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Induction of combination rules
in two-dimensional function learning

KYUNGHEE KOH
University of Rochester, Rochester, New York

Previous studies have typically found that when people learn to combine two dimensions of
a stimulus to select a response, they learn additive combination rules more easily than nonaddi
tive (e.g., multiplicative) ones. The present experiments demonstrate that in some situations people
can learn multiplicative rules more easily than other (e.g., additive) rules. Subjects learned to
produce specified response durations when presented with stimulus lines varying in length and
angle of orientation. When stimuli and correct responses were related by a multiplicative combi
nation of power functions, learning was relatively easy (Experiment 1). In contrast, systematic
response biases occurred during the early phases of learning an additive combination of linear
functions (Experiment 2) and a more complex (nonadditive and nonmultiplicative) combination
oflinear functions (Experiment 3), suggesting that people have a tendency to induce a multiplica
tive combination of power functions. However, the initial biases decreased with practice. These
results are explained in terms of a revised adaptive regression model of function learning origi
nally proposed by Koh and Meyer (1991). Differences between the present results and previous
results in the literature are discussed.

In many tasks, the appropriate response depends on sev
eral stimulus variables. For example, investment decisions
should depend on risks and potential gains, and hitting
a ball requires judging the velocity and distance of the
ball. The question of how stimulus variables are combined
has therefore received considerable attention in many dif
ferent contexts, such as decision making (Tversky, 1967),
measurement theory (Anderson, 1981; Luce & Tukey,
1964), intuitive physics (Anderson, 1983), and visual per
ception (Maloney & Landy, 1989).

The present article explores one important aspect of in
formation combination-namely, learning of specific com
bination rules from experience-in the context of func
tion learning. In a function learning paradigm, subjects
learn quantitative functional relations among continuous
stimulus and response variables (e.g., Bjorkman, 1965;
Brehmer, 1974; Carroll, 1963; Koh & Meyer, 1991).
Within the function learning paradigm, induction ofcom
bination rules can be investigated by examining how peo
ple learn multidimensional functions.

A multidimensional function, which relates multiple
stimulus variables to a response variable, can be thought
of as having two distinct parts. One specifies the com
ponent functions-that is, how the individual stimulus
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variables are related to the response variable when other
stimulus variables are fixed (e.g., by a linear or power
function). The other specifies the combination rule-that
is, how the component functions are combined (e.g., ad
ditively or multiplicatively). Previous studies of function
learning have typically concluded that (1) linear compo
nent functions are learned faster than nonlinear (e.g., U
shaped) ones (Brehmer, 1974; Carroll, 1963; Deane,
Hammond, & D. A. Summers, 1972; Hammond & D. A.
Summers, 1965), and that (2) additive combination rules
are learned more easily than nonadditive (e.g., multiplica
tive) ones (Brehmer, 1969; S. A. Summers, R. A. Sum
mers, & Karkau, 1969). (For reviews, see Brehmer,
1980, and Klayman, 1988.)

These conclusions, however, are based mainly on
studies where numbers or line lengths were used as stimu
lus and response variables, and they may not necessarily
generalize to learning of relations among other variables.
Indeed, with respect to the learnability of component func
tions, the recent work ofKoh and Meyer (1991) hasshown
that under some circumstances power functions can be
learned more easily than linear functions. Koh and Meyer
had subjects learn to select particular response durations
when presented with particular stimulus lengths. Stimuli
and correct responses were related by either a power func
tion, a logarithmic function, or a linear function with a
positive intercept. The power function was learned quickly
and accurately. In contrast, systematic response biases oc
curred during the early phases of learning the logarith
mic and linear functions, although the biases gradually
decreased with practice. The pattern of initial response
biases suggested that subjects made an a priori assump
tion that the function to be learned was a power function.
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On the one hand, these results are surprising given that
several other studies of function learning have concluded
that linear functionsare more easily learned than nonlinear
ones (Brehmer, 1974;CarrolI, 1963; Deaneet al., 1972;
Hammond & D. A. Summers, 1965). On the other hand,
these results mesh well with the findings of numerous
psychophysical scaling studies that have found power
psychophysical functions for many sensory dimensions
(S. S. Stevens, 1956, 1957, 1961). Many of these psycho
physical studies have used cross-modality matching tasks
(J. C. Stevens, Mack, & S. S. Stevens, 1960; J. C.
Stevens & Marks, 1965; S. S. Stevens, 1959, 1965; S. S.
Stevens & Guirao, 1963), which are similar to typical
function learning tasks except that subjects choose their
own response to each stimulus rather than having to learn
a predefined response. The results of cross-modality
matching tasks therefore could be interpreted as showing
the special status of power functions in relating sensory
dimensions.

