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The recognition-failure paradigm has received much theoretical consideration, especially the Tulving
Wiseman function and its exceptions. Weshow that the Tulving-Wisemanfunction does a poor job of
accounting for the data, both when its fit is measured with a model-based, goodness-of-fit statistic and
when a logically equivalent reformulation of the function is compared with data Wethen present a sim
ple multinomial model based on retrieval-independence theory that is capable of measuring storage and
retrieval processes in recognition failure, The model is used to conduct a meta-analysis of the recog
nition-failure paradigm, and shows that violations of the Tulving-Wiseman function occur under con
ditions in which weak storage is coupled with strong retrieval, In addition, if storage and retrieval are
assumed to be positively correlated across conditions, the model produces a theoretically motivated,
alternative equation to the Tulving-Wiseman function that provides a virtually identical fit to the data,

Memory theorists have long debated over the relation
between recall and recognition, and in particular over what
this relationship tells us about underlying memory pro
cesses. An important milestone in this debate was the dis
covery by Tulving and Thomson (1973) that recognition
failure can occur for recallable words. This phenomenon
is demonstrated using a special recognition-failure para
digm, in which weakly associated A-B pairs are presented
for study. Memory is then tested by two successive proce
dures-a recognition test for the B-terms, followed by a
cued-recall test ofthe B-terms, given the A-terms as cues.
The data from the recognition-failure paradigm can be
represented in the form ofa 2 X 2 grid (see Table l), where
Rn indicates a correct response (hit) on recognition and Rc
indicates a correct response on cued recall. The quantities
Nij (i,j = 1,2) represent the response frequencies for each
condition, aggregated over subjects and items. Tulving and
Thomson used this paradigm to show that a substantial
number ofB-terms are not recognized, even when they are
correctly recalled when their A-terms are given as cues.
This result would be indicated by a nonzero value ofN21
in the lower left cell ofTable 1.

The recognition failure of recallable words is considered
to be an important result because it apparently contradicts
strong versions ofgeneration-recognition theories ofmem-
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ory (Bahrick, 1970; Tulving & Wiseman, 1975). Such theo
ries assume that successful recall ofan item from memory is
a two-stage process, whereby (1) a set ofpossible responses
is generated from available memory cues, and (2) the cor
rect response is recognized from this set. Recognition of
the B-term is thus a subcomponent of successful cued re
call, and therefore recognition failures of recallable items
should not occur. Jones (1978) and Kintsch (1978) pro
vide weaker versions ofthe generation-recognition theory
that can account for these results; however, most contem
porary theorists have abandoned the generation-recognition
theory.

Since Tulving and Thomson's (1973) demonstration, rec
ognition failure has proven to be a reliable phenomenon in
a number of different experiments (see Nilsson & Gar
diner, 1993). There has also been a considerable theoretical
dialogue focusing on one aspect ofthe recognition-failure
paradigm known as the Tulving-Wiseman function (Tulv
ing & Wiseman,1975), which we will discuss shortly. But
despite extensive experimentation with this paradigm, it is
our contention that the literature on recognition failure has
overlooked some basic theoretical and statistical issues,
and instead has focused too strongly on complex theories
and involved statistical artifacts centered on the Tulving
Wiseman function. In this article, we approach the issues
in recognition failure from a different perspective. Our
goal is to develop a very simple, multinomial processing
tree model (Hu & Batchelder, 1994; Riefer & Batchelder,
1988), and to show that this model is valid and can capture
the main, reliable aspects of the recognition-failure para
digm viewed as a whole. Wewill demonstrate that the analy
sis ofour multinomial model reveals new insights into the
recognition-failure paradigm that have not been afforded
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Table I
2 X 2 Data Table From the Recognition-Failure Paradigm

Note-e-Redenotes recall, and Rn denotes recognition.The Nij(i,j = 1,2)
represent the response frequencies in each condition.
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Figure 1. Relationship between probability of recognition,
P(Rn), and probability of recognition given recall, P(RnIRc), plot
ted from Nilsson and Gardiner's (1993) database. The solid line
through the points is the Tulving-Wiseman function from Equa
tion 1. Only points that meet Nilsson and Gardiner's criterion for
conforming to the function are plotted.

0.2

The article is organized as follows. First, we review the
basic findings in the recognition-failure paradigm, and in
particular, we focus on a major theoretical issue that has
developed within this paradigm-the Tulving-Wiseman
function and its so-called exceptions. We then show on
statistical grounds that the Tulving-Wiseman function is
not consistent with either the exceptions or the nonexcep
tions discussed in the literature. Following this, we present
our multinomial model, and use the database from Nilsson
and Gardiner (1993) to argue for its validity. Following that,
we develop the model so that it can be used as a meta
analytic tool to provide a better understanding ofdata pat
terns across experimental conditions. In particular, we
show that correlation between parameters across experi
ments can lead to a simplification of the model that helps
explain the apparent good fit ofthe Tulving-Wiseman func
tion. Finally we assess the impact of the model's simpli
fying assumptions on the analysis.

THE TULVING-WISEMAN FUNCTION

1.0 r---..----.------,----r---..r-::~

Tulving and his co-workers (e.g., Flexser & Tulving,
1978; Tulving & Wiseman, 1975) have argued that, within
the recognition-failure paradigm, there is an orderly rela
tionship across many studies between the proportion of
recognition hits, P(Rn), and the conditional proportion of
recognition hits given recall, P(RnIRc). This relationship
is plotted in Figure I, where each point represents one of
the experimental conditions catalogued by Nilsson and
Gardiner (1993) as conforming to the function (exceptions
to the function are discussed later). As mentioned earlier,
strong versions of generation-recognition theory predict
that P(RnIRc) should be equal to one, because successful
recall implies successful recognition. This is clearly not

Rc

Recall

RcRecognition

by more traditional analyses. This is accomplished by
conducting a model-based meta-analysis on the entire cor
pus of known experimental data from recognition-failure
studies. Fortunately, Nilsson and Gardiner (1993) have
recently documented 302 known data sets from 44 differ
ent studies that fit into this paradigm, making such an un
dertaking possible. Along the way, we will argue that the
Tulving-Wiseman function does not fit the data well, and
we provide a statistical explanation as to why others have
come to the opposite conclusion.

Of course, one may well ask at this point why a new
model is needed to study recognition failure-after all, a
large number of memory models have already been ap
plied to this area with some success. They include MIN
ERVA (Hintzman,1987), CHARM (Metcalfe,1992), and
SAM (Raaijmakers & Shiffrin, 1981), to name a few.
However, the approach we take in this article is different
from that usually taken by others who analyze more com
plex models of memory. The usual strategy for testing
complex models involves conducting a series ofcomputer
simulations and demonstrating that the models are capa
ble ofdescribing memory phenomena in a wide variety of
different paradigms. By contrast, our approach involves
using analytic methods to provide a precise and detailed
statistical analysis ofa very simple multinomial model ap
plied specifically, and solely, to the recognition-failure
paradigm. As Riefer and Batchelder (1988) point out, multi
nomial models are mathematical tools that can bridge
the gap between strong theoretical models on the one hand
and purely statistical approaches on the other. Because of
their relative simplicity, these models are easy to work with
analytically, and closed-form solutions for parameter es
timates can often be obtained. Their statistical properties
can also be explored---especially their robustness as ap
proximations to more complete memory models.

We wish to make it clear at the outset that the statistical
model we develop in this article is not meant as a competi
tor to other more sophisticated memory models that have
already been extensively studied in the literature. Our model
is psychologically based, but it is designed exclusively to
understand data in the format ofTable I, and as such, it is
not intended to be applied to a large array ofpotentially re
lated memory phenomena such as false-alarm rates, con
fidence judgments, and forgetting functions. Rather than
trying to extend our model to handle these and other basic
effects, we will show that the model is a special case of.a
more complicated model, and that it can closely approxi
mate other, more complex models when those models are
restricted to the recognition-failure paradigm.
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Alternative Analyses of the Function
The literature on the recognition-failure paradigm re

viewed above has focused almost exclusively on the
Tulving-Wiseman function's failures and successes in rep
resenting the paradigm. This is unfortunate because, as we
show next, the apparent fit of the function is not substan
tiated when the data are transformed and examined in dif
ferent forms. For example, consider the data quantity

In other words, the Tulving-Wiseman function exactly fits
the data in an experimental condition ifand only if Equa
tion 5 holds exactly.

To test the relationship in Equation 5, we examined those
conditions in Nilsson and Gardiner (1993) that the authors
catalogued as nonviolations ofthe Tulving-Wiseman func
tion, and we constructed the scatterplot between D and
P(Rc) for those conditions. This is presented in Figure 2.
Equation 5 is represented by the line through the points in
Figure 2, based on a least-squares estimate ofc = .476. This
equation yielded a correlation between predicted and ob-

which can be viewed as a measure oflearning on the recog
nition test (see Humphreys & Bowyer, 1980). It is easy to
use the laws ofprobability to derive

D = P(Rn & Rc) - P(Rn) P(Rc). (3)
P(Rn) [1 - P(Rn)]

Next, note from Equation 1 that

P(Rn & Rc) = P(Rn) P(Rc)

+ c P(Rn) [1 - P(Rn)] P(Rc), (4)

which is an equivalent expression ofthe Tulving-Wiseman
function created by multiplying both sides of Equation 1
by P(Rc). This can be substituted into Equation 3, and the
result is

tionship between P(Rn) and P(RnIRc) implied by the
model.

A different type of account for the Tulving-Wiseman
function has been proposed by Hintzman (1991, 1992, 1993),
who argues that the orderliness of the function is a statis
tical artifact. Hintzman claims that mathematical constraints
among the values ofP(RnIRc), P(Rn), and P(Rc), princi
pally when recall probability exceeds recognition proba
bility, help to constrain data points into a region that is
consistent with the function. Furthermore, he argues that
parameter variability within each experimental condition,
such as that caused by subject, item, or even subject-item
differences, may also constrain data points to conform to
the function. Hintzman's concerns have been challenged
by Tulving and Flexser (1992,1993), butthe issues raised
by Hintzman's critiques are important ones. It is clearly an
approximation to assume that the subject-items that go
into the 2 X 2 grid in Table 1 are independent and identi
cally distributed.'

(2)

(5)D=c P(Rc).

D = P(RcIRn) - P(RcIRn),

the case for the vast majority of studies represented in
Figure I. Instead, Tulving and Wiseman (1975) argued that
the relation between P(Rn) and P(RnjRc) can be closely
described by the following function:

P(RnIRc) = P(Rn) + c P(Rn) [1-P(Rn)], (I)

with a value of the constant c approximately equal to .5.
This function is represented by the solid line in Figure I,
and it expresses P(RnjRc) as the sum ofa linear plus a qua
dratic component, both based on the recognition hit rate.'

