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Developing TODAM: Three models for
serial-order information

BENNET B. MURDOCK
University of Toronto, Toronto, Ontario, Canada

TODAM2, a theory of distributed associative memory, shows how item and associative informa-
tion can be considered special cases of serial-order information. Consequently, it is important to get
the right model for serial-order information. Here, we analyze and compare three distributed-
memory models for serial-order information that use TODAM’s convolution—correlation formalism.
These models are the chaining model, the chunking model, and a new model, the power-set model.
The chaining model associates each item with its predecessor; the chunking model uses multiple con-
volutions and n-grams to form chunks; and the power-set model interassociates all items in a set in
a particular way to form a chunk. The models are compared in terms of their performance on seven
basic tests of serial-order information—namely, serial recall, backward recall, recall of missing
items, sequential probe tests, positional probe tests, serial-to-paired-associate transfer, and item
recognition. The strengths and weaknesses of each model are discussed.

If we are to understand human memory in any detail,
we must distinguish three types of information: (1) Item
information, which underlies the recognition of single
objects (“items™); (2) associative information, which un-
derlies the relation or association between two objects or
items; and (3) serial-order information, which preserves
the temporal order in a string of three or more items. Ev-
idence for these distinctions was presented in Murdock
(1974), and TODAM (an acronym for theory of distrib-
uted associative memory) has always preserved these dis-
tinctions.

TODAM?2 (Murdock, 1993b) is an attempt to provide
a unified theoretical account of the storage and retrieval
of item, associative, and serial-order information. To
give a brief overview, it is a distributed-memory model
in which items are represented by random vectors, asso-
ciations are represented by the convolution of item vec-
tors, information is stored in a common memory vector,
the dot product is the comparison operation for recogni-
tion, and correlation is the retrieval operation for recall;
these operations are assumed to go on in working mem-
ory, part of the general system architecture. Chunks are
represented as sums of n-grams, and n-grams are n-way
autoassociations (autoconvolutions) of the sums of
n item vectors. If n = 1, we have item information; ifn =
2, we have associative information; and if n > 3, we have
serial-order information. Each of these concepts will be
explained shortly.
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The TODAM?2 analysis makes it clear that item and
associative information are special cases of serial-order
information, so it is crucial to get the right model for
serial-order information. The serial-order model we
used in TODAM2 was the chunking model (Murdock,
1992), but that is only one possibility. In this paper, we
analyze and compare three possible distributed-memory
models for serial-order information: The chaining model
of Lewandowsky and Murdock (1989); the chunking
model; and the power-set model, a new model for serial-
order information that seems to remedy some of the
problems of the chaining and chunking models. The
intention of this paper is to analyze the strengths and
weaknesses of these three models to guide further
development.

There are many other memory models besides
TODAM, including SAM (Shiffrin & Raaijmakers, 1992),
MINERVA2 (Hintzman, 1988), CHARM (Metcalfe-
Eich, 1982), the matrix model (Humphreys, Bain, & Pike,
1989), the resonance-retrieval theory (Ratcliff, 1978),
and the perturbation model (Estes, 1972). However, with
the exception of the perturbation model, all of these
models deal with item or associative information, and
none have been extended to deal with serial-order infor-
mation. The perturbation model deals with serial-order
recall, but does not really deal with item or associative
information (see Murdock, 1992, for a comparison of
the chunking model and the perturbation model). Con-
sequently, while we would like to consider other models
in this review, we are not able to do so. However, in prin-
ciple, most, if not all, of these models could be extended
to the serial-order case, and it is our hope that this paper
will stimulate such development.

We first review the general TODAM framework, then
describe and analyze the three models in turn, and end
with a summary comparison.

Copyright 1995 Psychonomic Society, Inc.
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BASIC TODAM FRAMEWORK
Representation

Following Anderson (1973), items (e.g., f, g) are rep-
resented as independent (or possibly correlated) random
vectors. A random vector is an N-dimensional vector
whose N elements are random samples from some spec-
ified feature distribution. Less technically, a random
vector is simply an ordered list of features in which each
feature is a random variable. With minor variations, this
representation is used by most distributed-memory and
connectionist models today.

Again following Anderson (1973), this feature distri-
bution is assumed to be a normal (Gaussian) distribution
with a mean of zero and a variance of P/N, where, gen-
erally, P = 1. In this way, item vectors are always unit
vectors, regardless of N; that is, they are always statisti-
cally normalized to 1.0.

Convolution and Correlation

After Borsellino and Poggio (1973), we use the con-
volution of item vectors to represent the association of
two item vectors and the correlation of one item vector
(the probe) with the convolution for the retrieval opera-
tion. Convolution (*) is a way of combining or blending
two items, and correlation (#) is the approximate inverse
of convolution. If two variables, ¢ and b, are multiplied
and the product is divided by one of them (say a), then
the result is the other (i.e., b). Loosely speaking, convo-
lution is analogous to multiplication and correlation is
analogous to division (i.e., multiplication by an inverse).
Thus,

f#(fxg) =g,

where g’ is an approximation to g.

If two item vectors were added, they would have to be
aligned properly; that is, for item vectors f and g, one
cannot add the ith element of f to the jth element of g,
i # j. The same applies to convolution and correlation;
that is, the two vectors must be aligned properly. If x is
the point of alignment, then, at the component level,

(f+2)(x) = X, /(1) g(x—1).

This expression defines convolution for item vectors, and
is the discrete analogue of the convolution of continuous
functions. The defining expression for correlation is

(f#g)x) = X, /(1) glx+i),

so the only computational difference between correla-
tion and convolution is that the correlation operation
involves the sum, not the difference, of the second sub-
script.! For a more detailed explanation, see Metcalfe-
Eich (1982) or Murdock (1979).

Deblurring

Since g’ is an approximation to g, we must deblur g’
to g in order to recall g, so retrieval is a two-step process
(correlation followed by deblurring). Just as deblurring

a fuzzy picture means bringing it into sharper focus, so
deblurring g’ to g means bringing g’ into sharper focus
(i.e., making it more like g). Each item vector is a list of
features, and if, relative to g, each feature of g’ is slightly
off target (some are too high, and others too low), then
deblurring g’ to g means making each feature of g’ more
like the corresponding feature of g. A detailed explana-
tion is beyond the scope of the present paper, but for an
illustrative application, see Lewandowsky and Li (1994).

Storage Equation

Information in TODAM, whether of the item, asso-
ciative, or serial-order type, is always stored in a com-
mon memory vector. We use composite storage; that is,
if there are two or more types of information, they are all
stored in this same common memory vector. For item
and associative information, if M is the common mem-
ory vector and a is the forgetting parameter, 0 < a < 1,
then the memory vector after the jth pair has been pre-
sented is

M;=aM; | + 1 +g;+f*g, @

where f; and g; are the two items in the jth pairand f;* g;
is their association (e.g., Murdock, 1982). This is the
basic storage equation for item and associative informa-
tion; it is a first-order—difference equation or recurrence
relation, in which the state of the system after the jth pair
is presented is a function of the state of the system after
the (j — 1)th pair had been presented plus the addition
of the new information.