One way to reconcile the apparent discrepancy between
the results showing the primacy of linear functions and
those showing the primacy of power functions is to note
that power functions are closely related to linear func
tions. A logarithmic transformation of stimulus and re
sponse variables turns power functions into linear func
tions. Thus, the primacy of both linear functions and
power functions may be interpreted as indicating that in
duction of linear functions is preferred over induction of
nonlinear functions, with the exception that an optional
logarithmic transformation of stimulus and response vari
ables sometimes precedes function induction. Whether or
not a logarithmic transformation of variables takes place
in a particular situation may depend on the nature of the
stimulus and response variables involved. (This will be
discussed in more detail in the General Discussion
section.)

These considerations have important implications for
the learnability of combination rules. Suppose that induc
tion of additive combination rules is preferred over in
duction of nonadditive rules, with the exception that an
optional logarithmic transformation of stimulus and re
sponse variables sometimes precedes the induction pro
cess. Then it is possible that multiplicative rules (i.e., rules
that are additive after logarithmic rescaling) may be
learned more easily than other (e.g., additive) rules. The
present experiments provide a demonstration that in some
situations people can learn multiplicative rules more eas
ily than additive rules.

In the present three experiments, the subjects learned
to produce specified response durations when presented
with stimulus lines varying in length and angle of orien
ration.' Two of the three dimensions used here (length
and duration) were the same as those used in Koh and
Meyer (1991). The correct response durations were re
lated to the values along the length and angle dimensions
by a multiplicative combination of power functions, an
additive combination of linear functions, or a more com
plex (nonadditive and nonmultiplicative) combination of

linear functions. The experiments were designed to test
the hypothesis that in learning to relate line length and
angle to response duration, subjects have a natural bias
to assume that the function to be learned is a multiplica
tive combination of power functions and that they can
overcome the bias so as to learn other types of function.
According to the hypothesis, subjects should be able to
learn a multiplicativecombination of power functions rela
tively quickly and accurately, whereas they should show
systematic response biases toward a multiplicative com
bination of power functions in learning other types of
function.

EXPERIMENT 1

In Experiment 1, the subjects learned a two-dimensional
function in which power component functions were com
bined multiplicatively. The aim was to test the hypothe
sis that people can learn the required multiplicative com
bination of power functions quickly and accurately.

Method
Subjects. Five University of Rochester students participated as

paid subjects. Each subject received $5.00 per l-h session, plus
a bonus of about $0.50 on the basis of performance. The subjects
were tested in three l-h sessions on separate days over a period
of a week or less.

Apparatus. An Apple Macintosh IIci microcomputer controlled
the presentation of stimuli and collection of responses. The sub
jects sat in a normally lit room and viewed the CRT screen of an
AppleColor high-resolution RGB monitor from a distance of ap
proximately 70 cm. Responses were made through a standard com
puter keyboard. A software timing routine with a resolution of
12 msec measured the stimulus and response durations.?

Design. The stimuli were lines varying in length and angle of
orientation. J Five levels of length combined with five levels of an
gie produced a set of 25 stimuli. The levels were chosen so that
the stimuli could be discriminated easily. The function that related
the stimuli to the correct response durations was D = 71.06 L J2

A l 2
, where D, L, and A denote the duration (in milliseconds), length

(in millimeters), and angle (in degrees from horizontal), respec
tively. Table I lists the stimulus lengths, stimulus angles, and re
sponse durations used in Experiment I.

Each session began with a block of 10 warm-up trials for which
the data were not analyzed. The warm-up trials were followed by
12 50-trial blocks. During each block, each of the 25 stimuli was
presented twice. The order of stimulus presentation within a block
was randomized. Feedback about the correct responses was pro
vided on 32 randomly selected trials during each block."

Procedure. At the beginning of each trial, a line was presented
at the center of the display screen. The subjects were instructed
to produce a response duration that they thought would correspond
to the length and angle of the stimulus line. They were told that
there was a correct response duration for each stimulus, but they
were not told explicitly about the nature of the underlying
stimulus-response relation. The response duration was defined as
the amount of time between two taps of the zero ("0") key on the
keyboard.

A warning message appeared on the display screen if a
procedurally inappropriate response occurred. The inappropriate
responses included responding before stimulus onset, not respond
ing within 5 sec after stimulus onset, and not tapping the zero key.
The warning messages were, respectively, "00 not respond be
fore stimulus presentation," "You did not respond before dead-
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Results
Overall stimulus-response relation. Logarithmically

transformed response durations, averaged over subjects,
appear in Table 2 for each combination of stimulus
response pair and half-session, along with the correct log

pair, and half-session. Observations were grouped into half-sessions
rather than into sessions, because a preliminary analysis suggested
that a substantial amount of learning took place within the first ses
sion. Each mean and standard deviation was based on about 12 ob
servations, which were enough to produce fairly stable estimates.
The mean response (or the difference between the mean and cor
rect responses, i.e., constant error) provides a measure of system
atic bias, whereas the standard deviation (i.e., variable error) pro
vides a measure of response consistency. The two performance
measures reflect different sources of error and thus are analyzed
separately.