Previous Analyses of the Function
Although some theorists (e.g., Nilsson & Gardiner,

1991; Nilsson, Law, & Tulving, 1988) have advocated that
data conform so uniformly to the Tulving-Wiseman func
tion that it should be labeled a psychological law, numer
ous exceptions to the function have been documented. Ac
cording to Nilsson and Gardiner (1991,1993), who have
defined and catalogued them, these exceptions fall into
two basic categories. One type consists of "encoding ex
ceptions." These occur in conditions that lead to weak A-B
encoding, such as those in which A-B pairs that are unre
lated are used, or in which the rehearsal strategies that
subjects are told to engage in are poor, leading to shallow
levels ofprocessing. The other type consists of "retrieval
exceptions." These are created when the cues during recall
contain much of the same information as the target items,
which elevates the likelihood of successful retrieval given
successful recognition. For example, Muter (1984) observed
violations of the function when a semantic memory task
was used in which the recall cues were detailed descrip
tions of famous last names (e.g., Nobel prize-winning
physicist, Madame . Nilsson and Gardiner
(1991) claim that by explicitly specifying the known cir
cumstances that lead to violations, the boundary condi
tions within which the law is shown to hold are defined.

As Nilsson and Gardiner (1993) point out, explanations
of the Tulving-Wiseman function need to account for vi
olations of the function as well as for those points that
conform to it. In general, attempts to explain the function
and its exceptions have fallen into two categories: those
that employ a strong, theoretical model of memory, and
those that attempt to show that the function is largely a sta
tistical artifact, thus meriting no special explanation. In
the former case, a number of complex, formal models
have been proposed, including ACT* (Anderson, 1983),
MINERVA 2 (Hintzman, 1987), and CHARM (Metcalfe,
1992; see Nilsson & Gardiner, 1991; Ratcliff& McKoon,
1989, for reviews). As we indicated earlier, all ofthe above
models are comprehensive models ofhuman memory, de
signed to handle a wide range of memory phenomena in
addition to the Tulving-Wiseman function. Because oftheir
complexity, the basic approach used to test models ofthis
type has involved conducting a few computer simulations
and showing, under certain assumptions and parameter
values, that the model is capable of producing simulated
data that mimic the general shape ofthe Tulving-Wiseman
function, rather than analytically deriving an actual rela-
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(9)

(l0)

p(Rn) = NIl+NI2
N

'(R ) = NIl+N21
P c N'

and

where N = Nil + N21+ NI2+N22.Next, the expected fre
quencies are generated from Equation 4 by

F Il = Np(Rn)p(Rc) [1 + c - cp(Rn)] (lla)

F I2=Np(Rn) - F Il (lIb)

F21= Np(Rc) - F Il (llc)

F22= N [1 - p(Rn)] - F21. (lId)

Finally, a chi-square test can be conducted by the formula

x2(1)= ±(Fij _Nij)2 (l2)
i,j=1 Fij

We analyzed data in the form ofTable 1 for all the data
sets in Nilsson and Gardiner (1993) that were classified by
the authors as nonexceptions and that had expected fre
quencies of five or more in each cell. The results of this
analysis were enlightening. There were a total of253 cases
from Nilsson and Gardiner that met the above restrictions.
Of these, a full 35% produced significant deviations of
observed frequencies from predicted frequencies from the
Tulving-Wiseman function, using a significance level of
a = .05. At a = .01, this percentage was still 24%. This
seems to us to be a fairly substantial percentage of cases

shows that most studies on the recognition-failure para
digm yield values of P(Rc) that are greater than .25 (cf.
Figure 4). Thus e* will generally be larger than e,and some
times by a great amount. Deviations from the Tulving
Wiseman fit in Figure 1 will therefore tend to be magni
fied when the equivalent relationship from Equation 5 is
used, as can be seen in Figure 2. In general, we can expect
that the data will fit Equation 5 more poorly ifthe measure
of fit is a simple error-variance measure, rather than a
model-based goodness-of-fit statistic.

Fortunately, it is possible to develop a model-based
goodness-of-fit statistic for the Tulving-Wiseman func
tion. One aspect of the function that has generally been
overlooked is that it can actually be viewed as a statistical
model-specifically, a model for the nonindependence in
an aggregate data table such as Table 1.To see this, note that
Equation 4 gives an expression for P(Rn & Rc), which is
the probability in the upper left cell of Table 1. The rela
tionship in Equation 4 therefore implies that the cell fre
quencies in Table 1 can be reproduced, within sampling
variability, by a knowledge of the two marginal probabil
ities P(Rn) and P(Rc), along with the value ofc.

We can analyze data in the form ofTable 1 in a manner
similar to a chi-square test ofindependence, except that the
expected frequencies are computed from Equation 4 rather
than from an independence assumption. First, the two
marginals are estimated by

(7)

1.00.80.60.4

D=cP(Rc)+e*.
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Figure 2. Relationship between probability of recall, P(Rc),
and D, which equals P(RcIRn) - P(RcIRn), plotted from Nilsson
and Gardiner's (1993) database. The line through the points is
the best-fitting line from Equation 5, with c = .476.
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served values ofD ofr= .235. While the best-fitting value
of c in Figure 2 is close to the traditional value of .5, the
proportion of variance explained (r 2 = .055) is very low
compared with the value obtained for the Tulving-Wiseman
function in Figure 1 (r 2 = .916). This is an important re
sult, because it suggests that the Tulving-Wiseman function
is merely a convenient curve-fitting function for a very
particular way ofplotting the data across conditions, as in
Figure 1. When the very same data are plotted in a different
way, the function in Equation 5, derived directly from the
Tulving-Wiseman function, appears to do a poorjob offit
ting the data. Thus we have an apparent paradox-namely,
that two theoretical relationships can be mutually consis
tent, yet the data may appear to fit one of them much bet
ter than they fit the other.

Fortunately,it is not hard to understand this apparent para
dox. Suppose that an experimental condition yields data
that fail to fit the Tulving-Wiseman function by a certain
amount of error, denoted bye. We can represent this situ
ation by the equation

P(RnIRc) = P(Rn) + c P(Rn) [l-P(Rn)] + e, (6)

From Equations 2-4, we can compute an expression for e*
in terms of e given by

* [ P(Rc) ] (8)
e = P(Rn)[I-P(Rn)] e.

Note that P(Rn) [1 - P(Rn)] has a maximum possible
value of .25, and Nilsson and Gardiner's (l993) database

where e is a nonzero value consistent with the constraints of
probability theory. Similarly, Equation 5 can be expressed
with its own error term, e*:
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for which the function performs poorly, especially con
sidering that these cases were all classified as nonexcep
tions by Nilsson and Gardiner. Moreover, the average Xl
value for these 253 cases is 5.19, which is well above the
expected value of 1.00 for a random Xl variable with one
degree of freedom. 3

We think that the results ofthe Xl tests are cause to sta
tistically reject the Tulving-Wiseman function as a valid
representation of the data in the recognition-failure para
digm. In light of these results, it is useful to revisit Hintz
man's (1992, 1993) analyses of the function. Hintzman is
correct in showing that, under certain circumstances, con
straints among P(Rn), P(Rc), and P(RnIRc) can reduce the
error in fitting the function and help to create a positive
correlation over conditions, as seen in Figure 1. However,
we argue that these constraints only pose a problem ifone
evaluates the Tulving-Wiseman function with a measure
that is not model-based, such as by "eyeballing" its fit or
conducting correlation tests. In contrast, the Xl test is based
on known statistical sampling theory, and it reflects con
straints of the type that Hintzman discusses through the
expected and joint probabilities ofeach ofthe four cells in
Table 1. Relationships such as that obtained by Equation 1
basically reduce the data structure by one degree of free
dom and, as such, are perfectly plausible statistical mod
els for 2 X 2 data tables. By their very nature, such rela
tionships will entail constraints on the data. However, in
the case ofthe recognition-failure paradigm, the relation
ship proposed by Tulving and Wiseman (1975) is not sup
ported when the resulting model is subjected to a valid sta
tistical test.

As mentioned earlier, Hintzman (1980,1991,1993) has
also raised concerns about applying models to aggregate
data in the form of Table 1 when they entail the assump
tion that the observations are independent and identically
distributed. The Xl test that we adopt does in fact make
these assumptions. However, as with other applications of
Xl tests to contingency tables in the social and behavioral
sciences (see, e.g., Bishop, Fienberg, & Holland, 1975),
one has reason to hope that the test is robust under small
violations of these assumptions. In any event, it is up to
proponents ofthe Tulving-Wiseman function to show that
the failure ofthe Xl tests to support the function can be ex
plained by the fact that cell entries within a condition are
not independent and identically distributed. Ironically, this
situation isjust the opposite ofthat proposed by Hintzman
in his argument that these assumptions may have resulted
in spurious support for the function.

A Multinomial-Modeling Analysis
It is evident from the above analysis that research on the

recognition-failure paradigm has focused too narrowly on
correlational tests ofjust one aspect ofthe data in Table 1-':'
namely, the Tulving-Wiseman function. As we have indi
cated, this is not an appropriate way to test a statistical model
of the entire data structure. Such an approach can be very
deceptive, as revealed by the bad fit when the same aspect
of the data is plotted against a completely equivalent rela
tionship, such as that given by Equation 5 and Figure 2.

It is clear that alternative approaches can be useful in
exploring aspects ofthe recognition-failure paradigm that
havenot been revealedin the more traditionalanalysesbased
on the Tulving-Wiseman function. In the remainder of this
article, we will explore one such approach, based on a
multinomial-modeling analysis. Specifically, our goal is
to develop a simple model that incorporates the retrieval
independence theories of Begg (1979) and Flexser and
Tulving (1978), and to use this model to conduct a com
prehensive meta-analysis of the database in Nilsson and
Gardiner (1993). We will use the database to argue for the
validity ofthe model, as well as to understand both the ex
ceptions and nonexceptions to the Tulving-Wiseman func
tion. Wewill also show that a reduced version ofthe model
that incorporates parameter covariation across experi
mental conditions in a particular way can explain some of
the apparent success of the Tulving-Wiseman function.

THE MULTINOMIAL MODEL

The multinomial model presented next is consistent
with a commonly held view ofrecognition and cued recall
called retrieval-independence theory. Retrieval indepen
dence assumes that the underlying processes of recogni
tion and cued recall are independent of each other, in the
sense that they involve different cognitive mechanisms.
Thus, the success or failure ofone process does not affect
the likelihood ofsuccess for the other.Dependencies in em
pirical measures of recall and recognition occur because
both processes access a common memory trace that varies
probabilistically in encoding strength (Flexser & Tulving,
1978) or likelihood ofretention (Begg, 1979).

