well as edges
(Bruce et al., 1992). Similarly, face recognition.is drama
tically impaired if faces are shown in photographic neg
atives (Bruce, Burton, et al., 1993; Hayes, Morrone, &
Burr, 1986), even though a negative image ofa face pre
serves the spatial layout of the face. Such observations
suggest that human facial image coding incorporates in
formation about image intensities themselves, and not
just the spatial layout of changes in image intensity. The
relative pattern of light and dark within a face conveys
important discriminating information about such things
as hair and skin color, and 3-D shape from patterns of
shading and shadows.

PCA is one example of a scheme that codes image in
tensities and that does not decompose faces into local
ized features. O'Toole and her colleagues have per
formed PCA on facial images and related these to human
performance on recognition ofown and other-race facial
images (O'Toole et al., 1994), and on human performance
in sex judgments (Abdi, Valentin, Edelman, & O'Toole,
1995). Results from these studies have been promising;
it appears that PCA may provide a plausible candidate
for the notion of facial primitives.

The PCA Approach and Shape-Free PCA
The basic technique of PCA on images offaces is now

well developed (Kirby & Sirovich, 1990; Turk & Pent
land, 1991). A set of facial images is collected and reg
istered (e.g., by normalizing the position of the eyes for
each face). These images may then be considered as a
one-dimensional array ofpixel values (gray levels). Cor
relations are taken between these images, and the coeffi
cients of the principal components (eigenvectors, some
times known as eigenfaces) are extracted. The coefficients
have the same dimension as each of the input images,
and may be displayed (Figure 1). As the images are pre
processed to have a zero mean, the eigenfaces code devia
tions from the mean, and have a rather ghostly appearance.
The first eigenface codes the direction ofmaximum vari
ance in these images. The second codes the direction of
maximum variance after that accounted for by the first
has been removed. They are difficult to interpret visu
ally, but some features may be observed. In the forehead
area of the images in Figure 1, the first and third com-

Figure I. The first 4, the 20th, and the 40th eigenfaces generated from the complete set of 174 full images.
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ponents appear to reflect overall fringe length, whereas
the second and fourth are lopsided, corresponding to in
dividuals with hair on only one side of their forehead.
Note that the sign with which the images are displayed is
not significant, so we cannot say that the first component
makes the whole forehead lighter, while the second makes
the left (as we look at it) side darker, but only that the
first is symmetrical, the second not. Note also that the
later eigenfaces apparently carry finer detail. This is con
sistent with the suggestion by 0 'Toole et al. (1994) that
the later components carry information about identity.

Each of the faces in the corpus generating the compo
nents may then be reconstructed by a weighted sum of
the eigenvectors. Similarly, new faces may be stored as
a weighted sum of eigenfaces. This offers a mechanism
for compact storage of face images. A full PCA of a set
of 100faces will generate 99 components (plus the mean
pixel values). Because the early components capture
most of the variance, it may be possible to produce visu
ally acceptable regenerations of the images from, say,
only 50 components. This almost halves the required
storage, requiring only the 50 eigenface images, and then
50 component values for each face. New faces may then
be coded using the existing 50 eigenfaces, requiring stor
age of only the 50 component values for each additional
face. How well a new face is regenerated will depend on
its match to the original corpus. A face that differs sig
nificantly, for instance, in race, may well be rather poorly
coded. This characteristic of PCA will be exploited in
the studies reported here.

The compact principal component coding of a face
forms the basis of PeA-based face recognition. The

match between a novel face image and an existing data
base is performed in the reduced space of the coded im
ages. Our interest here is not an attempt at face recogni
tion per se, but an investigation of the psychological
plausibility of eigenface-based representation of faces.
Some researchers have already noted that particular eigen
faces appear to code particular facial characteristics. For
example, O'Toole, Abdi, Deffenbacher, and Bartlett
(1991) have shown that information about the sex of a
face may be present in the early eigenfaces (those with
the largest eigenvalues).

Although analysis based on image characteristics may
have psychological plausibility, it brings with it a num
ber of problems that arise from the specific characteris
tics of the images used to create the corpus offaces. It is
usually acknowledged that some preprocessing of im
ages is required, for example, in order to normalize in
tensity values. In the following experiments, we present
data from a different type of preprocessing. Before sub
jecting face images to PCA, we first eliminate any devia
tion they have from the average shape ofthe corpus. This
technique, introduced by Craw and Cameron (1991), is
illustrated in Figure 2. One first defines a set of key points
that are located for each face. An average value is calcu
lated for each of these points, and a grid is constructed,
corresponding to the average face shape. The same points
are used to construct a grid for each facial image. This
grid is then morphed into the averaged shape using sim
ple interpolation. The result is an image that has standard
shape, called a "shape-free face" by Craw and Cameron.

There are several computational advantages of using
shape-free faces for PCA. Previous researchers have sub-

Figure 2. (left) The set of control points used to define the positions offeatures around each face. (right) The same face, morphed to the av
erage shape, with background removed.
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jected whole images to principal components analysis,
including backgrounds that are sometimes noisy (e.g.,
Turk & Pentland, (991). Once all faces have the same
shape, it is simple to separate face from background and
to analyze only the face. Second, when reconstructing a
face, one can add the components derived from shape
free faces in linear fashion without changing the overall
shape of the face. Combination of components from
shaped images leads to blurred edges due to contribu
tions from components derived over a range of face
shapes. Finally, in extracting the shape from a face, one
can independently examine the contributions ofshape-
the spatial deviation of each face from the average-and
"texture." We use the word texture in this paper as a
shorthand way to cover all the image information that re
mains in the shape-free face-that is, color information
and the fine-scale features unaffected by the shape aver
aging. It is important to note that our use of the word tex
ture is more restricted than its more conventional usage
in psychology. As we will elaborate next, the use of PCA
to derive a set ofdimensions along which faces vary, and
the separate analysis of shape and texture, provide a pos
sible means of implementing psychological theories of
face space and norm-based coding using a coding scheme
that is sensitive to low-level image properties.