In order to examine the pattern of subjects' responses, the means
of log response durations [M(log 0») were used as the variable to
be predicted in multiple regression analyses. The prediction equa
tion was derived from the following log-quadratic equation:

M(log 0) = a, + a, log L + aJ log A + a.(Iog L)(log A)

where 0, L, and A denote the response duration, stimulus length
and stimulus angle, and a, through a. represent the regression coeffi
cients. Because the predictor variables in Equation I are correlated,
a slightly modified form of Equation I was used. The set of corre
lated predictor variables was transformed into another set of nor
malized orthogonal variables. This was done in several steps. The
variables log L and log A were first standardized so that the new
variables (ZL and ZA) had means of 0 and standard deviations of I.
Standardization was done to make the magnitudes of the different
regression coefficients comparable. Next, ZL and ZA were used to
predict each of the remaining three variables, (log L)(log A),
(log L)', and (log A)', and then the standardized residuals, Zu,
ZLL, and ZAA, were computed. These transformations removed
linear trends from the original variables, (log L)(log A), (log L)l,
and (log A)'. As a result, the coefficients for the new variables (Zu,
ZLL, and ZAA) reflected pure second-order trends. With these new
orthogonal predictor variables, the regression equation became

M(log 0) = c, + C,ZL + CJZA + c.Zu

(I)

(2)

+ a.(Iog L)' + a.(log A)',

This equation was chosen because it can approximate a variety
of two-dimensional functions (including multiplicative combinations
of power functions and additive combinations of linear functions)
with a relatively small number of parameters (c, through c.). Fur
thermore, given the logarithmic transformations of the stimulus and
response variables, the equation reduces to a multiplicative combi
nation of power functions when c., c., and c. equal zero. Thus,
if responses are based on a multiplicative combination of power
functions, the estimates of the coefficients c., c., and C. should be
essentially zero. A nonzero value of c. would indicate an interaction
between the log stimulus variables (i.e., deviation from a multiplica
tive combination rule), and nonzero values of c. and c. would indi
cate log-quadratic trends in the component functions (i.e., devia
tions from power functions)."

Regression coefficients were computed separately for each com
bination of subject and half-session. Each of the six sets of esti
mated coefficients (one for each term in Equation 2) was then sub
mitted to an analysis of variance (ANaYA), with half-sessions as
a within-subject fixed factor and subjects as a random factor.

Finally, variable errors (i.e., standard deviations of log response
durations) were submitted to an ANaYA, with half-sessions as a
within-subject fixed factor and subjects as a random factor.

Table I
The Stimulus-Response (S-R) Pairs in Experiment I

Stimulus Stimulus Response
S-R Length Angle Duration
Pair (mm) (degree) (msec)

I 13.9 9 333
2 13.9 25 462
3 13.9 41 541
4 13.9 57 600
5 13.9 73 650
6 38.2 9 461
7 38.2 25 639
8 38.2 41 748
9 38.2 57 831

10 38.2 73 899
11 62.4 9 540
12 62.4 25 748
13 62.4 41 876
14 62.4 57 973
15 62.4 73 1053
16 86.7 9 600
17 86.7 25 831
18 86.7 41 973
19 86.7 57 1081
20 86.7 73 1170
21 111.0 9 650
22 111.0 25 900
23 111.0 41 1054
24 111.0 57 1171
25 111.0 73 1267

line," and "You did not tap the '0' key." Each warning message
lasted 750 rnsec, and after an intertrial interval (ITI) of 830 rnsec,
the next trial began. Trials involving inappropriate responses were
not repeated.

On feedback trials, if the subject responded appropriately, vari
ous types of feedback were provided. First, two brief beeps whose
onsets were separated by the correct response duration were pre
sented. The first beep started 330 msec after the subject's second
keytap. After the second beep, some further information about the
subject's performance was presented on the display screen. Depend
ing on whether the response duration was longer than, shorter than,
or equal to the correct duration, the message "Long," "Short,"
or "Perfect" appeared on the screen. Below the message, a point
score for the response was shown. The point score ranged from
o to 10, indicating how close the subject's response duration had
come to the correct duration. S The message "Perfect" was pre
sented when the score for the response was 10. The feedback mes
sage lasted I sec, and the next trial began after an 830-msec ITI.

On trials without feedback, if the subject made a procedurally
appropriate response, an ITI of 830 rnsec followed the second key
tap, and the next trial began. The subjects were told that on some
randomly selected trials no feedback would be given, and that
whether or not they received feedback on a trial did not depend
on their performance on the trial.

During a brief rest period between blocks, the subjects received
information about the number of points that they had earned for
the previous block and the cumulative number of points for the ses
sion. The next block of trials then began. At the end of each ses
sion, the subjects received a bonus payment of a penny for 10 points
above 3,000 points.

Data analyses. Each subject produced a total of 1,800 response
durations (3 sessions x 12 blocks x 50 trials). A small number
of procedurally inappropriate responses were excluded from data
analyses. All analyses were based on logarithmically transformed
stimulus and response values.