Data Representation
The basic experimental task behind the model is the

recognition-failure paradigm described earlier in Table 1.
Subjects can be successful or unsuccessful on either of these
memory tests, resulting in four data events: E ll--5uccess
ful recognition and recall (Rn & Rc); E12-successful
recognition but unsuccessful recall (Rn & Rc); EZI-un
successful recognition but successful recall (Rn & Rc);
and E22(unsuccessful recognition and recall (Rn & Rc).
The quantities Ni} are the frequencies for eachEi} data event.

Model Development
The multinomial model assumes that subjects' recog

nition and recall performance for an A-B pair is a function
of four hypothetical, dichotomous processes:

Storage of the A-B pair. A representation of an A-B
pair is assumed to be stored within memory and main
tained to the time of testing with probability s, 0 ::;; s ::;; 1.

Retrieving stored A-B pairs during recognition. Dur
ing the recognition test, when subjects are presented with
B-item probes, the model assumes that a stored A-B pair
is accessed with probability rl' 0 ::;; rl ::;; 1. This results in
correct recognition of the B item.

Retrieving stored A-B pairs during recall. During
the cued-recall test, when subjects are presented with A
item probes, the model assumes that if there is a repre-
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p(Rn & Rc) =" s (1 - r,) rz (1 - g) (Bc)

p(Rn & Rc) =" s (I - rt)(1 - rz)(1 - g)

+ (I - s) (1 - g). (13d)

Parameter Estimation
With g = 0, there are three parameters in the model, and

the data structure in Table I contains three degrees offree
dom. Riefer and Batchelder (1988, p. 327) derive closed
form maximum-likelihood estimates (MLEs) for the pa
rameter values of the model. They are

(l4a)

(l4c)

(14b)

Ifg = 0, these expressions reduce to the same structure as
Equation 31 in Riefer and Batchelder (1988) for the
Greeno et al. (1978) model.

In the theoretical literature on the recognition-failure
paradigm, the possibility of a correct response on recog
nition due to guessing is not often discussed. For example,
in Flexser and Tulving's (1978) model, failure to ade
quately store the A-B pair necessarily results in a recog
nition failure. The assumption ofno guessing on recogni
tion is consistent with only a few studies that have used
stringent recognition criteria (e.g., Gardiner, 1988; Nils
son et aI., 1988); however, there are many recognition par
adigms in which such guessing processes are likelyto occur.
One method for examining these guessing processes is to
look at false-alarmresponses to distractor items. It is straight
forward to expand the data to include distractors, and then
it would be necessary to expand the model in Figure 3 to
include a tree for distractor items. There are several ways
to incorporate a model for distractors; however, because
data for distractors are not reported in many ofthe articles
on the recognition-failure paradigm, we hereafter concen
trate only on the model in Figure 3. Further, to simplify
our analyses, we will also assume that g = 0 in the model.
This approximation not only makes the model identifiable
for a given condition (with three parameters and three de
grees of freedom), it also substantially facilitates the
analyses to follow.Later, we will discuss the impact ofg > 0
on our conclusions, as well as the issue of completing the
model to include distractors.

A Nil
rz =" .

N Il+N12

These MLEs are valid as long as N Nil > (Nil +N12 ) (Nil +
Nz,)' Ifthis inequality does not hold, it is possible to use a
computer search method developed by Hu and Batchelder
(1994) to find MLEs within the unit interval.

It is also possible to express the estimates in Equation 14
in terms ofthe three data statistics provided in the Nilsson
Gardiner (1993) database-namely, P(Rn), P(Rc), and
P(RnIRc). The resultant equations are

« P(Rn & Rc)

P(Rn & Rc)1- r2

8
r
2<g-

P(Rn& Rc)

P(Rn & Rc)( 1-,-
l-r,

l-r
2(g-

P(Rn & Rc)

P(Rn & Rc)l-g-

9 P(Rn& Rc)

1.8<
P(Rn & Rc)1 - 9

Figure 3. Multinomial processing-tree model based on retrieval
independence theory.

sentation of A-B in memory, the cue provides successful
retrieval of its target with probability rz, 0 s rz s I. This
results in correct recall of the B item.

Guessing on recognition. If an A-B pair is not stored
or retrieved on recognition, a correct recognition is still
possible with probability g, 0 s g $ I.

Multinomial models such as the one above are some
times referred to as generalprocessing-tree models (Hu &
Batchelder, 1994), because they can be expressed as a tree
diagram with a special parametric form. Figure 3 presents
the tree structure for the current model. The model in Fig
ure 3 is similar to a model for proactive inhibition devel
oped by Greeno, James, DaPolito, and Polson (1978), and
presented as a general processing-tree model in Riefer
and Batchelder (1988, Figure I). Greeno et al. applied their
model to a proactive-inhibition paradigm, in which a list
of A-B associates is presented for learning, followed by a
second list with the same stimuli paired with new responses
(A-C). Subjects then attempt to recall both Band C, when
given A as a cue. Retrieval independence is also an issue in
interference theory, because the recall ofB and C is often
stochastically independent even when strong interference
effects are evident-a finding known as the retrieval
independence phenomenon (Martin, 1971). As it turns
out, ifg="O in Figure 3, then our retrieval-independence
model is equivalent to the Greeno et al. model in terms of
its basic structure, although, of course, the two models
postulate a different interpretation of the parameters.

From the tree structure in Figure 3, it is straightforward
to write theoretical expressions for the probabilities of
each data event:

p(Rn & Rc) =" srj rz + s (I - r,) rz g (13a)

p(Rn&Rc)="sr, (1 - rz) + s(1 - r,)(1 - rz)g

+ (1 - s)g (13b)
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the parameters. For convenience, we have computed the
estimates of s, r\, and rz for each of these data sets, and
they are presented in the Appendix. Each set of estimates
is catalogued using the same condition number as used in
Nilsson and Gardiner (1993). One advantage ofmultino
mial modeling is that approximate asymptotic confidence
intervals can also be computed for each parameter, using
methods described in Riefer and Batchelder (1988, pp.
327-328). The 95% asymptotic confidence intervals for
each parameter are also included in the Appendix.

With these parameter estimates, we can first explore the
relationship between recall and recognition. To start with,
Figure 4 plots the relation between P(Rn) and P(Rc) for
the data sets from Nilsson and Gardiner (1993). As can be
seen, both recognition and recall exhibit a fairly wide
range of values across the 302 known data sets. It is im
portant to realize that in experiments using the recognition
failure paradigm, recognition hit rates are obtained using
a number of different procedures, including free versus
forced-choice paradigms and liberal versus stringent scor
ing criteria. This helps to explain why recognition hit rates
in Figure 4 cover such a wide range.

As it turns out, there is, in fact, a significant, positive
correlation between P(Rn) and P(Rc) in Figure 4 [r(300) =
.324,p < .001]. Considering the number of unrelated de
sign variables that vary over the 302 conditions, the value
of this correlation seems to us to be fairly large. As stated
earlier, retrieval-independence theory explains any em
pirical dependency between these two measures by as
suming that the underlying processes of recognition and
recall are independent, but that they both access a com
mon memory trace. These cognitive processes are repre
sented in the model by parameters r\ (recognition), rz (re
call), and s (storage). Thus, the model would explain the
positive correlation in Figure 4 by assuming that P(Rn)
and P(Rc) are "spuriously correlated" because the storage

P(Rc)

Figure 4. Relationship between probability of recaU, P(Rc),
and probability of recognition, P(Rn), plotted from Nilsson and
Gardiner's (1993) database.

, P(Rn)
s=

P(RnIRc)

'"I = P(RnIRc)

'" = P(Rc) P(RnIRc)
Z P(Rn) .

Equation 15 provides MLEs for the parameters within the
open interval (0,1), provided that P(RnIRc) > P(Rn).

Model Validity
An important step in the development of any model

consists of assessing its validity. One way to accomplish
this is to determine that the parameter estimators of the
model reasonably measure the processes that they are de
signed to represent. This typically involves conducting a
series ofexperiments, manipulating relevant independent
variables, and seeing whether these variables influence the
parameter values in a logical or theoretically reasonable
manner. Fortunately, it is not necessary to conduct new ex
periments to test the validity ofthe current model, because
the large array of previously published research on the
recognition-failure paradigm provides an ample corpus of
data for this task.

As mentioned previously, Nilsson and Gardiner's (1993)
database contains the aggregated values ofP(Rn), P(Rc),
and P(RnIRc) for each of their 302 conditions, which can
be inserted directly into Equation 15 to derive estimates of

Relation to Other Models
The multinomial model just presented attempts to rep

resent the basic assumption ofretrieval independence in a
simple mathematical form. The processes of recognition
and recall are independent in the model because, given stor
age ofA-B, the probability ofrecall retrieval (as measured
by rz) does not depend on whether recognition retrieval
occurred (as measured by r\). Certain strong theoretical
models ofmemory, when applied to the recognition-failure
paradigm, can also be thought of in this framework. For
example, Metcalfe's (1992) CHARM model assumes that
A-B pairs are stored in a single composite memory trace
that is accessed by an A-vector for cued recall, and sepa
rately by a B-vector for recognition. SAM (Raaijmakers &
Shiffrin, 1981) also incorporates retrieval independence,
because cued recall occurs through a sequential search
and recognition occurs through global activation, both ac
cessing the same stored strengths.

The one theory that perhaps bears the closest resem
blance to our current model is Flexser and Tulving's (1978)
goodness-of-encoding model. In fact, our model (with g =
0) can be seen as a special case of Flexser and Tulving's
model. Their model represents memory traces as feature
vectors, and the multinomial model is equivalent to the
simplest case in their model, in which vectors consist ofa
single component. In their general model, integer thresh
olds on the number ofcomponent matches to achieve suc
cessful recognition and cued recall are also parameters. In
our special case, the threshold parameters would be set to
one, which represents the number of components.
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able to identify a sizable set of independent variables falling
into these various categories (see Table 2, which also lists
the specific studies that examined each variable).

For all of these variables, we conducted hypothesis tests
of the model's parameters, comparing the relevant exper
imental conditions from each study. Hypothesis testing
for general processing-tree models is straightforward, and
is discussed in detail in Riefer and Batchelder (1988, 1991b)
and Hu and Batchelder (1994). Basically, hypothesis tests
can be conducted using the log-likelihood ratio statistic
G2, which is distributed approximately as a X2 variable.
Except where indicated, all tests used a significance level
of a = .01. The results of these analyses are presented
next. Space limitations prevent us from presenting de
tailed results for every hypothesis test we conducted; in
stead, we present a substantial subset of our findings that
is representative of the overall pattern of results.