Face Space and Norm-Based Coding
Much of the recent literature on face recognition has

(often implicitly) relied on the notion of face space
that is, the notion that there are a number of dimensions
along which faces vary, and that a face can be uniquely
represented as a point, or vector, in that space. This no
tion was made explicit by Valentine (1991), who provi
ded an account of facial distinctiveness in these terms
(among other effects). The phenomena associated with
distinctiveness in face recognition are well documented.
Unfamiliar faces that subjects have rated as being dis
tinctive tend to be remembered better (in a recognition
paradigm) than faces that have been rated as typical. Fa
miliar faces that have been rated as distinctive tend to be
recognized (as familiar) faster than familiar faces that
have been rated as typical (Valentine & Bruce, 1986b).
The explanation of these effects in terms of face space
proceeds as follows. Faces rated as typical will tend to
have common values on dimensions defining face space.
This means that typical faces will be clustered together.
Distinctive faces, on the other hand, will tend to be rela
tively isolated in face space: a corpus ofdistinctive faces,
by definition, has few faces that look similar. Valentine
(1991) has argued that the relative isolation ofdistinctive
faces makes them easier to recognize than typical faces,
because there will be fewer competitor faces in the rele
vant region of face space.

This discussion of face space has proceeded without
any reference to the actual nature of the dimensions
along which faces vary: What are the dimensions of this
space? The central aim of this paper is to examine the
possibility that the dimensions along which faces vary
can be captured in a PCA of images. This is a very dif-

ferent approach from that taken by other workers in this
field. For example, discussing the nature of face space,
Valentine (1991) stated that "previous work using multi
dimensional scaling techniques suggests that the princi
pal dimensions needed would represent hair colour and
length, face shape and age" (p. 166). In this paper, we ex
amine the possibility that faces may be coded on dimen
sions extracted from PCA of face images, rather than cor
responding to these commonsense dimensions. Ofcourse,
this does not rule out the possibility that dimensions ex
tracted from PCA may themselves have a strong relation
with dimensions such as hair length, used in everyday
life descriptions of faces.

Among adherents to this view of face space, there is
disagreement about the nature of representation. Valen
tine (1991) has contrasted norm-based and exemplar
based coding. Norm-based coding refers to the idea that
faces are encoded as a vector in face space, with refer
ence to a central norm calculated as the average of the
known population of faces. This idea has been used to
account for caricature effects in face recognition. Rhodes,
Brennen, and Carey (1987) showed that faces distorted
away from a central mean may, in some circumstances,
be recognized more accurately (and faster) than a veridi
cal image of a face (see also Benson & Perrett, 199I).
This has led to the suggestion that faces are coded as de
viations from a central tendency ofone's known popula
tion of faces. In contrast to norm-based coding, some re
searchers have used the idea of exemplar-based coding
(Nosofsky, 1986) to capture the notion that faces are
coded in face space, but without reference to a central
norm. Valentine and Endo (1992) have produced some
preliminary evidence, based on the other-race effect, that
faces may be coded without reference to a central norm.

In the absence of any concrete proposals about the
nature of underlying dimensions of face space, it is dif
ficult to separate predictions from the norm-based and
exemplar-based views. In this paper we will not address
this distinction. However, it appears to us that the use of
PCA on shape-free faces does, for the first time, offer the
possibility of a computational account of norm-based
coding. If there is, indeed, a central norm for our set of
known faces, one way in which faces deviate from this
norm consists in the differences among their shapes. In
the analyses presented in the second halfof this paper we
shall show that it is possible to examine this type of de
viation independently from deviation due to the texture
of a face (e.g., the variance due to different coloration).
By preprocessing facial images to remove variance in
shape (and by separately analyzing this information), it
is possible to measure variability from a central norm
due to these different types of information.

In this paper we test the ability of a PCA-based cod
ing scheme operating on whole faces and separately on
"shape" and "shape-free" faces to account for variations
in the rated distinctiveness offace images and to account
for variations in human memory performance with the
same face images. Before describing these investigations,
however, we must introduce some complications that
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arise in the relationship between rated distinctiveness and
measures of memory.

Distinctiveness
It is most people's intuition that there should be a

straightforward mapping between the dimension that
subjects respond to when asked to rate face typicality!
distinctiveness, and memory performance with faces.
Faces that are highly distinctive in appearance (e.g., a
face with a long red beard) should-one might think
be highly memorable and rarely give rise to false alarms
when presented as distractors. Faces that are very typi
cal in appearance should be less memorable but more
likely to give rise to false alarms. In fact, this intuition
turns out to be wrong. Vokey and Read (1992) discovered
that rated typicality (cf. distinctiveness) is in fact com
posed of two orthogonal components, one coding famil
iarity, and another coding memorability. By decomposing
subjects' ratings of faces, they showed that the tendency
to rate a face as familiar ("context-free familiarity") dis
sociates from the tendency to rate the face as being mem
orable. This finding was replicated by O'Toole et a!.
(1994). These researchers found that for faces from one's
own race, ratings to the question, "Is the face confusable
with someone you know?" dissociate from ratings to the
question, "Is the face easy to remember?" Bruce et a!.
(1994) revealed a similar dissociation in memory per
formance rather than in ratings. Rated distinctiveness of
faces correlated positively with hit rates to these items
and negatively to rates of false positives (FPs) when the
faces served as distractors, but there was a zero correla
tion between hit rates and FPs to the same items.

Bruce et a!. (1994) used pictures of faces devoid of
hair. In this paper, we first report our replication of the
finding of two orthogonal components of typicality, ob
tained by using more natural images offaces shown with
hair. We then go on to examine the possibility that PCA
decomposition of facial images captures the important
dimensions on which faces vary. We relate this decom
position to human performance on the same images. Our
particular aim was to establish whether the two indepen
dent components of typicality (memorability and famil
iarity) can be accounted for independently by PCA de
composition. In the course of this exploration, we shall
examine whether separate components of a face reflect
ing its shape and its surface texture give rise to different
effects in the two components of typicality.

EXPERIMENT}

Method
The aim of this experiment was to gather distinctiveness and

memorability ratings on a set of faces to be used for the subsequent
image analysis with PCA.

Materials. One hundred seventy-four black-and-white photo
graphs of young adult males, normalized for interocular distance
and eye position, were selected from the Aberdeen Frame Face
Database (Shepherd, 1986). The people photographed had no fa
cial hair or spectacles, had a neutral expression, and their clothing

was concealed by a dark gown tied at the neck. Photographic sub
jects were looking directly at the camera, in diffuse lighting.

Subjects. Thirty-four volunteer students, male and female,
were paid to take part in the experiment.

Design. The image set was divided, at random, into two sets of
87 images, Set A and Set B. Subjects were asked to rate the faces
in one of these subsets for distinctiveness by answering the ques
tion: "How easy would it be to spot this person at a train station?"
The rating set was preceded by a familiarization set of nine faces
drawn from the same population but not used in further analysis.
This served three purposes: to orientate subjects on the type of
faces and likely range of distinctiveness to be used; to acquaint
them with the methodology (clicking a response box with a mouse
pointer); and to reduce primacy effects in the following recall
stage. Responses were made on a scale of I to 10. Subjects were
allowed to study each face for as long as they wished. Presentation
order was randomized independently for each subject. This task
has been used to collect ratings of distinctiveness in several previ
ous studies (e.g., Bruce et aI., 1994; Valentine & Bruce, 1986a,
1986b).