First, a mean and standard deviation of log response durations
was computed for each combination of subject, stimulus-response
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Table 2
Mean Log Response Durations for Each Stimulus-Response (S-R)
Pair Averaged Over Subjects as a Function of Half-Session and
the Correct Log Response Duration for Each Pair in Experiment 1

Correct
S-R Log Half-Session

Pair Response I 2 3 4 5 6

1 5.808 5.897 5.837 5.879 5.805 5.920 5.900
2 6.136 6.024 6.094 6.101 6.119 6.122 6.150
3 6.293 6.169 6.228 6.281 6.316 6.278 6.290
4 6.397 6.141 6.290 6.294 6.316 6.368 6.370
5 6.477 6.302 6.366 6.433 6.491 6.468 6.382

6 6.133 6.194 6.173 6.149 6.164 6.225 6.196
7 6.460 6.421 6.484 6.496 6.459 6.508 6.544
8 6.617 6.562 6.583 6.612 6.669 6.629 6.648
9 6.723 6.610 6.635 6.687 6.704 6.711 6.737

10 6.801 6.695 6.763 6.791 6.799 6.812 6.785

11 6.292 6.390 6.329 6.281 6.295 6.315 6.327
12 6.617 6.627 6.563 6.650 6.699 6.659 6.668
13 6.775 6.661 6.665 6.758 6.757 6.785 6.758
14 6.880 6.809 6.775 6.832 6.751 6.849 6.795
15 6.959 6.895 6.931 6.947 6.909 6.927 6.862

16 6.397 6.456 6.469 6.324 6.444 6.405 6.425
17 6.723 6.710 6.710 6.783 6.765 6.752 6.739
18 6.880 6.830 6.795 6.825 6.856 6.873 6.822
19 6.986 6.932 6.839 6.852 6.854 6.941 6.888
20 7.065 7.005 6.989 7.043 6.989 7.009 6.960

21 6.477 6.618 6.595 6.518 6.595 6.530 6.587
22 6.802 6.837 6.786 6.851 6.846 6.872 6.881
23 6.960 6.888 6.910 6.950 6.974 6.981 6.947
24 7.066 7.015 7.013 7.027 6.977 7.020 6.995
25 7.144 7.081 7.082 7.103 7.077 7.129 7.083

responses. In Figure 1, the results from the first half of
Session 1 (top panels) and the second half of Session 3
(bottom panels) are shown. The left panels present the
log response durations as a function of log stimulus lengths
with angle as a parameter, and the right panels present
the same information as a function of log stimulus angles
with length as a parameter. The dotted parallel lines rep
resent the required multiplicative combination of power
functions, and the circles on the solid curves (connected
line segments) represent the observed responses.

Performance during the first half of Session 1 did not
differ much from performance during the second half of
Session 3, suggesting that the subjects attained a nearly
asymptotic level of performance during the first half
session. The subjects' responses came close to the required
ones, except that the observed response magnitudes for
the short and steep stimulus lines tended to be smaller than
required. Overall, the response curves (solid curves) were
almost linear and parallel to each other, consistent with
the hypothesis that the subjects' responses were based on
a multiplicative combination of power functions. Detailed
multiple regression analyses provide support for these gen
eral impressions.

Multiple regression coefficients. Multiple regression
analyses were performed using Equation 2 as the predic
tion equation. There were a total of 30 such regression
analyses, one for each combination of 5 subjects and 6

half-sessions. The fits were uniformly good; the percent
age of variance accounted for was 96.8 %, averaged over
subjects. For individual subjects, the percentages ranged
from 95.9% to 98.2%.

Figure 2 presents the regression coefficients, averaged
over subjects, as a function of half-sessions. Each of the
six panels shows the obtained coefficients (circles) for
each term in Equation 2. Each solid line represents the
ideal value of the coefficient that would result from per
fect performance.

Several features of the results are noteworthy. First,
the intercepts (c.) were initially smaller than the ideal,
but approached the ideal with practice. Their increase over
half-sessions was statistically reliable [F(5,20) = 3.84,
MSe = .00052, P < .02]. Second, the log-linear coeffi
cients for length (cz) were overall not significantly dif
ferent from the ideal [F(l,4) = 1.71, MSe = .00088,p >
.2]. There was a slight improvement with practice, but
it was not statistically reliable [F(5,20) = 1.47, MSe =
.00095, p > .2]. Third, the log-linear coefficients for an
gle (Cl) were generally smaller than the ideal [F(l,4) =
8.98, MSe = .00689, p < .05].