Variables that should affect storage and mainte
nance. There are a number of experimental manipula
tions whose primary effect can reasonably be expected to
be one ofinfluencing how well items are stored and main
tained within memory. A straightforward example would
be the depth ofencoding given to each item. For example,
Bryant (1991) instructed subjects to process items using
either structural, phonetic, or semantic encoding (Cases 281,
282, and 283, respectively, in the Appendix). Analysis of
Bryant's data by the model reveals that this manipulation
did have a significant effect on storage, [G2(2) = 21.50],
with deeper processing resulting in larger values of5. Depth
ofencoding had no significant effect on rl [G2(2) = 2.18],
but did have a marginal effect onr2 [G2(2) = 7.27,p < .05].

Other experiments have manipulated depth ofprocess
ing by examining meaningful versus rote rehearsal. A typ
ical study was conducted by Begg (1979, Experiment I,
Case 119 vs. Case 120 in the Appendix). An analysis of
these data shows that meaningful rehearsal resulted in sig
nificantly better storage than did rote rehearsal [G2(1) =
42.78]. As with Bryant's (1991) study, this variable had no
significant effect on rl [G2(1) = 2.16], but did have a sig
nificant effect on r2 [Gil) = 91.18]. Studies by Nilsson et al.
(1988) and Fisher (1979) show similar patterns ofresults.

Another variable that should have a strong effect on
storage capacity is the number of study presentations for
each item. This was examined by Arlemalm and Nilsson
(1992), who presented items for either one or five presen
tations (Cases 297, 298, 301, and 302 vs. Cases 295, 296,
299, and 300 in the Appendix). As expected from the
model, this had a significant effect on storage, with five
presentations resulting in higher values of 5 [G2(4) =
122.98]. Number of presentations also significantly im
proved recognition retrieval (r I)' as well as recall retrieval
(r2) [G2(4) = 27.23 and 91.80, respectively].

Storage capacity, as measured by the model, should
also be adversely affected if there is a delayed test ofmem
ory. This is because the parameter 5 measures the proba
bility that items remain stored at the time oftesting, which
should be affected by when the test is administered. This
variable was examined by Donnelly (1988), who tested sub
jects either immediately or after delays of3 days or 2 weeks
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parameter s varies over conditions. Fortunately, r\ and r2
are designed to measure the conditional processes of
recognition and recall given successful storage, in essence
factoring out the common-storage process. Thus, if the
multinomial model is a valid representation ofretrieval in
dependence, we would expect to see no significant corre
lation between these two parameters. Figure 5 is a scatter
plot of the values of;-I and;-2 from the Appendix for all
302 conditions in Nilsson and Gardiner's (1993) database.
As predicted from retrieval-independence theory, there is
essentially no correlation across conditions between the
two conditional measures of recognition and recall
[r(300) = -.066, n.s.].

Next, we explore the effect ofdifferent independent vari
ables on the values of the model's parameters. The 44 dif
ferent studies represented in Nilsson and Gardiner's (1993)
database examine a wide range of different experimental
manipulations, many of which can be expected to have
systematic effects on storage, recognition, or recall. The
question is whether these experimental variables affect the
values of 5, r\, and r2 in a manner that is psychologically
reasonable. For example, certain variables can be expected
to have their primary effect on storage, while others should
affect retrieval; or some variables might be hypothesized
to affect retrieval on recognition, but not retrieval on recall.

We examined this issue by searching the Nilsson and
Gardiner (1993) database for studies relevant to this analy
sis. For each study, we attempted to identify independent
variables for which clear hypotheses could be developed,
on the basis of logical principles or contemporary mem
ory theory. In particular, we concentrated on four differ
ent types of variables: (1) those that should affect storage
and maintenance capacity (5); (2) those that should affect
retrieval capacity (rl and r2 ) ; (3) those that should affect
recognition (r l ) but not recall (r2); and (4) those that
should affect recall (r2) but not recognition (r l ) . We were

Figure 5. Relationship between i't and i\, parameter estimators
of the multinomial model that measure recognition retrieval and
recall retrieval, respectively.
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Table 2
Independent Variables Examined to Test the Validity of the Multinomial Model

Variables that should affect storage and maintenance

Delayed testing Tulving & Watkins (1977)
Nilsson & Shaps (1980, Experiment 3)
Donnelly (1988, Experiments I, 2)
Ronnberg, Lyxell, Samuelsson, Erngrund, & Nilsson

(1991, Experiments 6,7)
Depth of encoding Begg (1979, Experiment 3)

Nilsson, Law, & Tulving (1988)
Bryant (1991, Experiment I)

Number ofpresentations Sandberg (1990)
Arlemalm & Nilsson (1992)

Rote versus meaningful instructions Begg (1979, Experiments I, 2)
Fisher (1979, Experiment 2)

Variables that should affect retrieval

Change in context

Young versus elderly

Tajika (1978)
Tajika (1979, Experiments I, 2)
Shaps & Nilsson (1980, Experiments 1,2)
Rabinowitz (1984)

Wiseman & Tulving (1976, Experiments 1--4)
Tajika (1977)
Tajika (1978)
Fisher (1979, Experiment 2)
Vining & Nelson (1979, Experiment I)
Shaps & Nilsson (1980, Experiments I, 2)
Neely & Payne (1983)
Bryant (1991, Experiment 2)

Strict versus lenient scoring

Variables that should affect recall retrieval

Level of cue-target association

Variables that should affect recognition retrieval

Free versus forced-choice recognition Watkins & Tulving (1975, Experiments 1--6)
Wiseman & Tulving (1976, Experiments 3,4)
Jones & Gardiner (1990, Experiment I)

Frequency of targets Reder, Anderson, & Bjork (1974, Experiment 2)
Generated versus nongenerated targets Watkins & Tulving (1975, Experiment 4)

Wiseman & Tulving (1975, Experiment I)
Gardiner (1988, Experiment 2)

(Cases 222,223, and 224 in the Appendix). Delayed recall
did in fact result in significantly poorer storage capacity
(s) [G2(2) = 30.84]. Not surprisingly, delayed testing also
had an effect on subjects' ability to retrieve items from
memory. Longer delays resulted in significantly poorer re
trieval for both recognition and recall [G2(2)= 124.45 and
49.85, respectively].

In general, the model demonstrates that experimental
manipulations occurring during the study phase and be
fore the test phase, such as memory instructions, number
of presentations, and delayed testing, have a predictable
and systematic effect on storage capacity. As it turns out,
some of these manipulations also had an effect on retrieval
capacities. For example, encoding instructions affected
not only storage, as measured by the parameter s, but also
retrieval during recall, as measured by the parameter "z
Considering that r2 reflects the ability ofthe A-term to cue
the recall of the B-term, encoding manipulations could
very well affect r2 because they strengthen the A-B asso
ciation. Thus it is not unreasonable to expect that experi
mental manipulations during study might have some bear
ing on eventual retrieval processes, in addition to their
expected effects on storage.

Variables that should affect retrieval. In contrast to
variables that affect storage, it is reasonable to expect that
experimental variables exist whose primary effect is on re
trieval capacities (rt and r2)' A good example comes from
an experiment by Tajika (1979), in which memory for
paired associates was tested in different or same contexts
(Cases 152 and 153 vs. 154 and 155 in the Appendix). The
model reveals that testing in different contexts resulted in
significantly poorer retrieval, as measured both by rl

[G2(2) = 72.37] and z, [G2(2) =22.05]. However, this ma
nipulation had no significant effect on storage [G2(2) =
3.24]. From the point of view of the model, this is a rea
sonable result, considering that in the experiments, the
switch in testing context occurred after the material was
presented for study.

Retrieval differences should also be observed between
young and elderly adults. A number ofprior studies using
paradigms other than recognition failure (Erdfelder &
Bayen, 1991; Riefer & Batchelder, 1991a; Schonfield &
Robertson, 1966) have concluded that the elderly exhibit
retrieval deficits in memory. Within the recognition-failure
paradigm, this variable has been examined in a study by
Rabinowitz (1984; Cases 202 and 203 in the Appendix).
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Consistent with other research and theory, older adults
exhibited poorer retrieval capacity for both r, [Gz(1) =
11.68] and rz [Gz(1) = 51.26]. However,young and elderly
adults showed no difference in their storage capacities
[Gz(1) = 0.00]. A similar pattern of results was observed
when we analyzed data from Shaps and Nilsson (1980).

Variables that should affect recognition but not
recall. A number of studies in the recognition-failure para
digm have specifically manipulated the nature of the
recognition task. It is reasonable to expect that these ma
nipulations should have an effect on the recognition para
meter, r1, but not on the recall parameter, "z- This predic
tion was borne out by the model's analysis. For example,
a number of researchers (e.g., Gardiner, 1988; Nilsson
et aI., 1988) have used strict versus lenient scoring when
measuring recognition performance. Not surprisingly, an
analysis of Gardiner's (1988) data (Cases 230, 231, and
232 vs. Cases 233, 234, and 235 in the Appendix) shows that
strict scoring on recognition produced significantly lower
estimates of r, than did lenient scoring [GZ(3) = 21.20].
Also as expected, this manipulation, which simply in
volves a reanalysis of the same recognition data, had no
significant effect on the storage parameter, s [GZ(3) =

5.46] or on the recall parameter, rz [GZ(3) = U7].
Still other researchers (e.g., Jones & Gardiner, 1990;

Watkins & Tulving, 1975) have examined free versus
forced-choice recognition-testing procedures. A study by
Wiseman and Tulving (1976, Experiment 3) provides a
typical example (Cases 62 and 63 in the Appendix). In
their study, targets and distractors were arranged on re
sponse sheets in rows, with each row containing one tar
get and two distractors. The subjects were first allowed to
circle any items that they recognized as old (free recogni
tion). After this, they were required to go back over their
response sheets and circle an item from each row that they
had left blank (forced-choice recognition). As expected,
this forced-choice procedure significantly elevated the es
timates ofrl [Gz(1) = 18.77], but had no significant effect
on s or rz [Gz(1) = 1.69 and 0.68, respectively].

Variables that should affect recall but not recogni
tion. Just as certain manipulations can be expected to af
fect recognition, so others should have their primary effect
on cued recall (the parameter rz). Because rz measures the
retrieval of the B-terms given the A-terms as cues, one
variable that should have a demonstrable effect on this
process is the strength of association between A and B.
This has been manipulated in a number of studies, includ
ing one by Wiseman and Tulving (1976, Experiment 4) in
which related and unrelated pairs were compared (Cases
64 and 65 in the Appendix). Consistent with the predic
tions of the model, level of association had a significant
effect on rz [GZ(I) = 105.78], but not on s or r, [Gz(1) =
1.53 and 0.54, respectively]. We also examined other stud
ies that manipulated level of association (e.g., Bryant,
1991; Neely & Payne, 1983; Shaps & Nilsson, 1980; Vin
ing & Nelson, 1979), and they all revealed sizable effects
on rl' Some of these studies also exhibited significant ef
fects of A-B association on storage capacity (the parame
ter s). As we indicated earlier, variables that strengthen the

A-B association may improve the ability to store the
paired associates as well as the ability to retrieve B given
A as a cue.