Following this rating stage, subjects were asked to take part in a
separate experiment (on object recognition) lasting about 10 min
utes. They were then unexpectedly presented with the complete set
of 174 faces, in sequence, and asked for each face, "Did you see
this person before?" Subjects responded on a 10-point scale: I =
certain I did not see the face before, 10 = certain I did see theface
before. Once again, presentation of test faces was randomized in
dependently for each subject.

This technique allows a number of direct measures to be taken
for eachface. First, it allows a mean distinctiveness rating, derived
from the subjects rating faces in a particular set. Second, it allows
a measure of hits corresponding to the certainty score of subjects
who actually saw the face in the learning phase. Third, it allows a
measure of false positives corresponding to the certainty score of
subjects who did not see the face in the learning phase.

Results
Table 1 shows the mean ratings for subjects exposed to

each half of the set offaces. The two sets show very sim
ilar levels of distinctiveness, hits and false positive rat
ings. Table I also shows estimates of d'and criterion.
These estimates are calculated by taking hit and false
positive scores for each face, counting responses of6 and
above as positives and responses of 5 and below as neg
ative. Table 1 shows mean d' for faces that appeared in
each of the two sets. Because we are averaging the results
of single observations from each subject, the d' values
are likely to be underestimated. However, the average d'
value of 1.37 is remarkably similar to the value of 1.36
reported by O'Toole et a!. (1994), who used the same
calculation for a very different set of faces. Table 2
shows the correlation between the average subject re
sponses for each face, broken down by subset, and
jointly. These correlations once again demonstrate that
whereas distinctiveness is correlated both with hit and
distractor ratings, hit and distractor ratings are them
selves uncorrelated. Figure 3 shows scatterplots of the
data. This replicates a study using a different set offaces
with hair concealed (Bruce et a!., 1994), and again pro
vides further support for the dissociation first described
by Vokey and Read (1992). We have since replicated this
pattern ofdata in two further studies in our laboratory, in
one of which we used much smaller memory sets (16 tar-
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Table 1
Mean Scores for the Two Sets of Faces

gets and 16 distractors), so it does not seem to arise as a
consequence of the large memory load. Furthermore, as
we describe below, the dissociation does not appear to
arise from order effects.

Further Analysis
In later sections of this paper, the images used in Ex

periment I will be analyzed with PCA. The intention is
to establish whether PCA provides any account of the
psychological dimensions revealed here. However, be
fore describing these image analyses, we briefly report
some further analyses of the data from this experiment.

Dimensions of subject performance. The striking
finding in the data presented above is that hit and false
positive scores dissociate. This means that faces that are
easy to remember if subjects have seen them are not nec
essarily the faces that are easy to reject if subjects have
not seen them. This finding has been treated in different
ways by researchers in the past. Bruce et al. (1994) tried
to account directly for the dimensions corresponding to
hit and false positive scores observed in human data. In
contrast, Vokey and Read (1992) used factor analysis on
their subjects' ratings of typicality, memorability, at
tractiveness, familiarity, and likeability (this is the stan
dard use of PCA for data reduction, not for face images)
to derive two orthogonal components that they labeled
"memorability" and "context-free familiarity."

In the analyses presented below, we have examined
both direct and derived measures ofhuman performance.
In order to explore the structure of the data presented
above, we performed factor analysis on the rating and
performance data from these studies (note the contrast
with the purely rating data of Vokey and Read, and of
O'Toole et aI., 1994). From the three scores available
from each face (distinctiveness rating, hit scores, and
false positive scores), we extracted two orthogonal fac
tors. Table 3 shows the correlations between these fac
tors and the subjects' rating and performance scores.

The first factor is heavily loaded onto distinctiveness,
and also onto d', thereby justifying its label of memora
bility. As in the study by Vokey and Read (1992), we ap
pear to have extracted a component that codes the abil-

Distinctiveness Hit Score False Positive Score d'

ity of subjects to recall having seen a face. The second
factor is uncorrelated with both distinctiveness and d',
but is heavily loaded onto criterion-the subjects' re
sponse bias for each face. This appears to capture the di
mension labeled context-free familiarity by Vokey and
Read; that is, it seems to capture the tendency for sub
jects to claim that they have seen the face before, irre
spective ofwhether or not it appeared in the learning set.

Because there is no very good reason to claim that ei
ther the direct subject data (distinctiveness, hits, false
positives) or the derived data (memorability and context
free familiarity) should act as the standards against
which subsequent performance of image analysis should
be measured, we will examine the relation between PCA
on images and both of these types of measure in later
sections.

Between-subjects variability. Before attempting to
relate subjects' data to the properties of the facial im
ages, we need to examine the consistency of subjects.
There are two reasons why this is necessary. First, we
need to know whether there is general agreement about
whether a face is distinctive, and whether the same faces
are rejected or remembered. A general agreement would
indicate (at least the possibility) that the measured di
mensions have something to do with the faces them
selves, rather than with idiosyncratic subject variables.
Second, we need a measure against which to examine our
subsequent analysis. Any analysis derived by synthetic
means can be expected to correspond to subject data only
to the extent that there is agreement among subjects.

In order to examine the consistency of subjects, we
carried out further analysis of the data from distinctive
ness, hit, and distractor scores. There are two plausible
ways to examine consistency. The first two rows in
Table 4 show the mean correlations between every pair
of subjects within each group (each mean being com
posed of 136 correlation coefficients). The second two
rows in Table 4 show a measure of consistency of sub
totals of subject performance. Each group was split into
two subsets (of8 and 9 subjects), and the mean scores for
each subset were correlated. This procedure was re
peated 12 times with different random divisions into
subsets. The second two rows in Table 4 show the mean
correlations derived from this measure.

Table 4 shows an initially surprising result. The sub
jects appear to have been relatively consistent when as
signing distinctiveness scores. On the other hand, they
were much less consistent in terms of which faces they
remembered from the learning phase. The measures in

1.48
1.25

3.58
3.79

6.95
6.96

5.67
5.8

Set A
Set B

Table 2
Correlations Between Subject Responses

Distinctiveness- Distinctiveness- False Positive-
Hit False Positive Hit Distinctiveness-d'

SetA
Set B
Both

.55

.4

.49

-.39
-.42
-.4

-.17
.06

-.08

.51

.5

.5

Note-Critical value r = .21 for Sets A and B, .15 for combined set.
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Figure 3. Scatterplots for all 174 faces showing (a) positive correlation between distinctiveness and hit score, (b) negative correlation be
tween distinctiveness and false positive score, and (c) lack of correlation between hit and false positive scores.