The remaining three coefficients (C4, Cs, and cfi) were
not reliably different from zero [F(1,4) < 1, MSe =
.0013; F(1,4) < 1, MSe = .00056; F(l,4) < 1, MSe =
.0017], and they did not change significantly over half
sessions [F(5,20) = 2.16, MSe = .0036, p > .1; F(5,20)
< 1, MSe = .00015; F(5,20) = 2.39, MSe = .0003,p >
.05]. The percentage of variance accounted for by these
three coefficients was, on average, only 1.3%, in con
trast to 95.5 % accounted for by the first three coefficients.
Recall that C4 represents how much the combination rule
deviates from a multiplicative (log-additive) rule, and that
Cs and Cfi represent how much the component functions
deviate from power functions. Clearly, the subjects' re
sponses were well fit by a multiplicative combination of
power functions.

Variable errors. Variable errors averaged over sub
jects appear in Table 3 as a function of stimulus-response
pair and half-session. There was a significant improve
ment in variable error with practice [F(5,20) = 21.34,
MSe = .000,p < .0001]. The mean variable errors were
.261, .205, .177, .174, .151, and .167, for the six half
sessions. The variable errors also differed reliably across
individual stimulus-response pairs [F(24,96) = 2.89, MSe

= .003, p < .0001]. In general, stimulus-response pairs
with long response durations yielded smaller variable er
rors than did those with short response durations. The
same pattern was observed in Koh and Meyer's (1991)
unidimensional function learning studies, and it may
reflect a general relationship between the mean and stan
dard deviation of logarithmically transformed response
durations.

Discussion
Overall, the results show that people can learn quite

well a multiplicative combination of power functions re-
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Figure 1. Mean log response durations (natural logarithms of milliseconds)
averaged over subjects as a function of log stimulus lengths (natural logarithms
of millimeters) and log stimulus angles (natural logarithms of degrees from
horizontal) for the first half of Session 1 and the second half of Session 3 of
Experiment 1. (The dotted lines represent the required function, and the cir
cles on the solid curves represent the observed mean log response durations.)

lating stimulus length and angle to response duration. The
subjects' responses conformed to a multiplicative combi
nation of power functions even during the early stages
of learning. Performance improved substantially in terms
of variable error. There was also a modest improvement
in mean responses with practice, but the improvement was
attributable to better estimation of parameters for a mul
tiplicative combination of power functions rather than to
a change in the type of function being induced.

The present results replicate Koh and Meyer's (1991)
finding that people readily learn a power-function rela
tion between length and duration. The results also dem
onstrate that people can easily induce a power-function
relation between angle and duration. These results, how
ever, are surprising in light of the widely accepted view
that additive combinations of linear functions are most eas
ily learned (Brehmer, 1969; S. A. Summers et al., 1969).
The results suggest that the type of combination rule and
multidimensional function that is most easily learned may
depend on the particular function learning task involved.

It is worth noting that, somewhat unexpectedly, the ef
fects of length and angle were learned at different rates,

even though the subjects were explicitly told to pay at
tention to both angle and length. Whereas the obtained
coefficients for length came close to the ideal within the
first session, the coefficients for angle remained smaller
than the ideal after three sessions of practice. It may be
that the lengths used in the present experiment were more
discriminable than the angles. Another possibility is that
the two dimensions were equally discriminable, but in
learning a two-dimensional function, people have a ten
dency to pay more attention to one stimulus variable than
the other, instead of distributing attention equally across
the two stimulus variables. More generally, people may
have a tendency to focus on a few stimulus variables when
there are many potentially relevant variables (cf. Buse
meyer, Myung, & McDaniel, in press; Wallsten, 1976).
Interestingly, the rather puzzling finding that the observed
coefficients for angle were too small even after extensive
training may have a simple statistical explanation. The
relevant statistical fact is that errors of measurement in
independent variables result in regression coefficients that
are biased toward zero (Hays, 1988, pp. 583-584). Thus,
the asymptotic coefficients for angle may have been too
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Figure 2. Multiple regression coefficients averaged over subjects as a function of half"8eSSions in Experiment 1.
(The solid lines represent the ideal values of the coefficients.)

small in the present experiment because the internal rep- Table 3
resentations of the angles were highly variable, either due Standard Deviations of Log Response Durations for Each

to lack of attention or due to perceptual noise. This issue Stimulus-Response (S-R) Pair Averaged Over Subjects

is discussed further in the General Discussion section.
as a Function of Half-Session in Experiment 1

S-R Half-Session

Pair 1 2 3 4 5 6
EXPERIMENT 2 1 0.313 0.196 0.191 0.188 0.189 0.174

2 0.221 0.201 0.195 0.167 0.178 0.177

The results of Experiment I showed that a multiplica- 3 0.273 0.208 0.164 0.164 0.156 0.154

tive combination of power functions, which is additive 4 0.192 0.164 0.168 0.164 0.149 0.164

and linear in logarithmic coordinates, could be learned
5 0.205 0.188 0.153 0.183 0.145 0.217

quite well. Experiment 2 was similar to Experiment I, 6 0.374 0.224 0.160 0.179 0.159 0.154
7 0.346 0.280 0.169 0.196 0.143 0.185