On the whole, the preceding analyses indicate that the
multinomial model does a credible job ofinterpreting and
accounting for a wide range of experimental variables. In
particular, when an independent variable in Table 2 was
argued on psychological grounds either to affect or to not
affect a specific parameter of the model, the expected re
sult always occurred when the corresponding experiment
was analyzed with the model. For some analyses, in addi
tion to the expected result, a given variable affected other
parameters as well. While the model does not give as
clear-cut a story for the data in some ofthe latter cases, we
think it has reasonable validity as a mathematical repre
sentation of retrieval-independence theory.

THE TULVING-WISEMAN FUNCTION
REVISITED

With the multinomial model in place, progress can now
be made in exploring the implications that retrieval inde
pendence has for the variables related by the Tulving
Wiseman function. To begin with, Equation I5b shows that
P(RnIRc) = ;\ We can expand this equation to produce

P(RnIRc) =sr, + (1 - s);\ (16)

But from Equations 15a and 15b, with g = 0, P(Rn) = S1\.
Substituting this into Equation 16 produces

P(RnIRc) = P(Rn) + (1 - s) rl . (17)

Thus, the multinomial model yields an equation in the form
of the Tulving-Wiseman function, except that in place of
the quadratic term in Equation I, there is now an expres
sion in terms of the parameter estimators for storage and
retrieval.

It is clear from Equation 17 that certain combinations
of sand 1-1 will yield points tending to conform to the
function, while other values ofs and 1-, will generate vio
lations of the function. To examine this, we took the 302
data observations from Nilsson and Gardiner (1993) and
used Equation 15 to compute the point estimates of s and
rl (see Appendix). Twoofthese data points were excluded
because the inequality constraint associated with Equa
tion 15 was not met. Figure 6 presents the values ofsplot
ted against the value of 1-1 for the remaining points. Con
cerning Figure 6, it should be noted that the values of s
and 1-1 cover a fairly wide range, which is to be expected,
considering that the data points come from a wide variety of
experiments with different stimulus materials, experi
mental manipulations, and so forth. However, the large
majority of the data points lie in the upper right quadrant
of the parameter space, where s and I-I are both greater
than .5.

As stated earlier, there are three degrees of freedom in
herent in the data structure of the recognition-failure par
adigm. The Tulving- Wiseman function only accounts for
two ofthese degrees offreedom, because it deals with only
two quantities,P(Rn) and P(RnIRc), in the two-dimensional
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Figure 6. Relationship between sand"t' parameter estimators
of the multinomial model that measure storage and recognition
retrieval, respectively. The shaded region represents those com
binations of s and "I that violate the Tulving-Wiseman function.
The dashed line represents the combinations ors and"t that per
fectly fit the function.

plot in Figure 1. However, notice from Equation 15 that
the estimates ofsand r l similarly depend only on the val
ues ofP(Rn) and P(RnjRc). Thus, Figure 6 basically rep
resents a reparameterization of the Tulving-Wiseman
data, translating the empirical data space in Figure 1 into
a storage-retrieval parameter space. To make this clearer,
Figure 6 also indicates which values ofsand"1 yield points
that perfectly conform to the Tulving-Wiseman function.
This is represented by the dashed line, which can be thought
of as the "shadow" of the function as it is projected into
the new parameter space.

Violations of the Thlving-Wiseman Function
Next, we explore the question ofwhich combinations of

sand,,\ lead to violations of the Tulving-Wiseman func
tion. In particular, we will focus on encoding and retrieval
exceptions to the function, as defined by Nilsson and
Gardiner (1991, 1993). Earlier, we showed that exceptions
to the function can be determined on a case-by-case basis
using a simple X2 test of the data in the form of Table 1.
However,Nilsson and Gardiner (1993) have proposed that
exceptions can be defined by a critical ratio for each con
dition, which is the difference between the observed value
of P(RnIRc) and the value predicted by the function, di
vided by the standard deviation of the differences for all
302 conditions. All critical ratios with absolute values larger
than 1.96 represent points that are outside the 95% confi
dence interval, thus indicating a sizable deviation from the
function. Nilsson and Gardiner's criterion has the advan
tage of treating all 302 data points as a total set; however,
as we showed,their approach does not take into account the
entire pattern of data observations in Table 1.

We can use the multinomial model to evaluate Nilsson
and Gardiner's (1993) theoretical distinction between en-

coding and retrieval exceptions. To do this, we will adopt
their criterion in the following analysis as we explore ex
ceptions to the Tulving-Wiseman function. For the multin
omial model, Equation 17 can be used to determine which
values ofsand" I will lead to critical ratios exceeding 1.96.
The boundary ofthese values is indicated by the solid curve
in Figure 6, which represents a sort of borderline between
two regions in the parameter space, one that leads to viola
tions of the function and one that leads to nonviolations. In
particular, exceptions to the Tulving-Wiseman function
occur in the shaded region to the upper left of the curve.

One point to note about these two regions is that they
differ in size; in fact, the violation region is approximately
half the size of the nonviolation region. Moreover, the vi
olation region covers only about 25% of the upper right
quadrant, where most of the points actually occur. Most
importantly, Figure 6 reveals that, according to the Nilsson
Gardiner criterion, it is impossible to violate the function
if the estimate ofthe storage parameter s exceeds .75. As
it turns out, a full 80% ofall data points yield a value ofs
at .75 or higher. This means that, according to the model,
the large majority of studies contributing to the Tulving
Wiseman function are incapable ofviolating the function,
regardless of their level of retrieval.

Figure 6 also specifies the conditions under which vio
lations of the function do occur. As a general rule, excep
tions occur when weak storage (low value ofs) is coupled
with strong retrieval (high value of"I)' This finding helps
to shed some light on the two categories ofexceptions iden
tified by Nilsson and Gardiner (1991, 1993). As mentioned
earlier, encoding exceptions occur under conditions ofweak
encoding, which should make the probability of storing
items fairly low. In addition, retrieval exceptions occur
when redundant information between target and cue inflates
theprobability ofretrieval. Toexamine this more thoroughly,
Table 3 presents the estimates of the model's parameters
from Equation 15 for all of the encoding and retrieval ex
ceptions specifically identified as such by Nilsson and Gar
diner (1993). Each entry is coded by its case number from
the Appendix. Except perhaps for Case 301, all violations
result in relatively low values ors and high values of" j'

The next question to consider from the point ofview of
the multinomial model concerns what differences, if any,
exist between Nilsson and Gardiner's (1993) encoding and
retrieval exceptions. One might expect that encoding ex
ceptions, because they are engineered to produce weak en
coding of stimuli, might exhibit particularly low estimates
of the parameter s when compared with retrieval excep
tions. In contrast, retrieval exceptions, because they result
from enhanced retrieval cues for stimuli, might exhibit com
paratively large estimates ofthe parameter rj. However, an
examination ofTable3 reveals that both types ofexceptions
result in comparable levels of both sand "j' The average
values ofs and P. are .59 and .85, respectively, for the 16
encoding exceptions, and .53 and .80 for the 6 retrieval ex
ceptions. This implies that encoding and retrieval excep
tions not only lead to violations of the Tulving-Wiseman
function, but they do so in the same way in terms of their
effects on sand"I'
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Table 3
Parameter Estimates for Encoding and Retrieval Exceptions

to the Tulving-Wiseman Function

Case
Number s rl r2

Encoding exceptions

129 .58 1.00 .09
130 .68 1.00 .04
142 .68 .91 .35
160 .55 .93 .33
164 .62 .85 .21
269 .57 .91 .19
271 .57 .67 .05
280 .72 .96 .32
281 .66 .85 .43
282 .74 .93 .51
284 .56 .95 .11
285 .65 .97 .54
297 .53 .57 .53
298 .58 .85 .28
301 .42 .47 .52
302 .41 .83 .24

Retrieval exceptions

9 .52 .48 .77
168 .71 .99 .58
201 .47 .99 .55
249 .51 .77 .77
252 .31 .67 .70
254 .66 .87 .63

Note-s, probability 0 f storage; r I' pro babi lity 0 f retrieval during recog
nition; r2,probability of retrieval during recall.

This finding has important implications for how excep
tions to the function are interpreted. For example, encoding
exceptions may force the storage of stimuli to be weak, but
they produce violations of the function only when the re
trieval of those stimuli during recognition remains strong.
It is important to remember that the parameter rI in the
model is a conditional probability-it is the probability of
successful retrieval during recognition given successful
storage. As Batchelder and Riefer (1980) have pointed out,
even under conditions of poor encoding, conditional re
trieval can still be high if, say, the few stimuli that do get en
coded have relatively high retrieval probabilities. This can
be accomplished by manipulating independent variables
that primarily affect storage without having a major effect
on retrieval. As it turns out, encoding exceptions have his
torically been found by using A-B pairs that are unrelated
(as opposed to weakly related), and by using shallow levels
ofprocessing (Begg, 1979; Bryant, 1991; Fisher, 1979; Gar
diner & Tulving, 1980). We pointed out in the previous sec
tion that this manipulation does, in fact, have a strong effect
on storage but not on retrieval during recognition. Thus,
there is evidence that those studies producing encoding vi
olations have done so by engineering conditions that
weaken storage capacity (5) but not retrieval capacity (r 1).

Because encoding and retrieval exceptions both have
the same underlying effect on the parameters sand rl in
the model, it may be asked whether there is even a theo
retical need to make a distinction between these two types
ofexceptions. The answer to this question can be found by

examining the value of 1-2 for each type of exception. Al
though encoding and retrieval exceptions do not differ
substantially on the values ofsand,I' they show very sys
tematic differences on the value of '2' Table 3 shows that
retrieval exceptions exhibit much larger values of '2 than
do encoding exceptions. In fact, the smallest value of'2
for the retrieval exceptions is higher than the largest value
of,2for the encoding exceptions. This makes sense theo
retically, because retrieval exceptions are produced when
the A-terms in the stimulus pairs contain redundant infor
mation for the B-terms. This should certainly elevate the
value of '2' which measures the retrievability of B given
A as a cue, in ways that are not accomplished in encoding
exceptions. We can conclude, then, that even though en
coding and retrieval exceptions both result from weak
storage coupled with strong retrieval, they achieve this re
sult in the model in categorically different ways. This sup
ports the psychological validity ofNilsson and Gardiner's
(1991,1993) distinction, as well as the validity ofthe model.