Table 4 show a consistent pattern. The measure of dis
tinctiveness has the highest consistency between sub
jects, followed by the false positive score, with hits show
ing the lowest consistency across subjects.

Despite this generally stable pattern of consistency,
the overall levels are disappointingly low. The demands
of this task were quite high on subjects; recall that sub
jects first rate a set of87 faces, and subsequently have to
rate a superset of 174 faces for whether they have been
seen before. It is possible that the very large numbers of
faces seen may have given rise to inconsistent behavior.
Since the order ofpresentation was randomized indepen
dently for each subject, any effect of tiring would affect
faces inconsistently.

We considered two artifactual reasons why subjects
should fail to agree on hits. The first was the time spent
studying each face during the rating phase. It seems
plausible that faces looked at longer for some reason
would be recalled better. However, analysis showed
only 1 subject for which there was a significant correla
tion between observation time and hit score. Viewing
time can therefore be eliminated as an explanation.

The second possible reason for the low consistency of
hit scores is the randomized order of presentation. Al
though the initial display of nine faces in the familiar
ization phase should reduce possible primacy effects, it
still seems possible that recency, or residual primacy ef
fects, might have affected recall. A plot of order of pre
sentation during the rating phase against hit score
showed no such list-end effects, and we concluded that
this was not a significant source of intersubject differ
ence. However, a plot of hit score against presentation

order during recall showed a significant negative corre
lation (r = - .38, p < .05), as did a plot of false positive
scores (r = - .32, p < .05). A possible explanation for
this is that subjects were aware that half the test faces had
been presented for rating. Because many of the faces were
quite similar, subjects might have responded positively
at the start of the test, but increasingly negatively as their
subjective ratio of hits became depleted. Whatever the
reason, the tendency would contribute to the observed
lack ofcorrelation between subjects. We therefore repli
cated Experiment 1, but used fewer items and consistent
ordering.

EXPERIMENT 2

Method
A subset of 80 of the previous faces were used: the top 10 and

the bottom 10 faces rated for distinctiveness from Experiment I,
and IS each from the four intermediate ranges (4-5, 5-6, 6-7,
7-8). The ends of the range are thus overrepresented, relative to
the population for Experiment I. Twelve volunteer student subjects
were recruited. None had taken part in Experiment I. The proce
dure was exactly as in Experiment I, except that the faces were
presented in the same order on each occasion.

Results
As with Experiment 1, we present the data on consis

tency of subjects in two ways. Table 5 shows the mean
correlations for each pair of subjects (15 pairs for each
set). Table 5 also shows the grouped averages: Each group
of 6 was split in half in each of the 10 possible ways to
give average ratings values for each of the scores. As ex
pected, the pairwise results were higher than those in

Table 3
Correlations Between Two Orthogonal Factors and the Human Data

Factor Distinctiveness Hit False Positive d' Criterion

Memorability .93 .66 -.6 .74 - .06
Familiarity .08 .60 .75 -.16 -.9

Note-Critical value r = .15.
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Table 4
Mean Intersubject Correlations, Experiment 1

Set Distinctiveness Hit False Positive

Pairwise Correlations

A .28 .09 .13
8 .23 .04 .17

Subset Correlations

A .79 .45 .63
8 .71 .28 .56

Note-Subset correlations were produced by random split.

Table 4. Removing the order effects and reducing the set
size increased subject consistency. The grouped results
are lower than those of Table 4 because of the smaller
group sizes. However, the pattern ofresults is exactly the
same as in Experiment 1: Subjects were most consistent
in their distinctiveness ratings, followed by false positive
scores, and least consistent on the hit rates. The same
pattern of correlation is observed between the three sets
of data for each face: a significantly positive correlation
between distinctiveness and hit score (r = .27, P < .05),
a significantly negative correlation between distinctive
ness and false positive (r = - .36, p < .05), and a non
significant correlation between hit and false positive
scores (r = - .21, p > .05).

DISCUSSION
Experiments 1 and 2

In these experiments, we showed that hit rate and false
positive scores were uncorrelated in subject data. This
puzzling effect seems well grounded, as it has been
demonstrated in ratings data as well as performance
data, and we have replicated our performance data in
several different studies, including one with only 16
faces in the rating set. In the next section we attempt to
account for this effect.

In Experiments 1 and 2, we also showed that there was
a robust pattern in the consistency of subjects. Subjects
were in relatively high agreement about which faces
were distinctive, behaved less consistently in false posi
tives, and were least consistent in their hits. This leads us
to make the following tentative proposal. It is possible
that subjects make distinctiveness ratings on the basis of
two dimensions, and that these are reflected in the hit and

Table 5
Mean Intersubject Correlations, Experiment 2

Set Distinctiveness Hit False Positive

Pairwise Correlations

A .35 .25 .30
8 .42 .14 .21

Subset Correlations

A .68 .44 .59
8 .68 .32 .44

Note-Subset correlations were produced by splitting groups in half.

false positive scores. The larger consistency of false
positive scores may reflect a general property of these
faces-perhaps their similarity to the population of faces
as a whole. The hit score, on the other hand, may reflect
idiosyncratic knowledge offaces by subjects. It is possi
ble that certain subjects remember particular faces be
cause they are similar to someone known to the subject.
This may explain the inconsistency of these ratings.

This suggestion is clearly speculative, and we shall re
turn to a discussion of these issues at the end of the
paper. We now turn to an analysis of the images used in
these experiments.

ANALYSIS OF IMAGES

In the sections above, we have presented data from
subjects who were shown sets of facial images. In this
section we shall present analyses of these images them
selves. The aim is to establish whether characteristics of
these images can be found that might account for pat
terns in the human data. As described in the introduc
tion, we are particularly interested in the possibility that
PCA of facial images can reveal aspects of faces that
predict psychological effects. This issue has been ad
dressed by O'Toole et al. (1994) in respect to the other
race effect. These researchers found that the advantage
for recognition of faces from one's own race can be cap
tured in PCA analysis of images, assuming a larger ex
posure to one particular race. In the present paper, we
aim to examine the relation between PCA and the psy
chological data on distinctiveness. In particular, we aim
to explore the possibility that PCA can account for the
separate effects of hits and false positives, as described
above. In addition to extending the range of psychologi
cal data addressed by PCA, we shall also examine the
possibility that the separate analysis of shape and texture
may inform this analysis.