except that the required function was an additive combi- 8 0.337 0.216 0.206 0.165 0.169 0.141
nation of linear functions, which is neither additive nor 9 0.342 0.203 0.202 0.231 0.185 0.195

linear in logarithmic coordinates. Thus, if subjects assume 10 0.346 0.193 0.165 0.143 0.161 0.151

that the required function is a multiplicative combination 11 0.257 0.242 0.180 0.215 0.190 0.168

of power functions, the results would initially show sys- 12 0.211 0.168 0.170 0.192 0.161 0.179

tematic response biases. Also, if subjects are able to over-
13 0.195 0.174 0.184 0.168 0.179 0.176
14 0.230 0.156 0.161 0.165 0.132 0.166

come their initial biases, as in unidimensional function 15 0.191 0.229 0.151 0.155 0.138 0.144
learning (Koh & Meyer, 1991), then they would be able 16 0.309 0.212 0.212 0.147 0.150 0.150
to learn the present additive combination of linear func- 17 0.231 0.188 0.177 0.237 0.172 0.198
tions with sufficient practice. 18 0.262 0.230 0.168 0.190 0.137 0.159

19 0.236 0.185 0.171 0.169 0.146 0.149

Method
20 0.192 0.206 0.205 0.145 0.183 0.149

The experimental method was the same as that of Experiment 1, 21 0.302 0.213 0.196 0.192 0.154 0.172

except that the required rule was defined by the equation D = 201 22 0.223 0.195 0.177 0.161 0.163 0.153

+ 4.8L + 7.29A, where D, L, and A denote the duration (in milli- 23 0.256 0.233 0.168 0.145 0.173 0.143

seconds), length (in millimeters), and angle of orientation (in 24 0.267 0.208 0.179 0.151 0.140 0.170

degrees). The stimulus lengths, angles, and response durations are 25 0.214 0.218 0.156 0.151 0.125 0.158
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Figure 3. Mean log response durations (naturallogaritbms of milliseconds)
avenged over subjects as a function of log stimulus lengths(naturallogaritluns
of millimeters) and log stimulus angles (natural logarithms of degrees from
borizontal) for tbe first baIf of Session 1 and the second half of Session 3 of
Experiment 2. (Tbe dotted curves represent the required function, and the
circles on the so6d curves represent the observed mean log respolL'le duratiom.)

listed in Table 4. The stimuli were the same as in Experiment I,
and the responses spanned the same range as those in Experiment 1.

Five University of Rochester students participated as paid sub
jects. Each subject received about $5.50 per l-h session. None had
been in Experiment I.

Results
Overall stimulus-response relation. Log response du

rations, averaged over subjects, are listed in Table 5 as
a function of stimulus-response pairs and half-sessions.
The results from the first half of Session I and the last
half of Session 3 also appear in Figure 3 as a function
of stimulus lengths (left panels) and as a function of stim
ulus angles (right panels). The circles on the solid curves
represent the observed response durations, and the dot
ted curves represent the required additive combination of
linear functions.

During the first half of Session I, there occurred in
teresting response biases. Note that the required additive
combination of linear functions forms nonparallel curves
(dotted curves) when plotted in logarithmic coordinates.
In contrast, the observed responses (solid curves) formed
approximately parallel lines. It appears that the subjects
were initially inducing a multiplicative combination of

power functions when an additive combination of linear
functions was supposed to be learned. The response bi
ases decreased substantially with practice, and by the sec
ond half of Session 3, the observed response durations
came reasonably close to the correct ones. These obser
vations are confirmed by detailed quantitative analyses.

Multiple regression coefficients. Multiple regression
analyses and ANOVAs were performed as in Experi
ment 1. The regression fits were good; the percentage of
variance accounted for, averaged over subjects, was
95.7%. For individual subjects, the percentages ranged
from 92.6% to 98.4%. The regression coefficients, aver
aged over subjects, appear as a function of half-sessions
in Figure 4. Solid lines represent the ideal values of the
coefficients. These ideal values were computed by fitting
Equation 2 to the correct log response durations. The re
gression fit accounts for 99.9% of the variance of the cor
rect log responses, indicating that Equation 2 provides a
good approximation to the required additive combination
of linear functions. The dotted lines in the bottom panels
represent zero.