Hintzman (1992,1993) has identified certain empirical
patterns in P(Rn) and P(Rc) that he argues are likely to re
sult in exceptions to the Tulving-Wiseman function. These
include P(Rn) not close to one, P(Rc) relatively low, and
P(Rn) much larger than P(Rc). It may be informative to
explore the relationship between these empirical condi
tions and the pattern ofparameter values for the multino
mial model that leads to exceptions. First, remember that
p(Rn) =sr] andp(Rc) =sr2' Relatively low values ofP(Rn)
and P(Rc) can be achieved when the estimate of the para
meter s itself is small. This is precisely the finding revealed
in Figure 6, which showed that exceptions can occur only
when the value 00 is below .75. In addition, the model
implies that P(Rn) will be much larger than P(Rc) only
when 1-1 is much larger than 1-2, As we showed, this is true
for encoding exceptions, but does not characterize re
trieval exceptions. More specifically, the mean of 1-1 - 1-2
is .56 for the 16 encoding exceptions in Table 3, but is only
.13 for the 6 retrieval exceptions. Correspondingly, the
mean ofP(Rn) - P(Rc) is.34 and .08 for the encoding and
retrieval exceptions, respectively. Hintzman did not dis
cuss the distinction between encoding and retrieval excep
tions, but our analysis suggests that his set of empirical
conditions applies primarily to encoding exceptions, and
not to retrieval exceptions. We make this conclusion with
caution, however, because it is based on only a small set
of retrieval exceptions.

Nonviolations ofthe Tulving-Wiseman Function
The fact that the nonviolation region in Figure 6 is

larger than the violation region gives some insight into
why more points tend to conform to the function than to
violate it, on the basis of Nilsson and Gardiner's (1993)
criterion. But even ifwe discount the many additional ex
ceptions to the function revealed earlier by our chi-square
analysis, the question ofwhy the majority of observations
from so many different studies seem to lie so closely to the
function specified by Tulving and Wiseman (1975) still
remains to be explained. As stated earlier, Hintzman (1992,
1993) claims that no special psychological explanation is
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Figure 7. Relationship between probability of recognition,

P(Rn), and probability of recognition given recall, P(RnIRc),
plotted from Nilsson and Gardiner's (1993) database. The solid
line through the points is the best-fitting curve from Equation 20
with a value ofc = .544. '
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p(RnIRc)=p(Rn)+c(1-rl)rl' (19)

However, according to the model, r1= p(RnIRc). Thus, at
the level of data proportions, we obtain

P(RnIRc) =P(Rn) + c P(RnIRc) [I - P(RnIRc)]. (20)

Interestingly, Equation 20 yields an alternative func
tion that is very similar to the Tulving- Wiseman function,
exc~pt that P(RnIRc) is substituted for P(Rn) in the qua
dratic part of the equation. Given the strong linear com
ponen~ to th~ rel~tion between P(RnIRc) and P(Rn) already
established III Figure I, one can expect that this new func
t~on will yield a comparable fit to the data. In fact, Equa
tions I and 20 can be directly compared on their ability to
account for the data, because each contains one free para
meter c. To make this comparison, we computed the best
fitting value ofc for each function, determined by a least
squares fit to the data.s We excluded from this analysis the
25 points identified by Nilsson and Gardiner (1993) as vi
olations of the function, because Equations 1 and 20 are
not really designed to account for them. The values of the
parameter c were estimated at .508 for the Tulving-Wiseman
function (very close to the traditional value of .500), and
at .544 for Equation 20.

Figure 7 presents the same data points as Figure 1,
along with the best-fitting curve from Equation 20. Visu
ally, the fit of this new function appears almost indistin
guishable from the Tulving-Wiseman function in Figure I.
A more precise comparison can be obtained by examining
the proportion ofvariance explained by each function. The
two functions are virtually identical on this measure as well
(r2 = .933 vs..922 for Equations I and 20, respectively).
Thus, Equation 20 provides a very credible description for
the relationship between P(Rn) and P(RnIRc), and one
that is derived from a psychologically explicit model, un
like the Tulving-Wiseman function.

c(1 - 'I) = (1 - s), (18)

where the slope of the line is denoted by c, with c > O.
We can now explore at a theoretical level what specific

predictions are made by the multinomial model, given this
additional assumption. Ifwe substitute the value of(1 - s)
from Equation 18 into Equation 17 (replacing proportions
and estimators by probabilities and parameters), we obtain

needed for the function-that mathematical constraints
can completely account for the apparent regularity of the
data when P(RnjRc) is plotted against P(Rn). Most theo
rists would probably now agree that certain constraints
are probably an important factor in the apparent fit of the
Tulving-Wiseman function-a viewpoint that is also sup
ported by some of our analyses. However, it is not gener
ally accepted that mathematical or experimental con
straints provide the entire explanation of the function.
Tulving and Flexser (1992, 1993) in particular have dis
pu~ed Hintzman's claims and have argued that the Tulving
Wiseman function is still of sufficient theoretical interest
to warrant a psychological explanation.

.Given the possibility that memory factors may con
tnbute to the Tulving-Wiseman function, it can be asked
what these factors might be. For example, we can explore
what additional assumptions might need to be added to
retri~val-i':ldependence theory in order to predict a precise
relationship between P(Rn) and P(RnIRc) similar to the
Tulving- Wiseman function. Progress on this question can
be made if we make a straightforward, simplifying as
sumption about the relationship between storage and re
trieval. in the recognition-failure paradigm. According to
Equation 17, the multinomial model will approximate the
Tulv~ng-Wiseman function if the value of(l - S)"I ap
proximates the quadratic component in Equation 1
namely, cP(Rn)[1 - P(Rn)]. A necessary condition for this
to happen is for S and "1 to be positively correlated across
experimental conditions; that is, it will only happen ifstor
age and retrieval capacities both tend to be either small or
large for each experimental condition. Positive correla
tions often exist across experimental conditions between
performance measures, a fact that is easily explained by
variations from experiment to experiment in variables such
as list length, study time, and A-B associative strength.

If we ignore the violation region in Figure 6, the para
meter estimates sand"l do exhibit a fairly strong positive
correlation, with the largest values ofs and P, converging
on the upper right comer of the parameter space, where s
and"I are both equal to one. The simplest way to represent
this correlation is to postulate an underlying, straight-line
relationship through the parameter space in Figure 6. Of
course, many possible lines can be drawnthrough this space,
and to specify a particular one requires only the identifi
cation of its slope and intercept. The most natural simpli
fying assumption is to leave the slope as a free parameter,
and to assume that the line intercepts the point (s = 1,
rI = 1). In other words, the line reaches its maximum level
at the same place where the data points converge on their
maximum values. Therefore the "best-fitting" line through
sand"l will have the equation



However, our main analysis assumed that g = 0 in order to
analyze the Nilsson-Gardiner (1993) database. In this sec
tion, we consider the impact ofour analysis ifg > O. First,
Figure 4 exhibits the positive correlation between P(Rn)
and P(Rc). Ifg > 0, then theoretically,p(Rn) = sri (1 - g)
+ g, which is a linear function in srI' Thus, on the rea
sonable assumption that g reflects experimental design
factors that are approximately independent of storage and
retrieval across different experiments, the predicted cor
relation between P(Rn) and P(Rc) should be relatively un
affected by the g = 0 assumption.

Second, Figure 5 shows that the correlation between",
and "2 is essentially zero over experimental conditions,
where '" and "2 are given by Equation 15. If g > 0 is a
known value for any experimental condition, it is easy to
solve Equation 13 to yield new estimators of rl and r2

given by
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Earlier, we saw that despite the apparent good fit of the
Tulving- Wiseman function, it could be rejected as a model
for the recognition-failure paradigm by a X2 test that looked
at the entire data structure in Table 1on a case-by-case basis.
A similar test can be constructed for the alternative rela
tionship in Equation 20. First, note that Equation 20 can
be written as

P(Rn & Rc) = P(Rn) P(Rc)

+ c P(Rn & Rc) [P(Rc) - P(Rn & Rc)]
P(Rc) ,

(21)

which implicitly relates P(Rn & Rc) to the two marginals,
P(Rn) and P(Rc). Equation 21 can be explicitly solved for
P(Rn & Rc), and the result is

P(Rn & RC)=[(l-C)P(RC)J[_I+ 1+ 4c P(Rn)], (22)
2c (l-ci

"1 = P(RnIRc) - g
l-g

(23)

where 0 < c < 1. Equation 22 can function exactly like
Equation 4 in constructing a X2 test of the two-parameter
restriction ofthe multinomial model implied byEquation 18.
The marginals are estimated, as before, by Equations 9
and 10. Then, Equation 22 is inserted into Equation 11 in
place of Equation 4, and the four expected frequencies,
Fij , for i,j = 1,2, are calculated. Finally, the X2 in Equa
tion 12 can be computed for each condition.

As in the earlier X2 test, we analyzed all the conditions
in Nilsson and Gardiner's (1993) database that were clas
sified by the authors as nonexceptions and that had ex
pected frequencies for this new analysis of five of more.
There were 251 cases that met these restrictions, and the
mean X2 for these cases was 5.90-well above the ex
pected value of 1.00. Furthermore, 37% and 25% ofthese
cases had a X2( 1) value that was rejected at the a = .05 and
a = .01 levels, respectively> Thus, as with the Tulving
Wiseman function itself, the alternative function in Equa
tion 20 can be rejected asa model for the recognition-failure
paradigm. Both Equations 1 and 20 appear visually to ac
count for the relationship between P(RnIRc) and P(Rn);
however, neither equation does an adequate statistical job
of accounting for the relationship across conditions with a
single value ofc, even when the so-called exceptions to the
Tulving-Wiseman function are excluded.

IMPACT OF SIMPLIFYING ASSUMPTIONS

Our analysis of the recognition-failure paradigm was
done using a very simple model ofretrieval independence.
The model is surely wrong in detail, but we regard it as a
principled approximation to a more complete and valid
theory of memory. To support this argument, it is neces
sary to consider in more detail several places where sim
plifying assumptions were made.

Recognition Guessing
The model presented in Equation 13 incorporates the

possibility of a recognition hit through guessing alone.

and

" = P(Rc) [P(RnIRc) - g] (24)
2 P(Rn) - g .

It is not straightforward to assess the exact impact of the
variable g on the correlation between "1 and "2 in Equa
tions 23 and 24. Nevertheless, it can be shown that the
value of"2 is relatively insensitive to changes in g.6Thus,
if the variation in g is approximately independent of stor
age and retrieval factors, as assumed earlier, it is possible
to show that the correlation between "j and "2 across con
ditions is largely unaffected by g.

Our analysis of the Tulving-Wiseman function started
with Equation 16, and with g > 0, it becomes

p(RnIRc) = p(Rn) + rj (1 - s) (1 - g). (25)

It is easy to see from Equation 25 that introducing g > 0
does not alter the basic conclusions drawn from Equation 16,
as long as g is approximately independent ofr I and s. In the
case ofthe alternative to the Tulving- Wiseman function in
Equation 20, when Equation 17 is inserted into Equa
tion 25 along with rl = p(RnIRc) - (l - r,) g, the result is

P(RnIRc) = P(Rn) + c P(RnIRc) [l - P(RnIRc)]

+ cg (l - g) (1 - "1)2. (26)

Equations 20 and 26 are practically indistinguishable,
with a maximum discrepancy ofc (1 - "IP/ 4, due to the
fact that g (1 - g) ~ .25.