Suppose M) (the memory vector at the start of the list)
is zero, and the list consists of three pairs, A-B, C-D, and
E-F. Then M, (the memory vector after the first pair has
been presented) is a + b + axb, where a and b are the
encoded representations of Items 4 and B, M, is aM; +
c+d+cxd=a(a+b+asb)+c+d+c+d,and M,
isaM,+e+f+esf=0c%(a+b+axb)+alc+d+
c*d) + e + f + exf. Thus, Equation 1 says that when each
new pair is presented, the memory vector to date is
decremented (M, is multiplied by a, where 0 < a < 1),
and then both of the two current items and their convo-
lution are added to the resulting memory vector.

The comparable storage equation for item and serial-
order information is

M, = aM;_, + f; + f;xf_ )

(Lewandowsky & Murdock, 1989; Murdock, 1983). This
equation describes a simple chaining model; after the
memory vector has been decremented, the current item
(f) and its association with the prior item (fi+f;_,) are
both added to the common memory vector. Again using
capital letters for list items and small letters for their
vectorial counterparts, if we use X for the starting signal,
then for a five-item list, XABCDE, if we omit the forget-
ting factor « the list would be represented in memory as
x+a+ax+b+bxat+c+exb+d+d*xc+e+t
e*d (and possibly y and y*e if we had a stop signal Y).
The chain is X4, AB, BC, CD, DFE (and possibly EY).



Retrieval

For the recall of associative information, if f; (the left-
hand member of the kth pair) is the probe and &’ is an ap-
proximation to 8, the delta or “unit” vectors, then we
would have

L #M = fi#{(f xg)+...} = #(f*gy)
= (f#f) g, = 8*g = g > &2

The arrow denotes deblurring, where the approximation
g must be deblurred to g, for recall to be successful. Se-
rial recall will be discussed in the section dealing with
the chaining model.

The comparison process for recognition is assumed to
be the dot (or inner) product of the probe vector with the
memory vector. If /(i) is the ith element of item vector f
and g(i) is the ith element of item vector g, then the dot
product of the item vectors f and g would be

N
f-g=2 f)gh)

i=1
Since item vectors are random vectors, each f(i) is a
random variable, and since there are N random variables
in each item vector, if we use Z for a random variable,
then the expectation or expected value E of the dot prod-
uct of an item vector with itself is

E[f f] = E{i { f(i)f(i)}} = NE[Z?]

i=1

= N0'2,

and since, by our representation assumption, a’= 1/N,
we have

E[f-f]=1.

For any constant ¢, E[cf] = cE[f], so if we use a; to
mean a as a function of £, and if L is list length and a, =
al~* then we have

G)

EIS, .M]={ak’ keL}-

0, kel

Thus, we have the old- and new-item strength distribu-
tions for a signal-detection analysis of recognition mem-
ory, and the predicted d” values can be computed from
the parameters of the model (N and «). This analysis of
recognition memory is the matched-filter model of An-
derson (1973) translated into TODAM terminology.

System Architecture

The system architecture is shown in Figure 1, which
shows the interconnections between the perceptual or
P-system, the query or Q-system, the response or R-
system, and working memory. The P-system is for en-
coding; conceptually, it is where real-world stimuli are
mapped into TODAM vectors. The Q-system is where
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Figure 1. System architecture for the chunking model, showing the
relations between the perceptual (P), query (Q), and response (R) sys-
tems and working memory. From “A distributed memory model for
serial-order information,” by B. B. Murdock, 1983, Psychological
Review, 90, p. 321, Figure 2. Copyright 1983 by the American Psy-
chological Association. Reprinted by permission.

the memory vector lives, and the R-system is for output
processes—for instance, it is where deblurring goes on.
Working memory is assumed to consist of five “slots,”
or arrays, for vector processing; it is where all the
TODAM operations (convolution, correlation, summa-
tion, and the dot product) are carried out.

The main point of Figure 1 is to highlight the division
of labor that must occur. Encoding goes on in the P-
system, and we do not model that; we take item vectors
as given. Likewise, we do not model deblurring; we as-
sign it to the R-system.3 This division of labor allows us
to focus on the Q-system and working memory.

THE CHAINING MODEL

The chaining model (Lewandowsky & Murdock,
1989) includes item and serial-order information in the
storage equation (Equation 2). The item information is
the single item (i.., f;), and the serial-order information
is the association of the current item with the previous
item (i.e., fj*f;_;). The former underlies item recogni-
tion, as in a Sternberg task (Sternberg, 1969), whereas
the latter makes possible serial (and probe) recall. For
item recognition, the analysis is straightforward: the dot
product is the comparison operation; that is, the dot
product of the probe item with the memory vector. Over
trials, this gives rise to the old- and new-item strength
distributions which form the basis for a signal-detection
analysis, as shown in Equation 3.

Serial recall proceeds sequentially. The start signal
retrieves the first item, the first item retrieves the second
item, the second item retrieves the third item, and so on.
More generally,

GHAM =1, + i >

That is, with starting signal X and list ABCDE, x#M =
a—aafM=x"+b >b b#EM =2a"+ ¢’ > ¢,and
50 on. Why does b#M = a’ + ¢’? Because convolution is
commutative, and both a*b and b*c are in the memory
vector. Thus, not only does b#(b*c) = ¢’, but also
b#(axb) = b#(b*a) = a’.
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How the backward association (i.e., ") is rejected in
the deblurring process was not specified in the original
model. However, in response to criticisms of the chain-
ing model by Mewhort, Popham, and James (1994) and
Nairne and Neath (1994), Lewandowsky and Li (1994)
suggested a possible solution. They proposed a deblur-
ring mechanism for the R-system and used Hebbian anti-
learning to eliminate items that had already been recalled.

A noteworthy characteristic of the chaining model is
that the chain is stronger than its weakest link. If an item
is not recalled (i.e., if f,, ; is not deblurred to f; . ), then
one can still use the retrieved item (i.e., f}4{) as the cue
for the next recall. Lewandowsky and Li (1994) showed
that when this is done, recall is generally above chance.

The chaining model includes attentional parameters
that give rise to primacy effects in recall but to recency
effects in recognition. In particular, v is the attentional
parameter for item information, and ) is the attentional
parameter for serial-order information. These param-
eters are functions of serial position, so the more com-
plete storage equation would be

M, = aM,_; + yf, + Q01 ),

where

1, j=1
Qz{n WD, } !
0€ . _]>1

where parameter A determines the rate of change of ()
over serial position, and () is its starting value.* With a
limited-capacity assumption, y and {} sum to 1.0, so y; =
1—;. The parameters A and (), would control the rela-
tive allocation of attention between item and serial-order
information.