The obtained intercepts (Cl) and log-linear coefficients
for length (C2) were on average not significantly differ-
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Table 4
Stimulus-Response (S-R) Pairs in Experiment 2

S-R
Pair

I
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

Stimulus
Length
(mm)

13.9
13.9
13.9
13.9
13.9

38.2
38.2
38.2
38.2
38.2

62.4
62.4
62.4
62.4
62.4

86.7
86.7
86.7
86.7
86.7

111.0
111.0
111.0
111.0
111.0

Stimulus
Angle

(degree)

9
25
41
57
73

9
25
41
57
73

9
25
41
57
73

9
25
41
57
73

9
25
41
57
73

Response
Duration
(msec)

333
450
567
683
800

450
567
683
800
917

567
683
800
917

1033

683
800
917

1033
1150

800
917

1033
1150
1267

ent from the ideal [F(I,4) < 1, MSe = .00064; F(l,4)
< 1, MSe = .00064]. Unlike in Experiment 1 (where
these coefficients were initially different from the ideal),
in the present experiment, their initial values were quite
close to the ideal. This difference may simply be due to
individual differences, since there were a relatively small
number of subjects in each experiment. As in Experi
ment 1, the log-linear coefficients for angle (C3) were
generally smaller than the ideal [F(l,4) = 7.69, MSe =
.00797, P < .06], and although they improved somewhat
with practice, this improvement was not reliable [F(5,20)
< I, MSe = .0012].

Unlike in Experiment I, the ideal values for the latter
three coefficients (C4, Cs, and C6) are different from zero.
Yet, during the first half-session, the obtained coefficients
were not reliably different from zero [F(l,4) < I, MSe

= .00098; F(l,4) < 1, MSe = .00042; F(l,4) < 1, MSe
= .00269], and the deviations from the ideal values were
more substantial [F(l,4) = 10.59, MSe = .00098; p <
.05; F(l,4) = 6.19, MSe = .00042, p < .1; F(l,4) =
3.128, MSe = .00269, p < .2]. The coefficients for the
interaction between log length and log angle (C4) ap
proached the ideal with practice [F(5,20) = 3.98, MSe =
.00031, p < .02], indicating that the subjects gradually
learned the correct combination rule. Similarly, the log
quadratic coefficients for length (cs) approached the ideal
over half-sessions [F(5,20) = 5.24, MSe = .00026, p <

Int.rc.pt Log-Lln.ar L.ngth Log-Lln.ar Ang'.
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Figure 4. Multiple regression coefficients averaged over subjects as a function of half-sessions in Experiment 2.
(The solid lines represent the ideal values of the coefficients, and the dotted lines represent zero.)
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.005], which shows that subjects could learn the correct Table 6

component function with respect to stimulus length. The Standard Deviations of Log Response Durations for Each

log-quadratic coefficients for angle (C6)' however, did not
Stimulus-Response (S-R) Pair Averaged Over Subjects

as a Function of Half-Session in Experiment 2
change over half-sessions [F(5,20) < 1, MSe = .00019].

Half-Session
Variable errors. Table 6 presents the average variable S-R

error for each half-session and stimulus-response pair. Pair 1 2 3 4 5 6

As in Experiment 1, the variable errors decreased some- I 0.268 0.213 0.181 0.182 0.226 0.151

what over half-sessions [F(5,20) = 2.60, MSe = .062,
2 0.284 0.212 0.232 0.193 0.173 0.154
3 0.315 0.204 0.220 0.218 0.131 0.148

P < .06]. The average variable errors for the six half- 4 0.348 0.226 0.231 0.155 0.175 0.148
sessions were .252, .187, .184, .189, .159, and .150. In 5 0.353 0.218 0.190 0.204 0.153 0.139

addition, the variable errors differed somewhat depend- 6 0.269 0.197 0.164 0.189 0.161 0.141

ing on the stimulus-response pair involved [F(24,96) = 7 0.227 0.197 0.186 0.225 0.180 0.154

1.64, MSe = .004, p < .05]. On the whole, the magni- 8 0.246 0.132 0.126 0.158 0.159 0.156

tudes of the variable errors in Experiment 2 were com-
9 0.253 0.175 0.210 0.180 0.135 0.155

10 0.224 0.196 0.159 0.215 0.135 0.132
parable to those in Experiment 1. The average variable 11 0.237 0.214 0.189 0.215 0.133 0.173
errors for Experiments 1 and 2 were .189 and .187, 12 0.244 0.192 0.171 0.195 0.152 0.140
respectively. It appears that even though the pattern of 13 0.193 0.260 0.180 0.188 0.158 0.133
response biases (or constant errors) was affected by the 14 0.208 0.140 0.147 0.211 0.150 0.167

form of the required function, response variability (or 15 0.195 0.138 0.178 0.189 0.165 0.142

variable error) was largely unaffected by it. 16 0.330 0.214 0.201 0.161 0.172 0.143
17 0.286 0.183 0.196 0.175 0.173 0.153
18 0.190 0.161 0.148 0.136 0.156 0.157

Discussion 19 0.187 0.162 0.171 0.185 0.178 0.133

Experiment 2 produced several important results. First, 20 0.231 0.151 0.180 0.223 0.137 0.138

even though the subjects were trained on an additive com- 21 0.256 0.219 0.205 0.197 0.165 0.163

bination of linear functions, their initial responses con- 22 0.244 0.177 0.174 0.197 0.145 0.154

formed to a multiplicative combination of power func- 23 0.217 0.166 0.201 0.189 0.123 0.151
24 0.262 0.176 0.195 0.154 0.153 0.182

tions. This result strongly suggests that in learning a 25 0.242 0.163 0.172 0.197 0.179 0.152
function relating line length and angle to duration, peo-