In conclusion, as long as design factors that influence the
value ofg across different experiments are approximately
unrelated to storage and retrieval, we argue that our analy
ses of the multinomial model are robust under the intro
duction ofg > 0 into the model.

Individual Differences Within Conditions
The database in Nilsson and Gardiner (1993) reports data

from each condition in the aggregate form ofTable 1.Thus,
possible individual subject- or item-parameter differences



MULTINOMIAL MODELING OF RECOGNITION FAILURE 625

within a condition are not taken into account in our analysis
across conditions. There are several reasons why we think
our analysis is not severely affected by this assumption.

First, Riefer and Batchelder (1988, p. 328) considered the
individual-difference problem for the multinomial model
with g = 0 and, using a simulation analysis, concluded that
the results of the model were robust under modest variation
in individual parameters. Second, the considerable range of
P(Rn) and P(Rc) in Nilsson and Gardiner's (1993) database
suggests that the parameter variation between conditions is
much greater than the variation within conditions. Finally, in
the section on model validity,we documented many cases in
which experimental variables had a psychologically ex
pected effect on parameter estimates, even though the esti
mates were obtained from aggregate data. Nevertheless, the
effect of individual subject or item differences withina con
dition of the recognition-failure paradigm remains an open
issue deserving more empirical and modeling effort.

Discrete-State Representation
It is a basic property of multinomial processing-tree

models that they use discrete-state representations ofpsy
chological processes. For example, in the current model,
either successful storage completely occurs or it fails to
occur at all. We regard such assumptions as approximations
to more realistic but less tractable continuous-state repre
sentations. From the extensive work on models for signal de
tection (Macmillan & Creelman, 1991, chapter 4) and with
Markov models of learning and memory (e.g., Wickens,
1982), as well as in other modeling areas, it is well known
that discrete-state approximations can be quite accurate in
fitting data in specific situations (Batchelder, 1993).

There has been some discussion recently about high
threshold assumptions in multinomial processing-tree
models for source monitoring (Batchelder, Riefer, & Hu,
1994; Kinchla, 1994). It is important to note that even
though the model we present here incorporates a discrete
state representation of recognition memory, this in itself
does not make it a high-threshold model. Numerous mod
els exist that contain discrete-state accounts ofrecognition
without making high-threshold assumptions (see Macmil
lan & Creelman, 1991, chapter 4). Our multinomial model
in Equation 13 only concerns behavior on old A-B pairs,
and in order for the model to be complete, it would have
to specify a processing tree to handle performance on dis
tractor items. This could be done in a number ofdifferent
ways, including using a high-threshold representation (e.g.,
setting the false-alarm probability equal to g). But other
modifications ofthe model to handle distractor data could
be made that would maintain its discrete-state assump
tions without making it a high-threshold model. We did
not attempt to account for distractors in the current model
because Nilsson and Gardiner (1993) did not include in
formation on distractors in their database. Moreover, many
published studies on the Tulving-Wiseman function do not
include a complete account of false-alarm data in the pre
sentation oftheir results.

SUbstituting Estimates for True Parameters
In the scatterplots in Figures 5 and 6, we exhibited the re

lationship between parameters across conditions by plot
ting estimates rather than true values. In multinomial mod
eling, parameter estimators are often correlated within any
condition, and these correlations can be estimated using
the asymptotic variance-covariance matrix ofthe parame
ters (Riefer & Batchelder, 1988). We used the methods de
scribed in Hu and Batchelder (1994) to obtain estimates of
the within-condition correlation between "1 and "2' and be
tween r, and 8, for all 302 conditions in Nilsson and Gar
diner (1993). The results were consistent across conditions;
namely, the correlations between r, and"2 were all positive,
while the correlations between r, and.s were all negative.

It is important to consider the impact ofthese consistent
within-condition correlations between parameter estima
tors on the conclusions reached from Figures 5 and 6. For
example, we concluded from Figure 5 that the estimators
"1 and "2 were uncorrelated, but this result was obtained
across conditions rather than within a condition. The pos
itive correlation between "1 and "2 that occurs within a
condition means that each observation in Figure 5 can be
viewed as a single observation from its own bivariate
sampling distribution with a positive correlation. Never
theless, the correlation between "1 and "2 across condi
tions is reflected in the pattern of the bivariate means of
these distributions, and not in their correlations. Thus we
conclude that the impact of the correlation between esti
mators within a condition does not affect the conclusions
drawn in the comparison between conditions. The same
holds for the observed positive correlation between"1 and
sacross conditions in Figure 6.

CONCLUSION

A great deal ofexperimental, theoretical, and modeling
effort has been devoted to the recognition-failure para
digm over the last two decades. The multinomial model
presented here, and the resultant analysis ofthe model, has
enabled us to examine this paradigm from a different per
spective. We have taken the basic assumptions behind
retrieval-independence theory and, through the model, have
expressed them in simple mathematical form. The multi
nomial model postulated separate parameters for storage
and retrieval, and it represented recognition and cued
recall retrieval processes as conditionally dependent on
storage. The data from each of302 conditions covering 44
separate studies were analyzed with the model, and it did
a capable job of understanding the impact of various ex
perimental manipulations on the parameter values. In ad
dition, the model provided an understanding ofthe excep
tions to the Tulving-Wiseman function, as noted by Nilsson
and Gardiner (1993), in terms ofa psychologically reason
able relationship among the parameters. Because of these
results, we believe that this model is capable of taking ag
gregate data from a standard condition ofthe recognition
failure paradigm and generating parameter estimates that
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separately measure storage and retrieval processes at a group
aggregate level.

A large number of earlier analyses of the recognition
failure paradigm have focused on the Tulving-Wiseman
function. We have shown that reformulations ofthe Tulving
Wiseman function that are probabilistically equivalent
may produce larger errors and poorer goodness-of-fit mea
sures than have been reported for the original function. We
have further shown that the Tulving-Wiseman function
can be viewed as a particular statistical model for the de
pendence among recognition and cued-recall performance
statistics. When this model was tested with a X2 goodness
of- fit test, it did a poor job ofexplaining many ofthe con
ditions that are currently catalogued as nonexceptions to
the function. Researchers should be wary of focusing at
tention on a particular feature of a data set, especially
when analyzing that feature with a standard correlational
approach. The lesson here is that models should be tested
on the entire data array instead ofjust on an aspect of it.

Using the multinomial model as a representation of
retrieval-independence theory, we were able to explore
what additional assumptions are necessary to produce a
precise equation, in a form similar to the Tulving-Wiseman
function, to describe the relationship between P(RnIRc)
and P(Rn) in Figure 1. The necessary assumption turned
out to be a positive correlation between storage and re
trieval capacities across experimental conditions. We rep
resented this assumption as a perfect correlation in the
model's parameters across conditions, and despite this
strong assumption, proceeded to derive a theoretical rela
tionship between P(Rn) and P(RnIRc) that accounts for the
observed data essentially as well as the original Tulving
Wiseman function. However, just as with the Tulving
Wiseman function, the strong formulation could be rejected
using a valid goodness-of-fit test.

Actually, the idea that storage and retrieval are correlated
across experiments may reveal more about research trends
than it does about human memory? The points in Figure 1
represent separate experiments or experimental conditions,
and as such, these points were certainly not determined by
random selection. Instead, it is reasonable to assume that
most experimenters choose stimulus materials, select sub
jects, and manipulate variables in such a manner that over
all levels ofboth storage and retrieval are roughly compara
ble. Moreover, many experiments on the Tulving-Wiseman
function are replications or slight variations of the experi
mental procedure developed originally by Tulving and Thom
son (1973) to reveal the recognition-failure phenomenon. It
is not surprising that points from similar experiments tend to
cluster around a relatively narrow region in the data space.
In fact, it wasn't until experimenters began to change basic
elements ofthe standard paradigm (e.g., Muter's [1984] ex
tension to semantic memory) that exceptions to the Tulving
Wiseman function began to occur with some regularity.
These and other experimental factors could account for any
correlation between storage and retrieval, which was the crit
ical assumption needed by retrieval-independence theory to
precisely account for the data in Figure I. Thus it is reasonable
to believe that the apparent good fit ofthe Tulving-Wiseman

function across conditions may be as much a reflection of
external design factors as it is ofbasic psychological and sta
tistical processes.

The analysis of our model also provides a very logical
reason why so many more data points tend to conform to
the function than to violate it. The model reveals that only
under a very special set of circumstances-namely, weak
storage coupled with strong retrieval-do exceptions to the
function, in Nilsson and Gardiner's (1993) sense, occur.
Moreover, the model indicates that if the level of storage is
high enough, which it is for the majority of studies con
tributing to the Tulving- Wiseman function, large deviations
from the function are impossible, on the basis of Nilsson
and Gardiner's criterion. This conclusion is somewhat sim
ilarto that ofHintzman (1991, 1992, 1993), in that there are
certain constraints that tend to force points to conform
roughly to the Tulving-Wiseman function. Our analysis can
be seen as extending Hintzman's criticism in two important
ways: First, we identify the possible psychological con
straints behind the function dealing with the effective range
of storage and retrieval processes across experiments; and
second, we show how the natural constraints among the em
pirical statistics can be represented in a goodness-of-fit
measure that examines all the data and avoids the pitfalls of
earlier analyses of the Tulving-Wiseman function.

The analytic results that we obtained were possible only
because we represented retrieval independence within a
particularly simple model. Because of this, it was neces
sary to argue, as we did in the previous section, that the main
conclusions ofour analyses were unaffected by several sim
plifying assumptions. We also wish to stress that it is impor
tant in the analysis of simple, multinomial memory mod
els to establish a formal link between the simplified model
and more complete and realistic models. In the current case,
it was observed earlier that the multinomial model (with
g = 0) is equivalent to the simplest, nontrivial case ofFlex
ser and Tulving's (1978) model that represents memory
traces as feature vectors. In turn, the Flexser-Tulving model
was one of the forerunners to the more recent composite
trace models such as Metcalfe's (1992) CHARM and Mur
dock's (1993) TODAM2. Our analysis reveals consequences
of this approach to modeling that are not evident in the
analyses ofthe more complex models. In general, we think
that detailed analysis of simple multinomial models of
memory is a useful strategy to supplement the simulation
analysis ofmore complex memory models.
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or2 cov (Rn, Rc)
og [P(Rn) - g]2 ,

APPENDIX
Point Estimates and 95% Confidence Intervals (Cl)

(or the Parameters of the Model

and since the correlation between P(Rn) and P(Rc) is small, "2 is rela
tively unaffected by variations in g.