Perhaps the main strength of the chaining model is
that it is able to account for a large number of empirical
effects at a quantitative level with a fairly small number
of free parameters (see Lewandowsky & Murdock, 1989,
for details). As noted, it has been criticized by Mewhort
et al. (1994) and Nairne and Neath (1994), but these
criticisms have been answered by Lewandowsky and Li
(1994). It gave rise to some novel predictions about the
experimental separation of primacy and recency under
forward and backward recall—predictions that were
confirmed qualitatively, but not quantitatively, by Li and
Lewandowsky (1993). The chaining model does have
some problems, however; they will be discussed later.

THE CHUNKING MODEL

Multiple Convolutions, n-grams, and Chunks

The chunking model uses multiple convolutions, #-
grams, and chunks for serial-order information. If a*b is
a two-way convolution, then a*b+c would be a three-way
convolution, axb*c*d would be a four-way convolution,
and so on. More generally, if we use the symbol X for
multiple convolution, then we can represent an n-way
multiple convolutions as

X, =1, *f, %, *f,.
i=1

We can also have multiple autoconvolutions, where
the same item is convolved with itself n times. Thus, we
could have f(n = 1), f+xf(n = 2), f*f*f(n = 3) or, more
generally, if we use a “star” notation, we can define an
n-way multiple autoassociation as

£ = fxfx...*+f (ntimes)

The star notation is (not accidentally) like exponentia-
tion: just as a> = axaxa, 5o f*3 = fafxf.

Both multiple convolutions and multiple autoconvo-
lutions are still vectors, although their dimensionality
(number of features, or N) increases with n. However,
the increase in dimensionality is linear in n, making
multiple convolutions and multiple autoconvolutions
ideally suited for the chunking model. By comparison, in
a matrix model, one forms an n-way outer-product ma-
trix, and the increase in dimensionality is N”, so the
computational demands could be excessive for large N
orn.

Chunks can be of various sizes, but regardless of size,
a multiple convolution or autoconvolution is still a sin-
gle unit. Further, the linear increase in N with n means
that the storage demand will not be too great. Of course,
the noise level does increase with »n as well, but that is
probably quite desirable for a psychological model of
chunking.

An n-gram is defined as the n-way autoconvolution of
the sum of n item vectors. Thus, the single item a would
be an engram (n = 1); (a+b)*?> = a*a + bxb + 2(a*b)
would be a digram (n = 2); (a+b+¢)*} = a*xaxa +
bxb*b + c*cxc + 3(a*axb + axaxe + axbsb +
bxb*c + axc*xc + bxcxc) + 6(axbxc) would be a tri-
gram (n = 3); or, more generally, if we symbolize an z-
gram as G(n), then

G(n) = (i flj .
i=1

An n-gram consists of the sum of autoconvolutions and
multiple convolutions. Autoconvolutions give the chunk-
ing model redintegrative capabilities. Thus, if pfis a “re-
duced” version of f (i.e., if some proportion p of the fea-
tures of fare present, and the remainder (1 —p) are absent,
or zero), then

pf#(f*1) = pf’.

That is, pf correlated with the autoconvolution will
redintegrate or reconstruct an approximation to f, and it
seems reasonable to assume that the probability of de-
blurring will be proportional to p. The multiple convo-
lutions can be used in serial recall, and this will be ex-
plained shortly.

A chunk is defined as the sum of n-grams 1 to n. Thus,
if we symbolize a chunk as C(n), then



*

C(n)= Z"‘{G(i)= 2(2f,) .
i= j=

=1

Since n-grams are composed of sums of multiple con-
volutions and multiple autoconvolutions, they are vec-
tors (their dimensionality is approximately nN), and
since chunks are sums of n-grams, they, too, are still
vectors whose dimensionality is that of the highest order
n-gram. Thus, a chunk is a single unit, just as an item
vector is a single unit.

Retrieval

Not only is a chunk a single unit, it can also be un-
packed into its constituents. We use a scheme developed
by Liepa (1977), wherein the multiple convolution of the
items recalled to date functions as the retrieval cue for
the recall of the next item. Thus, if 8 is the delta vector
(a vector whose middle element is 1 and whose flanking
elements are all zero), then for chunk C(n),

6#C(n) = 2’ > a,

a#C(n) = b’ > b,

(axb)#C(n) = ¢’ > ¢,
(a*b*c)#C(n) = d’ > d, and so on.

Actually, this is an oversimplification; an n-way mul-
tiple convolution correlated with a larger-than-n chunk
retrieves a linear combination of the first n + 1 items,
but the strength of the (n+1)th item is always twice the
strength of all the earlier items, regardless of . Thus,

a#C(n) =a" +2b" > b,
(a*b)#C(n) = 3a" +3b" + 6¢" > ¢,

or, in general,
m m+l
(Xfi)#C(n)= Y, n>m,
i=I P

where ¢, = 2¢;, 1 <j<m.

As in the chaining model, what is retrieved on one
cycle is plugged into the retrieval cue for the next cycle;
in the chaining model, however, the retrieval cue is just
the retrieved item itself, whereas in the chunking model,
it is the convolution of the retrieved item with all the
items that preceded it. This has a complex cumulative
effect. The more items that are correctly recalled, the
less impact any single incorrect recall will have, but on
the other hand, the more items that are incorrectly re-
called to date, the less likely one will be to recall the next
item correctly.

Parameters

A simulation of the model will be reported shortly, but
first the parameters of the model need to be discussed.
The chunking operations are assumed to go on in work-
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ing memory (see Murdock, 1992, for details), and we
need the forgetting parameter a. This gives us e and N,
the number of features in the item vectors, but we also
need p for probabilistic encoding. In order for learning
to occur, we assume that, at the time of encoding, each
feature is either included in the item vector with proba-
bility p or not included (set to zero) with probability
1—p. Thus, we have three parameters: N, @, and p.’

Normalization

The other point that needs to be mentioned concerns
normalization. Like item vectors, n-grams and chunks
are statistically normalized to 1.0. This way, everything
is in unit vectors, regardless of whether we are dealing
with the item level, the n-gram level, or the chunk level.
In the simulations to be reported, scale factors were
used; for details, see Murdock (1995).

Simulations

For the simulations, we did both recognition and re-
call to see whether the model captures the interaction be-
tween primacy/recency and recall/recognition found in
the literature (Murdock, 1995). We varied chunk size
between one and seven, and in each case, the chunks were
always the sum of n-grams, where the n-grams used the
probabilistically encoded item vectors. For recognition,
we took the dot product of the probe item with the chunk
where we used both old- and new-item probes with old-
item probes from all serial positions, and we computed
means and variances over replications for a d” analysis.
For recall, we used a scoring rule, whereby the best match
of the retrieved information to the » items in the chunk
was deemed to be the item recalled. If all dot-product

Chunking Model
Recognition
N=229, al=0.8, p=0.5, rho=0

Figure 2.d’ as a function of lag from a simulation of the chunking
model.
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values were negative, we scored an omission. If the cor-
rect item was the best match, it was plugged into the re-
trieval cue for the next item; otherwise, the retrieved in-
formation was plugged into the retrieval cue for the next
item. We ran 500 replications, with parameter values
N=229,a=08,andp = 5.