The aim ofPCA is typically to reduce the dimensional
size of the input set. Given the procedure of ordering
components, most of the variance is captured by the
early factors. In the studies that follow, we shall usually
consider only the first 20 eigenfaces, as our observa
tions are that the first 20 dimensions are sufficient to
capture most of the variance in the input set. However,
we shall analyze this more explicitly in a later section.

Having performed PCA on images, we will use two
types of information to relate the images to psychologi
cal data. First, we can analyze the PCA outputs for a par
ticular face: What are the weights allocated to it for each
derived eigenface? We refer to this set of values as the
face's spectrum. Second, we can ask how good the cod
ing is of a particular face. If, for example, we were to re
construct a face from its spectrum of (say) the first 20
outputs, how well would the face be reconstructed? We
refer to the measure derived in this way as the recon
struction error of a face .

In order to conceptualize this more clearly, consider
the psychological dimension of distinctiveness. PCA
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captures a particular notion of distinctiveness: that of
being a long way from the mean value. Specifically, it
identifies the axes with maximal variance. If, in captur
ing variations from the mean in either the image gray
levels or the measured shape of the face, PCA captures
something of what our subjects regard as distinctive,
then faces rated as distinctive should tend to have large
component values. In other words, we might expect that
distinctive faces are allocated values that are distant
from the mean on some of the components. If we now
consider reconstruction errors, we might predict that dis
tinctive faces are coded less well by the early eigenfaces,
precisely because the early components capture varia
tions common to many faces, which distinctive faces, by
definition, do not share so much. Distinctive faces should
therefore have high reconstruction errors. We shall in
vestigate both these possibilities in the following sec
tions, as well as consider the relation between PCA and
the other psychologically derived measures.

Finally, there is an added complication in considering
PCA of images. The above discussion assumes that the
same set of images is used to generate PC coefficients and
for subsequent testing. However, it is equally plausible to
generate principal components with one set of images
and to code a new set on the components generated. In
this case, we refer to the outputs as the reflection of the
second set through the components ofthe first. This pro
cedure may be seen as more similar to the human exper
iment, in which experience derived from previously seen
faces is brought to bear on a novel set. It can be used to
generate data for either the spectrum or reconstruction
error analyses described above, and in the following we
shall examine both same-set and reflection data.

PCA offers a possible explanation of the dissociation
between well-remembered and well-rejected faces. It
might be expected that faces that are badly coded by the
system (human or computer) would be poorly remem
bered. Such a face would be regarded as distinctive, in
the sense ofhaving a high reconstruction error. It should
be easy to reject such a face, on the grounds that, by de
finition, it is outside the range of familiar faces. These,
then, would be the faces that are distinctive and well re
jected but poorly remembered. Conversely, a high PC
spectrum output from a face that is distinctive, but
within the space coded by the coefficients, might corre
late with those that are better remembered due to partic
ular similarity to individual faces known by the subject.
Unfortunately, this is difficult to test experimentally, be
cause the population of known faces will differ among
subjects. For a distinctive face in the test set to be well
coded by the PCs would require another similar distinc
tive face to be present in the generation set, which, given
the modest size of the sets, seems unlikely.

Materials: Image Processing
For computer processing, the 256 X 256 images shown

to the subjects were reduced to 64 X 64 with 256 levels
of gray. In the following analyses, PCA is performed on
both untransformed and shape-free images. To generate

the shape-free images, a shape map for each face was de
fined manually, specifying the X-, y-coordinates of35 lo
cations of features, such as eyes and nose, and the pe
riphery of chin and hair (Figure 1). These coordinates
were used to produce shape-free face images by "mor
phing" to the average shape using bilinear interpolation.
The background of both shaped and shape-free images
was removed by setting the pixels outside of the area
bounded by the shape map to zero.

Multiple Regression
We first attempt to account for the human data using

multiple linear regression. The approach adopted is to
use PC outputs (i.e., spectrum values) for each face to
predict the human data. Taking distinctiveness as an ex
ample, we might expect there to be large correlations
(multiple R) between the absolute spectrum values and
distinctiveness. This is because, as explained in the pre
vious section, we might predict that faces rated as dis
tinctive will have large (discrepant) values on some or all
of the components.

Intuitively, large absolute values of PC outputs might
contribute to a face's distinctiveness, given that distinc
tiveness may lie on both sides of the mean. However, in
this study we. were also attempting to predict other
human data. We used PC outputs to predict the data col
lected on hit and false positive scores and also to predict
the derived dimensions labeled memorability and context
free familiarity (see above). In contrast to distinctive
ness, there is no simple intuitive relation between these
scores and PC outputs. We therefore used both absolute
and raw (signed) PC outputs as predictor variables in the
following study.

Whole face set. In the first multiple regression study,
we used the first 20 components derived from a PCA ofthe
entire set of 174 images. The somewhat arbitrary deci
sion to use 20 components was based on the observation
from initial tests that there was little sign of consistent
correlations between any higher components and the
subject rating data. Both raw and absolute values were
entered as predictor variables. Variables were entered by
stepwise addition, with the criterion that to enter a vari
able must increase the multiple R significantly (F> 3.84).

In order to study the relative contributions of shape
and texture to these correlations, we repeated this proce
dure four times, using predictor variables from PCA of
four different sources. These were as follows: (1) the
original images, adjusted to bring their eyes to the same
coordinates; (2) the shape-free images, morphed to fix
the coordinates of 35 locations; (3) the shape vectors
the set of 35 (x,y) pairs for the morphing coordinates;
and (4) the first 13 components from the shape-free im
ages and the first 7 from the shape vectors.

Data Set 1 gives a measure of this technique for un
transformed facial images, and Data Sets 2 and 3 analyze
face texture and face shape separately. Data Set 4 repre
sents an attempt to recombine shape and texture after
separate PCA on these two sources. If these two aspects
of a face are analyzed separately, each must undergo the
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PCA before being brought together. This ratio of texture
to shape components (approximately 2: I) was chosen on
the basis ofan inspection of the correlations given by in
dividual component outputs, which were mostly low for
shape components higher than 7 (see also Table 8). Note
that the shape vector has only 70 entries per image. Ex
tracting 20 components from this set accounts for much
more of the total variance than 20 components of the
4,096-dimensional-image data. We used the same num
ber of components to facilitate comparison between the
resultant multiple-R values.

The multiple-R values between the component out
puts and the human data for these four cases are shown
in Table 6. With 40 variables, it is to be expected that
some apparently significant correlations will arise by
chance. An estimate of this chance level of multiple R
was obtained by randomizing the order of the human
data and rerunning the multiple regression. This was re
peated 100 times, giving an average multiple R of .28,
which we take to be chance performance.