7. We thank Douglas Hintzman for suggesting and detailing this
possibility.
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I. Tulving and Wiseman (1975) originally expressed their function in
the form P(RnIRc) = P(Rn) + c [P(Rn) - P(Rn)2], which is alge
braically equivalent to our Equation I.

2. Models of human memory typically postulate cognitive processes
that may occur differently for different items; however, they rarely in
corporate any intrinsic subject or item differences directly into the
framework of the model. Because some amount of parameter variation
over subjects and items surely occurs, it is important in any paradigm to
assess the robustness of a model to such variation. Riefer and Batchelder
(1988, 1991b) discuss these issues and show how to conduct such analy
ses, and Batchelder (1975, 1993) discusses how subject-item parameter
variation can be incorporated into models directly.

3. For these X2 tests, we used a value ofc = .508, which was computed
by minimizing the least-square difference between data points and the
Tulving-Wiseman function in Figure I. However, it is possible that this
value of c, based on a least-square fit, is not the best value for the X2

tests. To explore the possibility that a different value of c might produce
better fits, we used Equation 4 to compute the exact value ofc for each
ofthe 253 cases. Wethen took the mean ofthese values, which was .527,
and redid the X2 tests with this new value of c. However,the performance
of the Tulving-Wiseman function did not improvebyusing this new value.

4. In Equation 20, P(RnIRc) appears in both the left and right sides of
the equation, unlike the Tulving-Wiseman function, which expresses
P(RnIRc) explicitlyas a functionof P(Rn). This discrepancyis easily fixed
by rewriting Equation 20 as a quadratic in P(RnIRc)and solving to obtain

P(RnIRc) = (I/2c) [y(l c)2 + 4c P(Rn) - (I-c)].
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This equation is algebraically equivalent to Equation 20, and expresses
P(RnIRc) explicitly in terms ofP(Rn). Weused this equation in all com
parisons to the Tulving-Wiseman function.

5. In the reported analysis, we used c = .544, which was the value ob
tained in the fit reported in Figure 6. We found other values of c that
worked better, but we were not able to get the mean X2 value below 5.00.
Thus the two-parameter version of the multinomial model does not fit
well for any value of c held constant over all conditions. However,on the
whole, it fits just as well as the Tulving-Wiseman function.

6. Using calculus, we see that
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Case s CI r\ CI r 2 CI Case s CI r j CI r2 CI
65 .82 ± .06 .62 ± .06 .41 ± .05 128 .89 ± .06 1.00 ± .00 .05 ± .04
66 .86 ± .08 .62 ± .08 .59± .08 129 .58 ± .09 1.00 ± .00 .09 ± .07
67 .84 ± .06 .62 ± .06 .57 ± .06 130 .68 ± .08 1.00 ± .00 .04±.04
68 .88 ± .08 .64 ± .08 .61 ± .07 131 .72±.17 .81±.19 .18±.09
69 .82 ± .06 .61 ± .06 .56± .06 132 .83 ± .21 .88 ± .22 .08± .06
70 .91 ± .03 .78 ± .03 .70±.04 133 2.00 ± 1.94 .28 ± .27 .01 ±.01
71 .89 ± .04 .80 ± .05 .38± .04 134 .73±.18 .59 ±.15 .11 ± .04
72 .88 ± .07 .72 ± .07 .57± .07 135 .80 ± .14 .86±.15 .05 ± .02
73 .91 ± .04 .84 ± .04 .53 ± .05 136 .85 ± .14 .58 ±.10 .20± .05
74 .91 ± .06 .81 ± .06 .58±.07 137 1.00±.15 .88 ± .14 .04±.02
75 .88 ± .05 .77 ± .05 .52±.05 138 .96±.05 .81 ± .05 .28±.03
76 .95 ± .06 .64 ± .07 .69±.07 139 1.00 ± .08 .64 ± .06 .42± .05
77 .85 ± .06 .82 ± .06 .55 ±.07 140 .92 ± .02 .77 ± .03 .74±.03
78 .83 ± .06 .92 ± .06 .38 ± .06 141 .86 ± .03 .73 ± .04 .74±.04
79 .82 ± .05 .96 ± .03 .54±.06 142 .68 ± .09 .91 ± .09 .35 ±.10
80 .89 ± .07 .98 ± .04 .65 ±.10 143 .72 ± .09 .89± .09 .43 ± .10
81 .91 ± .07 .85 ± .08 .87± .08 144 .74 ± .08 .62 ±.10 .85 ± .09
82 .79 ± .09 .62 ±.10 .65 ±.10 145 .85 ± .08 .74 ± .09 .76±.09
83 .80 ± .08 .61 ± .09 .73 ± .09 146 .91 ± .06 .86 ± .07 .70±.08
84 .73 ± .07 .71 ± .08 .72±.08 147 .96 ± .04 .96± .04 .68 ± .08
85 .88 ± .06 .64 ± .07 .83 ±.07 148 .92 ± .05 .65 ± .08 .93 ± .05
86 .84 ± .07 .75 ± .08 .68±.08 149 .92 ± .05 .88 ± .06 .91 ± .05
87 .80 ± .08 .64 ± .09 .70±.09 150 .80 ± .05 .84 ± .05 .63 ± .06
88 .88 ± .05 .68± .06 .76±.05 151 .86± .07 .95± .05 .74±.09
89 .89± .04 .75 ± .05 .75 ± .05 152 .98± .10 .53 ± .08 .52±.08
90 .85 ± .02 .85 ± .02 .77±.02 153 .97 ± .07 .69± .07 .53± .07
91 .91 ± .04 .88 ± .04 .83 ± .05 154 .88 ± .05 .86 ± .05 .67± .06
92 .65 ± .15 .26 ± .08 .54±.14 155 .97 ± .03 .91 ±.04 .69±.06
93 .59 ±.1O .41 ± .09 .63±.11 156 .96 ± .02 .84 ± .03 .94±.02
94 .98 ± .02 1.00 ± .00 .45 ± .06 157 .93 ± .03 .90± .03 .75 ± .04
95 .98 ± .02 .98 ± .02 .59± .06 158 .92 ± .03 .91 ± .03 .56± .05
96 .93 ± .05 .83 ± .06 .56± .06 159 .71 ± .10 .82 ±.11 .20±.06
97 1.00 ± .05 .80 ± .06 .56± .06 160 .55 ± .06 .93 ± .07 .33 ± .07
98 .99 ± .01 .99 ± .01 .96±.02 161 .81 ± .07 .84 ± .08 .35 ± .06
99 .79 ± .04 .65 ± .05 .77±.05 162 .78 ± .06 .89± .06 .48± .07

100 .90 ± .03 .87 ± .03 .66±.04 163 .71 ±.11 .82 ±.13 .16±.05
101 .65 ± .05 .46 ± .05 .64±.06 164 .62 ± .09 .85 ±.11 .21 ± .06
102 .95 ± .03 .93 ± .03 .96±.03 165 .82± .06 .84± .06 .58± .06
103 1.05±.16 .37 ± .08 .5l±.10 166 .85 ± .05 .87 ± .05 .61 ±.06
104 .95 ± .03 .95 ± .03 .99±.01 167 .89 ± .03 .99 ± .01 .63 ± .05
105 .74 ± .08 .35 ± .07 .88±.08 168 .71 ± .04 .99 ± .01 .58± .05
106 .96 ± .02 .82 ± .05 .99±.02 169 .97 ± .02 .97 ± .02 .84± .03
107 .91 ± .07 .75 ± .07 .59±.08 170 .85 ± .03 .95 ± .02 .95 ± .02
108 .92 ± .03 .90± .04 1.00 ± .01 171 .89± .04 .93 ± .04 .77±.06
109 .90 ± .09 .62 ± .08 .59±.08 172 .87 ± .05 .98 ± .03 .50±.07
110 .79 ±.11 .43 ± .08 .56±.09 173 .96 ± .03 .94± .03 .92±.04
111 .89 ± .07 .72 ± .07 .52±.07 174 .97 ± .03 .87 ± .05 .82± .05
112 .63 ± .09 .30 ± .06 .58 ± .09 175 .92 ± .04 .88 ± .05 .72±.06
113 .81 ± .09 .64 ± .09 .52±.08 176 .82 ± .06 .91 ± .05 .52± .07
114 .57 ± .12 .37 ±.10 .48 ±.12 177 .88 ± .04 .75 ± .06 .96± .03
115 .75 ± .08 .69 ± .08 .48 ±.07 178 .98 ± .03 .83 ± .05 .85 ± .05
116 .87 ± .05 .68± .06 .68±.06 179 .90± .03 .98 ± .01 .76±.04

'117 .72 ± .05 .67 ± .06 .81 ± .06 180 .96± .02 .98 ± .01 .64± .04
118 .81 ± .05 .74 ± .06 .75 ± .06 181 .87 ± .03 .99 ± .01 .77±.04
119 .96 ± .03 .79 ± .04 .60±.04 182 .88 ± .03 1.00 ± .00 .71± .04
120 .73 ± .05 .84 ± .05 .32±.04 183 .90 ± .03 1.00 ± .00 .62± .05
121 .91 ± .08 .87 ± .09 .68 ±.11 184 .86 ± .06 .98 ± .02 .95 ±.04
122 .97 ± .07 .94 ± .08 .38 ±.10 185 .90 ± .05 .98 ± .02 .95 ± .04
123 .89 ± .12 .78 ±.12 .43± .11 186 .85 ± .03 .81 ± .04 .79± .04
124 .94 ± .08 .92 ± .09 .34±.09 187 .73 ± .05 .59 ± .06 .71 ± .06
125 .95 ± .09 .81 ± .10 .52 ± .10 188 .91 ± .03 .85 ± .04 .66±.04
126 .97 ± .06 .97 ± .06 .29 ± .08 189 .74 ± .05 .96 ± .05 .16±.04
127 .73 ± .11 .95 ± .09 .32±.12 190 .93 ± .03 .87 ± .03 .72± .04
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Note-s-Case numbers for each data set correspond to those used by Nils
son and Gardiner (1993). Cl, approximate 95% confidence interval com
puted from Equation 34 in Batchelder and Riefer (1988); S, probability
of storage; rl' probability of retrieval during recognition; r2' probability
of retrieval during recall.

Case
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222
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224
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229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

s CI

.90 ± .04

.83 ± .04

.94 ± .03

.88 ± .03

.89 ± .05

.80± .04

.92 ± .05

.82 ± .04

.96 ± .03

.71 ± .05

.48 ± .04

.86 ± .04

.86 ± .08

.94 ± .05

.92 ± .06

.95 ± .07

.92 ± .07
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.68 ± .13
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.73 ± .12

.31 ± .11

.75 ± .14

.66 ± .11

.98 ± .04

.94± .06
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