The results for recognition are shown in Figure 2,
while Figure 3 shows the results for recall. As they
should do, recognition shows recency and recall shows
primacy. Figure 4 shows recall data from Drewnowski
and Murdock (1980) from a memory-span experiment
using a staircase method (for each subject, list length
was increased by one after each correct recall, but was
decreased by one after each incorrect recall). There
would seem to be quite good agreement between the
simulation and the experimental data.

The simulation demonstrates that lawful behavior can
result, even in the face of a very low signal-to-noise
ratio. The number of terms (types, not tokens) in a chunk
is 1, 4, 14, 49, and 175 for ns of 1, 2, 3, 4, and 5; the
larger the value of n, the more each individual term is at-
tenuated by the normalization process. One could well
wonder whether anything would show up for chunks of
three or four or more. In fact, the data are quite regular,
which suggests that the memory system can still func-
tion with a high noise level.

The data in Figure 3 show a recency effect for longer
lists, but the effect is unreliable. Across many simulations
with 4 variety of parameter values, it was often absent.
Serial-recall data often show a small recency effect; it
does not show up in Figure 4 because of the scoring
method used. Recall probability at early serial positions
is too low for the longer lists, but subjects probably

Chunking Model

Recall
N=229, al=0.8, p=0.5, rho=0

Recal Probability

Serial Position

Figure 3. Probability of recall as a function of serial position for lists
of 1-7 items from a simulation of the chunking model.

Auditory Visual
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List length:
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4 Py \ \
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Figure 4. Performance on a memory-span task with auditory or vi-
sual presentation. Data from “The Role of Auditory Features in
Memory Span for Words,” by A. Drewnowski & B. B. Murdock,
1980, Journal of Experimental Psychology: Human Learning & Mem-
ory, 6, p. 324. Copyright 1980 by the American Psychological Asso-
ciation. Adapted by permission.

break six- and seven-item lists into chunks of three or
four (Donaldson, 1980; Ryan, 1969; Wickelgren, 1964).

Like the chaining model, the chunking model can ac-
count (at least qualitatively) for a range of data (Mur-
dock, 1993b), and some analytic expressions are avail-
able, so we do not always need simulations to know what
the model predicts. It only has three or four parameters,
s0 it is quite parsimonious in this regard. It very clearly
embodies the notion of a chunk, in that it can function as
a unit but it can also be unpacked into its constituents if
necessary (Miller, 1956). However, it, too, has some
problems, and these will be discussed before we go on to
discuss the power-set model.

Problems

The chunking model has at least three major prob-
lems, concerning backward recall, probe tests, and error
gradients. The only way it can do backward recall is by
multiple forward scans, but since subjects can do back-
ward recall with short lists with considerable facility,
the question arises as to whether they use multiple for-
ward scans also. Multiple forward scans may well occur
sometimes—as in, for example, repeating the alphabet
backward—but that is probably not the only mechanism
we use. As for probe recall, there is a way this could be
done, but it is somewhat complex; it will be discussed
later. Finally, the chunking model cannot give a satis-
factory account of error gradients (e.g., the distance
functions reported by Lee & Estes, 1977, and Nairne,
1990). In the simulation, they were consistently wrong.
There was almost always a big recency effect at each se-
rial position, and the intrusions did not decrease in fre-
quency with distance from the target position itself, as
they should have done.



In the same way that problems with the chaining
model led us to develop the chunking model, so prob-
lems with the chunking model led us to develop the
power-set model, to which we next turn.

THE POWER-SET MODEL

Storage Equation

In the chaining model, the current item is associated
with the prior item, and that (plus the current item) is
added to the memory vector. Suppose instead that the
current item is associated with qll the prior items, that
the association is normalized, and that it is that (plus the
current item) that is added to the memory vector; this
would be the power-set model. Specifically,

M, =aM,_; + 1+ |f*M,_], @)

where the vertical bars denote normalization.®
Assume that we start with the first item a, so that
M,; = a. Then

M, =ca+b +|axb|.

We can rewrite |axb| as si,(a*b), where &, is the normal-
ization constant for a two-way multiple convolution, so
that we have

M, = aa + b + hy(axb).
Then
M; = a?a + ab + ¢ + ahy(a*b) + hz(cxM,)
a?a + ab + ¢ + ah,(a*b) + ahy(a*c)
+ hs(b*c) + hyhs(axbxc).

Thus, M; contains a linear combination of 4, B, C, 4B,
AC, BC, and ABC, where the weighting coefficients are
the products of the appropriate values of the forgetting
factor (@) and normalization factor (4). More generally,
for any value of n, the memory vector will always con-
tain a linear combination of the power set of n items
(less the empty set ¢), where convolution replaces the
set product as the binding operation; hence the name
(see also Hayes-Roth & Hayes-Roth, 1977).

What is the benefit of this? First, it gives us item in-
formation. Each individual item will be included in the
memory vector, and the weighting coefficient for the ith
item will be o, where a; = a”~". Thus, like the chaining
model, there is pure recency (i.e., the last item is the
strongest, and the strength of earlier items falls off geo-
metrically with distance from the end). The recency ef-
fect is automatically produced by the operation of the
forgetting parameter a.

Second, it also gives us the multiple convolutions that
could underlie serial-order information. Assume serial-
recall proceeds as in the chunking model; the retrieval
cue is the multiple convolution of all the items retrieved
to date. By the filter principle (Murdock, 1993a), a mul-
tiple convolution of » items correlated with the memory
vector retrieves only single items from order (n+1) mul-
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tiple convolutions, so we can partition the set to analyze
recall. Since

+{iai+1)i(hjfj}*{ zn:hkfk}ﬂ-Noise, S)

i=1 J=t k=i+l

this means that at any point in the sequence, the multi-
ple convolution (X}= ih;f;)that we use as retrieval cue re-
trieves a linear combination of all the remaining items
(27=;+1Mm1y), where the weights are the normalization
factor 4. Since the normalization factor decreases mono-
tonically with serial position, not only is the target item
(i.e., the next in line) the strongest, we also get the right
gradient. The strength of the retrieved items decreases
with the degree of remoteness.

Remote Associations

Another way to put this is in terms of remote associa-
tions. Remote associations have been part of the lore of
serial learning ever since Ebbinghaus (1913/1964), and
even the critics seem to have recanted (e.g., Slamecka,
1985). Figure 5 illustrates how forward remote associa-
tions would look in the power-set model. Each “item” is
associated with all of the subsequent items, where here
an item is a multiple convolution, and the strength of the
association decreases with the degree of remoteness.