There are several points to note from this table. Dis
tinctiveness is predicted at reasonably high levels by all
the different types of data. As might be expected, re
moving the shape from the images reduced the level of
prediction achieved (multiple R = .51 vs. .40), and the
shape-alone and shape-free images achieved roughly
equivalent levels of prediction (.40 vs. .42). Hit scores
were predicted poorly (at chance) by the shape-free and
shape-alone data, and better by the full (untransformed)
data, and by the combination of shape and shape-free
data. Perhaps the most surprising results come from pre
dictions of false positives. It seems that removing the
shape from a face makes a substantial improvement in
the correlation with false positive scores (multiple R =
.36 vs..50, F test, p < .01). Furthermore, the shape vec
tor alone does not predict FP rates at above chance lev
els. Finally, the derived components memorability and
familiarity behave similarly to distinctiveness and false
positive, respectively. Using some components from
both shape vector and the shape-free images appears to
give the best of both, with correlations for all the subject
data being near their best.

We are unable to claim too much from these results,
due to the dangers inherent in multiple regression. These
are highlighted by the results for hit score, one of which
is considerably below the value expected by chance.
Small variations in the data may make the difference
between a variable entering the equation or not, with
consequent effects on the reported multiple R. Al
though differences such as those between .51 for dis-

tinctiveness and .33 for hit score with full faces or 040 for
distinctiveness and shape free are formally significant
(F test, p < .01), the evident noise makes such compar
isons unconvincing. We therefore adopted the following
method.

Random segmentation of the face set. The set of
faces was split randomly in half. One half was used to
generate PC coefficients. These coefficients were then
used to analyze the other half. The outputs obtained were
used to perform multiple regression on the correspond
ing human data. This process was repeated 100 times to
obtain average multiple-R values. It is not usually safe to
average correlation coefficients because of their non
normal distribution; furthermore, the samples are not in
dependent, being drawn from the same complete set.
However, we have no reason to suppose that the distri
bution ofcorrelations for the various human data will be
different. Averaging should therefore not affect the rank
ordering of the correlations obtained, and we shall con
centrate on this ranking below. Averaging serves to
smooth out the effects of random correlations and pro
duces a clearer pattern of results, shown in Table 7.

Estimates of the chance correlation were obtained as
before, by randomizing the order ofthe human data and re
running the multiple regression for each of the 100 seg
mentations of the data set. They came out very consis
tently, with none differing significantly from an overall
average of .336. This number is larger than the value of
.28 obtained above, because we were using only half the
faces on each test. For these randomized controls, an
analysis of variance comparing 100 runs from each of
four preprocessing methods over five subject variables
showed no effect of variable (distinctiveness, hit, etc.)
[F(4,396) < 1], no effect ofpreprocessing (shape, shape
free, etc.) [F(3,297) < 1],and no interaction [F(12,1188) =

1.24, p > .2]. We therefore assume that the expected
chance correlations are the same for all the conditions
shown in Table 7 and that the results may therefore be
compared directly with each other. All of the multiple-R
values shown are significantly above the random value
of .336 (t-test, p < .01) except those from the shape vec
tor to false positive score and context-free familiarity.
Differences between the multiple-R values were tested
using the Mann-Whitney U test on the 100 samples for
each condition, at p < .01. To give a feel for the consis
tency of the results, and noting the problems of averag
ing correlation coefficients, the standard errors on these
data are all approximately .01.

In summary, we (1) split the face set in halfat random,
(2) extracted principal components from one half, (3) re-

Table 6
Multiple Regression Values for PC Outputs (Spectrum) Predicting Human Data,

Using Whole Set of Faces

Distinctiveness Hit False Positive Memorability Familiarity

I. Full .51 .33 .36 .51 .34
2. Shape-free .40 .28 .50 .40 .40
3. Shape vector .42 .19 .25 .44 .22
4. Shape- free + shape .49 .36 .44 .43 .40
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Table 7
Averaged Multiple Regression Values for PC Outputs (Spectrum)

Predicting Human Data

Distinctiveness Hit False Positive Memorability Familiarity

I. Full .51.42.42
2. Shape-free .48.40.49
3. Shape vector .48.37.30
4. Shape-free + shape .52 .43 .48

Note-Data averaged over 100 random half splits of the face set.

.48

.44

.42

.49

.38

.44

.32

.42

fleeted the remaining faces through these components,
(4) performed multiple regression between the raw and
absolute values of the first 20 component outputs (13
image and 7 shape for the combined type) with each of
the five subject measurements, (5) randomized the order
of the subject measurements and repeated the multiple
regression to obtain an estimate of the chance correla
tions, and (6) repeated Steps 1-5 one hundred times for
each ofthe four preprocessing types and averaged the re
sults within preprocessing type and subject measurement
pairs.

The pattern of results confirms that suggested by
Table 6:

1. With the full faces, the results for hit and false pos
itive scores were the same, with that for distinctiveness
significantly higher.

2. Moving to shape-free faces caused a significant
drop for memorability, a small downward trend for dis
tinctiveness and hit score, but a significant increase for
false positive score and familiarity.

3. The values for shape vector alone were significantly
worse than for full-face for all variables. False positive
and familiarity were at the random values. Hit score was
above chance, but just barely.

4. Adding the shape vector PCs to those from shape
free images did best ofall. The multiple R for distinctive
ness was significantly better than that from the shape
free images and was indistinguishable from that from the
shaped images, whereas that for false positive was sig
nificantly better than the result from shaped faces, and
was indistinguishable from the shape-free performance.
The three values for hit did not differ significantly.

As far as we are aware, this is the first demonstration
of the possible psychological relevance ofshape averag
ing. The process increases the ability of PCA to extract
information that leads people to say "yes" when they
have not seen a face before, which affects both false pos
itive and familiarity scores. Conversely, there appears to
be no information available from the shape vector about
false positives. As far as we can account for human false
positive scores, the information comes from fine detail
in the image, which we refer to as the texture. We shall
return to general discussion of these issues at the end of
the paper. However, we now examine the contribution of
individual components to the psychological predictions
described here.

Individual Component Correlations
The multiple regression results suggest that different

aspects of the images carry information about memora
bility and familiarity. Further insight into the nature of
the features underlying these two dimensions might be
obtained by examining the loading ofthe individual prin
cipal components. In this section, we examine whether
particular components carry information specific to par
ticular psychological dimensions.