The gradients of remote association depend upon 4,
the normalization constant. This constant 2 depends on
o as well as on serial position, and illustrative normal-
ization functions for four values of « are shown in Fig-
ure 6. The explicit function’ is

L j=1
2
Jj> 1 ©)

h, = [ l-a
! \/2 _ (a2n—2) + a2n—4) ’

As can be seen, the normalization function is quite flat
after the third serial position, but its slope is propor-
tional to a.

The fact that the strength of the retrieval cue (the mul-
tiple convolution) is also a function of « and 4 (Equa-
tion 5) is probably not important, because the retrieval
cue can always be normalized before the correlation is
done. However, the target item cannot be normalized be-

B C E

Figure S. Gradients of remote forward associations for the power-
set model.
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Figure 6. The normalization function for the power-set model for
four values of a.

cause it is embedded in a linear combination of all the
candidate items, and any normalization would shift the
gradient up or down, but not affect its slope.

Backward Recall :

What about backward recall? In backward recall, the
subject is instructed to start with the last item and work
forward. It turns out that we have a counterpart to Equa-
tion 5; that is, for backward serial position b,

n n=1 _b n
Mn = 2 abfb + 2 X_ hbfb *{ z akfk} + Noise, (7)
b=1 b=1 j=1 k=b+1

where, again, o, = o *. Consequently, at each serial po-
sition, there is also a backward gradient of remote associa-
tions, but this time the weighting coefficients of the linear
combination are a function of «, not of A. Figure 7 shows
the analogous diagram for remote backward associations.
Again, there is the right gradient, so in backward recall, as
in forward recall, the adjacent item is the strongest, and
strength is inversely proportional to remoteness.

Since the remote-association gradients for forward
and backward recall have slopes that are functions of dif-

A B C

(e

Figure 7. Gradients of remote backward associations for the
power-set model.

ferent parameters (4 and «, respectively), it is not un-
reasonable to expect that an experimental separation
might occur. Li and Lewandowsky (1993) have shown
that there are variables which affect one and not the
other. At least at the qualitative level, this result is con-
sistent with the power-set model.

Initiation of Recall

So far, we have avoided mention of one potential
problem—namely, the initiation of recall. If the delta
vector is correlated with the memory vector, one will
again retrieve a linear combination of items, but this
time the items are the item information, so the first item
is the weakest; that is,

8#Mn=ia1-fi,

i=]

where ; = a"/. This is not what we want; it is one thing
to postulate a deblurring mechanism that is designed to
deblur a linear combination of items to the strongest
item, but it is quite unreasonable to expect it also to be
able to deblur a linear combination to its weakest item.

One possible solution is to assume that the first item
is special; not only is it added to the memory vector, it is
also associated with a context vector and stored in work-
ing memory.® Then we would initiate recall by correlat-
ing the context vector (or, more realistically, a degraded
version of the context vector) with the memory vector,
and then continue as before. Since subsequent retrievals
would always generate a linear combination with a pri-
macy gradient (Figure 6), the problem would not arise
once the first item had been recalled.

Simulation

Even though in principle analytic solutions for the
power-set model exist, predicted recall values at any se-
rial position are different for every possible cue combi-
nation (which is what the plug-ins were), so it seemed
easier to simulate the model. In the simulation, we fol-
lowed the procedure described above. The memory vec-
tor was set up according to Equation 4, recall was started
by correlating the context vector (simply another item
vector that was independent of the list items) with the
memory vector, and from there on, we used the convo-
lution of the items recalled to date as the cue for the next
item. We used the same scoring rule that we had used in
the simulation of the chunking model, but we always
used the best match as the plug-in. Recall terminated
following an omission.

The storage flowchart for the simulation is shown in
Figure 8. As in the chunking model, we assume that
there are five registers in working memory, which we
label v, w, x, y, and z. We write z < x*y, to mean that the
contents of x are convolved with the contents of y and
that the result is stored in z. The flowchart for retrieval
is similar, except that we need a deblurring algorithm or
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Figure 8. Flowchart for the power-set model for encoding a list of
n items.

a scoring rule; we assume that this does not disturb
working memory. We used set sizes 1-5 with forward
and backward recall, with parameter values N =99, a =
.75, p = .5, and p = 0.° The only difference between the
simulations of forward and backward recall was that for
backward recall, we started with the last item rather than
with the context vector. The most recent item is always
in working memory (in Register w), so we simply used
that to initiate the recall process (i.e., to correlate Reg-
ister w with the chunk); thereafter, everything was the
same as in forward recall.

The results for 100 replications, which are shown in
Figures 9 and 10, are clear. There is a monotonic primacy
effect for forward recall, but a monotonic recency effect
for backward recall, and the backward-recall data agree
well with data reported by Madigan (1971). In both
cases, too, a family of curves exists, one curve stacked
above another, and these are ordered by n. The data for
forward recall are quite similar to the data from the sim-
ulation of the chunking model, but there is no simulation
of backward recall for the chunking model because, as
noted, the chunking model can only do backward recall
by multiple forward passes. In the power-set model, ex-
cept for the starting value, backward recall is imple-
mented in exactly the same way as forward recall. The
resulting data are almost mirror images of one another.

Advantages of the Power-Set Model

1. The power-set model provides a principled ac-
count of forward and backward remote associations.
Quite literally, everything is associated to everything
where the association is by convolution. The multiple
convolution of all items recalled to date is associated
with each of the remaining items, but with decreasing
strength as the degree of remoteness increases. This oc-
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curs in both a forward and a backward direction (see Fig-
ures 5 and 7). We have known about remote associations
for over 100 years, but the power-set model shows how
they could come about.

2. The power-set model also provides a principled
account of the intrusion gradients that are found in se-
rial recall or probe recall. The probability of an intrusion
from any given serial position decreases as its distance
from the target serial position increases (see Lee &
Estes, 1977, or Nairne, 1990, for serial-recall data, and
see Murdock, 1968, for probe-recall data). Qualitatively,
these gradients are exactly what one would expect from
the hypothesized remote associations. Of course, for
quantitative fits, more will be involved, but at least this
provides a first step.

3. The power-set model implements the classic Con-
rad interpretation of order errors in serial recall. Accord-
ing to Conrad (1965), there is no loss of order informa-
tion in storage; instead, an intrusion occurs (for whatever
reason), and then, immediately or eventually, the original
target item shows up in recall as a second intrusion, be-
cause subjects edit out items they have already recalled.
Thus, two items have been transposed, but it is not a re-
arrangement in storage; ' rather, in recall, one error leads
to another. In the power-set model, whatever item is re-
called is used as the plug-in for the next retrieval cue, so
again, in the model, one error could lead to another.

4. The power-set model provides a possible explana-
tion for the experimental dissociation of forward and
backward recall reported by Li and Lewandowsky (1993).
The remote-association gradients for forward recall de-
pend on the normalization factor 4, whereas the remote-
association gradients for backward recall depend on the
forgetting parameter ¢; these, in turn, determine primacy
and recency, respectively. Since at any serial position
the normalization factor depends on «, p, and p,!! any

Power-Set Model
Forward Recall
N=99, al=.75, p=.5, rho=0
Number Recalled
100 n=1
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0 Il . | |
1 2 3 4 5
Serial Position

Figure 9. Results from a simulation of the power-set model which
shows number recalled as a function of serial position for forward
recall.
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Figure 10. Results from a simulation of the power-set model which
shows number recalled as a function of serial position for backward
recall,

variable that affects p or p should affect forward recall but
not backward recall. Li and Lewandowsky found that an
intralist distractor task affected forward recall but not
backward recall. )

5. Since every item is associated with every other
item, probe tests are not a problem for the power-set
model. There should be intrusion gradients in each di-
rection around the probe, and a proof of this assertion is
given in the Appendix. Bidirectional gradients are the
typical result (e.g., Murdock, 1968). However, the con-
fusion matrices from experimental data are sharper than
the remote-association gradients of the power-set model,
so some additional tuning mechanism will probably be
necessary. Since, unlike Shiffrin and Cook’s (1978)
model or the perturbation model of Estes (1972), there
are no item-to-position associations, it is not clear how
subjects could respond to a position probe. One possi-
bility is that it is mediated by implicit recall, but this
seems unlikely, because the results are very similar for
sequential probes and position probes (Murdock, 1968).

. 6. All of the operations can be done with five regis-
ters in working memory and, with one exception (the
back transfer from z to x; see Figure 8), can be done in a
left-to-right (or bottom-to-top) order. Thus, if we wanted
to implement the power-set model in a connectionist
network, we could consider Registers v, w, x, y, and z
as successive layers in a connectionist network. The
function of the network would be to implement the oper-
ations in the correct order and, with one exception (the
back transfer), it would be strictly a feed-forward net-
work.

7. The power-set model predicts associative symme-
try for pairs but not for triples (or higher), and this is ex-
actly what was found by Kahana (1995). After a pair has
been presented,

M, =aa+b+(a*h),

because s, = 1 (see Figure 6). Consequently, a#M, = b’
and b#M, = a’, so unless deblurring is easier for b’ than
for a’, associative symmetry for pairs would be expected. 2
However, for n > 2, the forgetting parameter « and the
normalization factor & would lead to violations of sym-
metry under a variety of conditions, and this is exactly
what Kahana (1995) found.

8. The model has only four parameters (N, «, p, and
p). The parameter N affects the noise level; the param-
eter « affects recognition directly and recall indirectly;
the parameter p affects the learning rate; and the param-
eter preflects interitem similarity, which affects, among
other things, the “sharpness” of the stored-order infor-
mation. Unlike the chaining model, none of the param-
eters varies with serial position, so it is the model that is
doing the work, not the parameters.

9. Given the representation assumption and the con-
volution-correlation formalism, everything follows from
the storage equation (Equation 5). No additional as-
sumptions or mechanisms are required. The storage
equation is a simple recurrence relation, and once that
has been specified, everything else follows. Of course,
one has to flesh out some of the details to simulate the
model or work out analytic predictions, but the basic
structure of the model is completely determined by the
storage equation.

10. The model can easily fit into the TODAM2 frame-
work, so item and associative information fall out as
special cases, and any serial string has the potential to
function as a chunk. If item information is all that is
wanted (i.e., if people do not have to store associative or
serial information), then Equation 5 reduces to

M; =aM, +1;,

which, of course, is the matched-filter model of Ander-
son (1973). If people store item and associative infor-
mation but not serial-order information, then Equation 5
reduces to

M, =M, , +af_ + 1 +(f_ *f),

which is only slightly different from the standard storage
equation we have always used for the storage of item and
associative information. * Thus, the storage equation of
the power-set model could be a general formulation
which subsumes the storage of item and associative in-
formation as special cases.

COMPARISON

We have discussed three possible models for serial-
order information: the chaining model, the chunking
model, and the power-set model. What are the relative
capabilities of each model? Table | evaluates the relative
capabilities of the three models on seven basic serial-
order tasks: forward recall, backward recall, recall of



missing items, sequential probes, positional probes,
serial-to-paired-associate transfer, and item recognition.

Forward Recall

For serial recall, all three models retrieve a linear com-
bination of items—but of which items? For the chaining
model, the answer is the items immediately before and
after the probe (c;_f;_; and ¢, , £} 4 ,); for the chunking
model, it is all the items retrieved to date plus the target
item (i.e., XXt cf;); and for the power-set model, it is all
the items yet to be retrieved (i.e., 2, ,¢f;). For the
chunking model, the target item is always twice as strong
as its competitors, whereas for the power-set model, the
gradients (c;) are relatively flat (see Figure 6). For the chain-
ing model, ¢;_; and ¢;,; depend on the parameter values
Qg and A, but ¢, is always larger than ¢; ;.

The chunking model is clearly the best here because not
only are the gradients much sharper, the competitors in the
linear combination are all items that have already been re-
called. As a consequence, they should be relatively easy to
attenuate before the deblurring process. 4 For the power-set
model, the competitors are all items yet to be recalled, so
it is not clear how they could be attenuated. The chaining
model can do forward recall, even though the retrieval cue
is only a single item. However, what is retrieved is only the
correct item and one competitor (the prior item). Since the
latter is always stronger than the former, the model must
depend on the attenuation process to effect recall, so it is
this unspecified attenuation process, and not the serial-
order part of the model, that is doing the work.

Backward Recall

As we have mentioned, the only way that the chunk-
ing model can do backward recall is by multiple implicit
forward scans, and this seems to be a weakness. Both the
chaining and the power-set models can do backward
recall, and they do it in the same way that they do for-
ward recall. For the chaining model, this time the target
item is stronger than the competition, so the deblurring
process is not so dependent on an attenuation process.

The chunking model can only do backward recall by
multiple forward scans. Is this a weakness of the model?
The power-set model can do backward recall as easily,
and in exactly the same manner, as it does forward recall;
is this a strength of the model? In both cases, the answer
is not necessarily. Subjects seem to be about equally ac-

Table 1
Relative Capabilities of the Chaining, Chunking, and
Power-Set Models on Seven Basic Serial-Order Tasks

Models
Task Chaining Chunking Power Set
Forward recall + ++ +
Backward recall + - +
Recall of missing items - + ++
Sequential probe - + +(?)
Position probe - - -
Transfer test +|- =+ +i—=
Item recognition +(?) + +
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curate on forward and backward recall, even when they
are not precued (Li & Lewandowsky, 1993), but in the
absence of latency data, we do not know whether both
types of recall were done in the same way (or if an equal
amount of effort was required by each task). Further-
more, these are episodic tasks; anecdotal evidence sug-
gests that in backward recall of long lists (e.g., the
months of the year, or the letters of the alphabet), people
do resort to forward scans when backward recall runs
into trouble.