There are a number of ways that this might be done.
The first is to generate components from the complete
set of faces, echoing the first procedure for multiple re
gression above. We may then look at the individual corre
lations between each component and the subject ratings
for each face. Because this can be done only once, there
are uncertainties about the replicability of the results.

A second approach is to split the face set randomly as
before and produce average correlations for each com
ponent. In addition to the usual problems of averaging
correlation coefficients, there is an additional problem of
potential inconsistencies in the order of principal com
ponents. With the set split in half, we have 87 data points
in the 4,096-dimensional-pixel space: clearly a very
sparse sampling. Given the relative homogeneity of our
images, this may not be too problematic, but we can
nonetheless expect the derived components to vary be
tween runs. For instance, the information contained in
Component 7 on one occasion might appear as Compo
nent 8 in another, or be redistributed among two or more
different components. Visual inspection of the eigen
faces from different runs suggests that this starts hap
pening as early as Component 3 or 4. Any correlations
between individual components and the subject ratings
will therefore be unstable. Averaging the results will lead
to correlations being spread over a number of neighbor
ing components.

This problem of uncertain distribution of variance
may also affect the first method (using all the images to
generate components). It could be that there is useful in
formation about distinctiveness that usually occurs, say,
around Component 10, but that on this occasion is dis
tributed among several other components. These will
each show a small, apparently nonsignificant correla
tion, where a slight change would lead to a significant
correlation for Component 10. Averaging would allow
such effects to show through.
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A third approach is to look at the components actually
used in the multiple regression equation. This has the ad
vantage of identifying whether the various components
are accounting for different aspects of the subject rat
ings. The first four components might all correlate with
distinctiveness, but all be capturing the same part of the
variance. The multiple regression equation should in
clude only the most significant of these, giving a clearer
indication of the most important components. As before,
we may look either at the regression equation for the
whole set offaces, with consequent doubts about repeat
ability, or use the random sampling technique. The same
problem about inconsistent components will apply: Over
a number of runs we would expect to find neighboring
clusters of components, at most one or two of which ap
pear in any particular regression equation.

Table 8 shows the usage of components in the 100
multiple regression equations generated above. Almost
all the components occurred at least once, as would be
expected because ofchance correlations. During the 100
control runs with randomized subject ratings, each com
ponent occurred on average 4.67 times. The binomial
distribution then requires more than 12 occurrences in
100 trials for p < .001 (such a lowp value being used be
cause we have 40 variables). Table 8 reports the compo
nents that occurred more than 12 times.

The pattern of component usage confirms the multi
ple regression results, with false positive and familiarity
showing an increase in components used when going from
full image to shape free, while the other three showed a
decrease. The relative usage of information from the shape
vector and the image is shown clearly by the combined
component results, with false positive and familiarity
loading heavily onto the image components, and the
other three onto shape components. Although our famil
iarity measure is derived about equally from the hit and
false positive scores (Table 3), it behaves more like the
latter. Only the use of Components 4 and 6 from the
shape vector echoes the loading of hit score.

Within each preprocessing category, there is little in
common between false positive and the other two direct
subject ratings. Thus false positive uses the first two
components from the full image set, whereas distinc
tiveness and hit use several in the range 3-12. A striking
result not indicated by Table 8 is the frequency with
which false positive used the first component: 73 of the
100 runs for the full images and 82 for the shape- free im-

ages. The other "frequent" occurrences are typically in
the range 20--40. One reason for this may simply be that
it is the first component, and therefore relatively stable.
As indicated above, it may be that there is a similar
amount of information about distinctiveness that occurs
somewhere in the range 7-10 for the full images, incon
sistently because of the variability on the principal com
ponents. Further analysis of the data supports this sug
gestion, showing that at least one of these components
occurs in 78 of the 100 equations for distinctiveness and
that never more than two of them occur together.

Reconstruction Errors
We now turn to another measure of PCA performance:

reconstruction error. This gives us a measure ofhow well
a particular face is coded, when included in the whole
data set. The purpose of this analysis is to explore the
possibility that distinctive faces are coded less well by
PCA than are typical faces.

O'Toole et al. (1994) reported reconstruction error
using a normalized cosine error, where 1 means perfect
reconstruction and smaller numbers are worse. A possi
ble alternative is simple Euclidean distance between the
input and reconstructed images (i.e., the length ofthe vec
tor between the two points in 4,096-dimensional-image
space representing the face and its reconstruction). If
the image vectors are normalized to unit length before the
distance is computed, this measure differs from O'Toole's
only in the cosine nonlinearity. Tests showed much larger
correlations if the vectors were not normalized.

Although our stated aim is to examine whether distinc
tiveness can be captured as a correlate of "goodness of
coding" in PCA, the goodness ofcoding is itselfdependent
on a number of parameters. In particular, the more compo
nents that are extracted from the set, the better the general
coding. In this study we calculated the reconstruction error
for different numbers of extracted components. These mea
sures were then correlated with the psychological data.

Figure 4 shows the correlation between the unnormal
ized Euclidean reconstruction error and each of the three
direct and two derived subject data sets as the number of
components used for the reconstruction is varied. The
complete set of 174 full (i.e., not shape-free) images was
used both to generate the components and to test recon
struction. Note that we are considering far more than the
20 components used for the multiple regression studies:
Although higher components showed little direct corre-

Table 8
Usage of Components in Multiple Regression Equations, From Same 100 Runs as Those in Table 7

Type Distinctiveness Hit False Positive Memorability Familiarity

I
1,6,7,19, A5
4,6

Full 3,4,7,8,9, ro, 12,AI,A2 4,6,9,10,Al,A2 1,2 3,4,8,9, ro, II, 19,AI,A2
Shape-free 2,3,AI,AI5,AI7 2,7,17,A2 1,2,6,7,A5 2,AI,AI5
Shape vector 4,6,19,AI,A7,A9,AI8 2,4,6,A7 A7 4,6,AI,A7,A18
Combined: Shape 1,4,6, AI, A6, A7 4,7, AI, A7 A7 t, 4, 6, AI, A7

Image 2,AI 2 1,2,6,7,A5 2,Al 1,6

Image Note-s-Components listed occurred more often than expected by binomial distribution (p < .00 I). A I refers to absolute value of Com
ponent 1, and so forth.
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lation with the subject data, they all had a (gradually di
minishing) effect on the reconstruction error.

To understand Figure 4, consider the first (leftmost)
points. If only a small number of components is used to
reconstruct a face, then the correlation between recon
struction error and distinctiveness is high. This means
that faces rated as highly distinctive are reconstructed
badly. However, the correlation between reconstruction
error and false positive score is negative: That is, faces
that are easy to reject, and so have a low false positive
score, are reconstructed badly. Typical faces, which are
poorly remembered and rejected, are relatively well
coded, with low error.

The striking result shown in these graphs is the rever
sal of the sign of most of the correlations as the number
of components is increased. This is most easily under
stood by considering distinctiveness. Each additional
component will accommodate as much of the remaining
variance as possible. Initially this is best done by coding
features common to many images. Because lack of
shared features is one definition ofdistinctiveness, these
early components code average faces better than unusual
ones. Distinctive faces therefore have a high reconstruc
tion error. As the number of components is increased,
there comes a point when there is little variance common
to several images left to be accommodated. Now the best
strategy for reducing variance is to cover those distinc
tive faces that were poorly coded by the early compo
nents. The correlations reverse, so that above about 50
components, distinctive faces are better coded than those
that are more average. If the analysis were continued be
yond 100 components toward the number offace images
used, the correlation would fall back to zero along with
the reconstruction error.

Distinctiveness and (derived) memorability behave al
most identically, with hit score qualitatively similar, but
at lower correlations. False positive score behaves al
most like a mirror image, but crosses zero at closer to 60
components. The derived factor familiarity here behaves
as a combination of hit and false positive. Correlation is
close to zero, with only a mild negative excursion in the
middle range, where hit score has dropped and false pos
itive is still negative.

GENERAL DISCUSSION

The studies described above were performed to ana
lyze the relationship between human face processing and
structural properties offace images. As in previous work
in this field (Abdi et al., 1995; O'Toole, Abdi, et al.,
1991; O'Toole, Deffenbacher, et al., 1994), we have at
tempted to capture psychological effects in terms of the
statistical properties of images, as revealed by PCA. We
now summarize the data and offer some conclusions.

The psychological data on hits and false positives do
not correlate. This means that faces that are easy to rec
ognize as having been seen are not necessarily those that
are easy to reject when they have not been seen. Some of
the data described above suggest that we may be able to
separate properties of the face that give rise to these two
dimensions.

The studies of reconstruction error show that when
one uses only the early components, faces that are badly
coded have a high hit rate, whereas faces that are well
coded have a high false positive rate. In other words,
faces that are discrepant on these components are easy to
recognize as having been seen, whereas faces that are not
discrepant on these dimensions are those most likely to
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Figure 4. Correlation between the reconstruction error and the subject ratings for each face as the number of components used
for the reconstruction is varied.
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be falsely identified as having been seen. When one uses
a large number ofcomponents, this pattern reverses. This
seems to indicate that it is the early components that give
rise to false positives, whereas later components give
rise to hit rate. This tentative conclusion is supported by
the studies examining the individual components (Ta
ble 8). These show that, for full face images, it is the very
early components that are most commonly used to pre
dict false positives, whereas the components that predict
hits tend to be drawn from later in the spectrum.

These suggestions are consistent with an intuitive no
tion ofwhat is captured by the early and late components
derived from PCA. The early components code very gen
eral information, extracting information common to all
faces in the set. In general, we might say that these com
ponents define the range of face-like patterns (of pixel
intensities). However, later components begin to pick up
individual variation, as is shown by the reversal ofeffects
in Figure 4. It is to be expected that hit and false positive
scores, which are uncorrelated, would therefore load onto
different, inherently orthogonal principal components. It
is intuitively sensible that it should be the false positive
score that loads onto the earliest components.

Further support for this view can be found in the sep
arate analysis of shape and shape-free faces. Data from
the multiple regression studies show that the shape-free
faces capture the false positive data best of all (Tables 6
and 7). In other words, it is variation in what we have
called texture that gives rise to false positives; variation
in shape seems to make no contribution to the chances
that a face will be falsely recognized.

Once again, examination of the data from individual
components seems to support this. Table 8 (fourth line)
shows the contribution of different components to the
data from combined shape and shape-free information.
Components from the shape-only information appear to
load specifically onto hit scores, whereas components
from the image (shape-free) information load onto false
positive scores.

it appears quite clear from the data presented here that
false positives arise as a consequence of a face's simi
larity to the general population. Furthermore, the mea
sure of similarity used in this account does not include
information about face shape, but rather information
about coloration or texture. The interpretation of data
from hits (and correspondingly from distinctiveness
overall) is less easy to explain. It appears that dimensions
giving rise to hits do include some information about the
shape ofa face. This lends some support to the notion of
norm-based coding, as discussed in the introduction. De
viations from an average shape appear to predict the ac
curacy with which subjects identify a face as having been
seen. However, shape does not account for the whole
effect. Table 7 shows that the best predictor of hits (and
distinctiveness) arises from separate analysis of shape
information and texture information, subsequently
brought together.

In the discussion of Experiments I and 2, we sug
gested that hit scores may be determined partly by sub-

jects' idiosyncratic knowledge of people. Perhaps sub
jects score hits partly because a particular face reminds
them of an acquaintance. This is consistent with the low
levels of subject agreement on hit scores, and with the
general finding that the later (more detailed) compo
nents tend to load on hits. We are now conducting ex
periments to test this hypothesis further.

In conclusion, it appears that we have isolated some of
the separate information that gives rise to psychological
properties offace perception. In particular, we have con
centrated on subjects' hit and false positive scores in re
membering faces. We have not done this by breaking
down images of faces into everyday components like
noses, chins, and so forth. Rather, we have extracted sta
tistical properties of the images. Furthermore, we have
shown that a decomposition of these images into sepa
rate shape and texture information makes it easier to ac
count for some ofthe psychological data, suggesting that
this distinction may also be made by the human system.

Although this paper reports some success in relating
human data to statistical properties of images, we have
not provided evidence that the PCA performed here is
the best way to capture these data. The PCA was per
formed directly on the image pixels, for simplicity and
because this is the approach taken by other workers.
However, it is clear that the human visual system per
forms various types of filtration relatively early in its
processing. It is quite possible that a more complete ac
count would rely on PCA offiltered images, and we have
begun to investigate the effects of such preprocessing
(Hancock, Burton, & Bruce, 1995).

Finally, the analyses presented here may be taken to
support the general notion that image-based statistics
provide some insight into human face processing. This
contrasts with accounts based on local distance mea
sures or surface-based measures as described in the in
troduction. However, PCA is just one ofa broad range of
image-based statistical techniques available (see, e.g.,
Brunelli & Poggio, 1993, and Wurtz, Vorbruggen, & von
der Malsburg, 1990, for alternative techniques). Further
research is required in order to establish whether the re
sults described here are tied to the particular PCA analy
sis chosen, or are a general consequence of any image
based technique.
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