It may be that overlearning alters the relation between
forward and backward recall. While the structure or co-
herence of the stored information is similar, if not iden-
tical, at first, it changes, and one loses some of the initial
facility for backward recall. It is not inconceivable that in
some as-yet-unexplained manner, the storage changes
from something like that envisioned by the power-set
model to something like that envisioned by the chunking
model.

Recall of Missing Items

In the recall of missing items following list presenta-
tion (Yntema & Trask, 1963), a subset of the list (gener-
ally consisting of all but one of the items) is repeated in
a scrambled order, and the task of the subject is to recall
the missing item(s). It turns out that the chunking model
can do this very easily, while the chaining model can
only do it with difficulty, if at all (Murdock, 1992).
Since the probe is a subset of the list,

n-1 n-l e
Xf#Cm)= X #X 1, =1, > f,,
i=1 i=l i=1

and because convolution is commutative, the order of
items in the probe is immaterial. Consequently, the
chunking model can recall a missing item in a very sim-
ple and direct manner.

What about the power-set model? Since the chunk
will always include the highest order multiple convolu-
tion (i.e., X7 1;), the power-set model can recall a miss-
ing item in exactly the same way as the chunking model.
However, suppose there is more than one missing item?
Hadley, Healy, and Murdock (1992) found that subjects
could also recall two missing items, though performance
was poorer with two missing items than with one. Unless
one of the missing items is the last item, multiple con-
volutions will not work for the chunking model, because
of the dependence on C(n—1): since (by assumption) the
probe includes f,, the correlation of X;’;lz f,withC(n—1)
provides no useful information. However, in the power-
set model, the chunk includes all possible (n—1)-way
multiple convolutions, so if we denote the two missing
items as f, and f,, then

n-2 n—2 n—1
X1 #Cn)= X 43 X fy =, +17,
i=1 i=1 § i=1

so a linear combination of the two missing items is re-
trieved, regardless of the composition of the probe. This
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linear combination can certainly be deblurred to the
stronger of the two items and, perhaps, to the weaker of
the two items as well on a second pass, but it seems rea-
sonable to assume that there should be less accuracy
with two missing items than with one.

Sequential Probes

In the chaining model, for a sequential probe, the
probe item is correlated with the memory vector, and
this again retrieves

4 4
1Tt + cprrlprr-

If one had to recall the earlier item (a backward sequen-
tial probe), at least some of the time, one could deblur
the linear combination to the correct alternative because
it is stronger. However, for a forward sequential probe,
the target item is always the weaker of the two items, and
since there is no context of prior recalls in a sequential
probe test, it is not at all clear how the chaining model
could do a forward sequential probe. Even if it could,
performance on a forward sequential probe should be
worse than performance on a backward sequential
probe, but this seems unlikely. (I do not know of any
studies that have made this comparison.)

The chunking model can handle sequential probes,
but it requires a judgment of recency (JOR) first. To il-
lustrate this, suppose we have a three-item chunk which,
by definition, consists of the sum of an engram a, a di-
gram (a*b)*2, and a trigram (a-+b+c¢)*>. Suppose b is
used as the probe for ¢. Now, b*? correlated with the
chunk gives 3a’+b’+3¢’, and b*! (i.e., b) correlated with
the chunk gives 2a’+Db’, and if the latter is subtracted
from the former, the result is a linear combination
(a’+3¢’), in which the target item c is the strongest.
More generally,

j+1
£ #Cm) - {59V 4Cm) = S, ok <n,
i=1

where
0, i=k
¢ = 1, i#k i< j+1;.
J+1l, i=j+1

The JOR comes in in determining j, the number of
times to autoassociate the probe. Note that the strongest
item (and, consequently, the most likely item to be re-
called) depends on j, not on £ (the serial position of the
probe), so the JOR is crucial. There should be recency in
a sequential probe for two reasons: (1) the later the probe
serial position, the more accurate JORs are (Hockley,
1991); and (2) even though the number of competitors
increases, the differential strength between the target
item and its competitors increases with serial position,
so this should benefit deblurring.

For a backward sequential probe,

g cm) - KU ew) = G- e,

so a backward sequential probe can be handled in the
same way as a forward sequential probe. Again, and for
the same reasons, recency would be expected. This
analysis does not have to be restricted to adjacent probes.
One could probe for the item one back, two back, three
back, or further back, or one ahead, two ahead, three
ahead, or further ahead. However, unless the chunk size
was quite large, there would be a very limited range that
one could use without spilling over a chunk boundary.

Sequential probes for the power-set model are much
simpler. Since every item is associated with every other
item, if the probe item f;, were correlated with the mem-
ory vector, the result would be a linear combination of all
the other items in the list. There is a bidirectional gra-
dient around the probe, wherein the forward gradient is a
function of the normalization factor 4 and the backward
gradient is a function of the forgetting parameter « (see
the Appendix). Thus, the remote-association gradients
predict the right pattern of results for a sequential probe.

On a sequential-probe task, the chunking model is
more complex, but more sharply tuned, than the power-
set model. That is, the discriminability of the target item
would be much higher in the chunking model, so de-
blurring would be more likely to succeed. While the
power-set model is simplicity itself and generates the
right sort of gradients, the retrieved information is much
flatter. This will have to remain an open question until
we know more about deblurring.

Positional Probes

By a positional probe is meant a probe test in which a
single item from the list is presented and subjects must
give its serial position, or vice versa. The former is tan-
tamount to an absolute JOR, while the latter uses a posi-
tional cue to probe for a specific item. Since none of the
three models uses item-to-position cues, all must rely on
strength or familiarity for a JOR, and on some as-yet-
unspecified process to respond to a position probe.

Relative JORs can be explained on the basis of ab-
solute JORs (Lockhart, 1969; though see also Hacker,
1980; Muter, 1979), so the problem is to explain ab-
solute JORs. The classical finding here is the overshoot—
undershoot effect first reported by Hinrichs (1970), and
it is not at all clear how, or whether, any of these three
models could do it. Further, Hockley has some unpub-
lished data which strongly suggest that JORs are dif-
ferent from judgments of frequency (JOFs), which, pre-
sumably, are based on strength. All in all, positional
probes would seem to be a weak spot for all three models.

Transfer
By transfer, we are referring to the well-known find-
ing that there is little or no positive transfer in going



from a serial list to a paired-associate list made up of
linked pairs (i.e., A-B, C-D, E-F, etc.). Actually, as
pointed out by Lewandowsky and Murdock (1989; see
their note 1), there is considerable positive transfer on
the first few trials; it is on a trials-to-criterion measure
that the experimental group (linked pairs) and the con-
trol group (learning unlinked pairs, such as 4-D, G-B,
etc.) do not differ. There can even be considerable posi-
tive transfer when the criterion measure is used
(Slamecka, Moore, & Carey, 1972), so the general con-
clusion would seem to be that there is in fact at least
some serial-to-paired-associate transfer.

The chaining model would predict benefits for the
linked pairs but no benefit for the unlinked pairs, be-
cause there are no remote associations in the model. The
power-set model would predict more transfer for the
linked pairs than for the unlinked pairs, because adjacent
associations are stronger than remote associations (see
Appendix), but there should still be some benefit for the
unlinked pairs because of the remote associations. The
chunking model would predict little or no transfer, be-
cause only the first two items in the chunk(s) are di-
rectly associated. It therefore probably comes down to a
win/lose situation. Both the chaining and the power-set
model can predict the early transfer but not its disap-
pearance, whereas the chunking model cannot predict
enough early transfer, but is consistent with the lack of
difference on the trials-to-criterion measure.

Item Recognition

All of the models can perform item recognition, and
all of them predict pure recency. For the chaining and the
power-set model, one simply takes the dot product of the
probe item with the memory vector (or a register in work-
ing memory), but the recency is predicted for different
reasons. For the chaining model, it is predicted because
of the parameter A, whereas for the power-set model, its
prediction is a direct consequence of the storage equa-
tion (Equation 5). For the chunking model, one would do
the same thing on an immediate-recognition test, but for
a delayed test in which the intervening activity over-
wrote the recognition register, the item information
would have to be derived, since it is no longer directly
available (see Murdock, 1993b). However, one would
still expect recency on a delayed-recognition test (cf.
Wright, Santiago, Sands, Kendrick, & Cook, 1985).

SUMMARY

The main difference among these models lies in the
way they perform the various recall tasks. The strength
of the chunking model is that it uses a multiple-item cue
(the multiple convolution of the items recalled to date)
to retrieve the next item. The penalty it pays is that it can
only do backward recall by multiple forward scans. The
chaining model only uses a single-item cue at each step
of the recall process, but because of the way the param-
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eters are set up, f}_; is stronger than f},,, and this
causes problems for sequential probes. The power-set
model can do either; that is, it can use a multiple-item
cue in serial recall or a single-item cue in a probe test.
Further, since it has remote associations, it automati-
cally generates gradients, and these gradients show the
right patterns. However, these gradients are rather flat,
and we will need to know more about the deblurring
process before we can tell whether they are consistent
with the experimental data.
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NOTES

1. Another way of saying this is that convolution is exactly the
same as correlation, except that in convolution, one of the item vectors
is reflected about its midpoint before doing the correlation.

2. Since TODAM vectors are statistically normalized to 1, any
item vector (e.g., f) correlated with itselfis 8”. As with &', primes de-
note approximations, $0 g} is an approximation to g;. The arrows de-
note deblurring; g may or may not be deblurred to g, where g; is the
target item (see Note 3).

3. We do need a principle to determine whether or not the retrieved
information (e.g., g%) is close enough to the target item (e.g., g;) to
conclude that the correct item would be recalled, but this principle
amounts to a scoring rule, and is not a model of the deblurring process.

4. In the equation (Equation 5 from Lewandowsky & Murdock,
1989), the index J is one greater than serial position, so j = 1 denotes
the start signal; see Lewandowsky and Li (1994).

5. We also have the interitem similarity parameter p, but p = 0 in
the simulations reported here.

\/6 The normalization is by the dot product; e.g., |f| = Af, where 1 =
JYA R

7. We can work out an explicit expression for the normalization
function because, for any n, E[X]_, f; - X7_;] = 1.0.

8. During the presentation of a list, what we are calling M is a reg-
ister in working memory, so this scheme would simply use another reg-
ister in working memory.

9. pis the interitem similarity, and here the items are independent
(p = 0). If p> 0, performance deteriorates slightly, but the pattern is
still the same.

10. The perturbation model of Estes (1972) says exactly the oppo-
site. Loss of order information occurs in storage; in every short period
of time, there is a small but constant probability of interchange of ad-
jacent items, and this is what leads to the observed transpositions in
recall. Some modification of this model would presumably be needed
to explain why we do not, in the limit, suffer a complete loss of order
information.

11. The effect of p on & increases with serial position, and this is so
because more terms enter into f;*M;_, as j increases. Further, because
we use a Gaussian feature distribution, £[Z“ZV] = 0, u+v odd, so
only selected terms affect the value of & at any given serial position.

12. Even if it is easier for b’ than for a’, associative symmetry for
pair recogmtlon would still be expected.

13. The main difference is that formerly we assumed that a pair
functioned as a unit, so the memory vector was decremented on a pair-
by-pair basis. If items were presented sequentially, it might be slightly
different, or this might be optional, just as in TODAM2 one has a
branch after two items have been presented (see Figure 2 in Murdock,
1993b).

14. One such scheme was suggested in Murdock (1993b), and sim-
ilar schemes are also used in connectionist models (e.g., Hinton, Plaut,
& Shallice, 1993).

APPENDIX

If we consider a power set of n items to be a chunk of size n,
we can write an explicit expression for a chunk—namely:

Cn) = i}::laiﬂ + {g%lﬂ-} *{ )y hjfj}

J=i+l

{2 S ool € * t;)} {Z h,-f,}

i=1 i'=2 j=i"+1

n-1
+...+{fl *Xh,-f,}*h,,f,,.
i=2

For a sequential probe f; from serial position £,



£4C) = f Hza,lt} . { by h;@}}

J=i+l

because the lower order items (engrams) and higher order terms
(trigrams and up) are just noise. First, consider those cases in
which the probe f; matches f;; then we have

n—1
LHCM = # Y a3 hi(E+1)

i=l j=i+t

=fi#ta,, Y b * 1)
1

J=k+

=fa X h#f) 1,

J=k+1

n
!
=0 gy zhjfj’
j=k+1

so the result is a linear combination whose coefficients are the

normalization constants hj.
When the probe matches the later item, we can turn the ex-
pression around, and write:
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n u-1
f,#C(n) = fk#[{Zhufu Yo fH
v=1

u=2
k-1 & |
= fi# {hkfk * Yo" fv}
v=1

k-1 k-1
=h (i f)* Yo g, = h Yo kot f),

v=1 v=1

so here the coefficients of the linear combination are a func-
tion of a. Since the exponent is ki—v—1, the more remote (i.e.,
the earlier) the competition, the weaker it is. Thus, for any se-
quential probe f;, correlating the probe with the chunk gives us
a linear combination of all the other items in the list with a gra-
dient in the forward direction, which is a function of the nor-
malization factor 4 and with a gradient in the backward direc-
tion, which is a function of the forgetting parameter, a.
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