Table 5
ple make an a priori assumption that the required combi-

Mean Log Response Durations for Each Stimulus-Response (S-R)
nation rule is multiplicative and that the required compo-

Pair Averaged Over Subjects as a Function of Half-Session and nent functions are power functions.
the Correct Log Response Duration for Each Pair in Experiment 2 Second, performance improved with practice, suggest-

Correct ing that the underlying inductive mechanism is flexible
S-R Log Half-Session enough to learn different types of two-dimensional func-
Pair Response 1 2 3 4 5 6 tion. In particular, the patterns of observed regression

1 5.808 5.899 5.839 5.820 5.892 5.838 5.841 coefficients suggest that the combination rule that the sub-
2 6.109 6.193 6.179 6.136 6.184 6.201 6.153 jects used shifted from a multiplicative rule to an addi-
3 6.340 6.281 6.358 6.332 6.339 6.393 6.339 tive rule, and that the subjects could learn the required
4 6.527 6.326 6.413 6.480 6.446 6.495 6.427
5 6.685 6.410 6.526 6.540 6.624 6.634 6.614 nonpower function relating stimulus length and response

6 6.109 6.323 6.179 6.212 6.162 6.231 6.210 duration with a few sessions of training.
7 6.340 6.519 6.536 6.508 6.503 6.502 6.516 Third, the subjects learned the effects of stimulus an-
8 6.527 6.590 6.598 6.604 6.605 6.640 6.540 gle at a slower rate than they learned the effects of stimu-
9 6.685 6.699 6.649 6.663 6.696 6.690 6.655 Ius length, and they continued to use power component

10 6.821 6.748 6.711 6.757 6.688 6.754 6.730

11 6.340 6.467 6.421 6.397 6.346 6.379 6.372
functions with respect to angle after three sessions of train-

12 6.527 6.714 6.711 6.628 6.579 6.609 6.616
ing. A similar pattern of differential learning rates with

13 6.685 6.702 6.741 6.695 6.655 6.731 6.702 respect to length and angle was also found in Experiment 1
14 6.821 6.831 6.787 6.759 6.720 6.825 6.722 and is discussed further in General Discussion.
15 6.940 6.874 6.872 6.891 6.845 6.888 6.849

16 6.527 6.518 6.495 6.523 6.501 6.532 6.540 EXPERIMENT 3
17 6.685 6.722 6.766 6.720 6.731 6.772 6.779
18 6.821 6.798 6.837 6.811 6.799 6.825 6.799 The results of Experiments 1 and 2 speak strongly for
19 6.940 6.888 6.895 6.820 6.844 6.853 6.872
20 7.048 6.984 7.019 6.973 6.895 7.009 6.947 the hypothesis that in learning to relate line length and

21 6.685 6.622 6.645 6.666 6.632 6.691 6.687
angle to duration, people are initially biased toward in-

22 6.821 6.818 6.855 6.916 6.818 6.907 6.889 ducing a multiplicative combination of power functions.
23 6.940 6.910 6.941 6.940 6.917 6.987 6.967 The results of Experiment 2 also suggest that people are
24 7.048 6.997 7.049 7.045 6.975 7.051 7.004 quite flexible and can learn other types of multidimen-
25 7.144 7.070 7.121 7.113 7.052 7.079 7.064 sional function. Nonetheless, one might argue that the ad-
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ditive combination of linear functions that the subjects
learned in Experiment 2 is special in that a logarithmic
transformation of stimulus and response variables turns
a multiplicative combination of power functions to an ad
ditive combination of linear functions. Thus, it is possi
ble that the subjects learned the additive combination of
linear functions simply by omitting a logarithmic trans
formation.

Experiment 3 was designed to investigate how general
the subjects' strategy of induction is. This was done
by examining how well the subjects could learn a two
dimensional function involving a combination rule some
what more complex than the ones used in the previous
experiments. Experiment 3 also provided a second op
portunity to examine whether people are initially biased
to induce a multiplicativecombination of power functions.

Method
The experimental method paralleled those of Experiments 1 and

2, except that the correct responses were related to the stimuli by
a function D = -733.5 + 18.26L + 31.67A - .2883LA, where
D, L, and A denote the duration (in milliseconds), length (in mil
limeters), and angle of orientation (in degrees). The stimulus lengths,
angles, and response durations are listed in Table 7. The responses
spanned about the same range as those in Experiments 1 and 2.
The stimulus lengths and angles had narrower ranges than those
used in Experiments 1 and 2, but they were still highly discriminable.

Given the relatively narrow ranges of stimulus lengths and an
gles used, logarithmic transformations of the stimulus and response
variables have only a small effect on the form of the function. In
both untransformed and logarithmically transformed coordinates,
the required function has negligible or no quadratic terms and a
large interaction term (see Figure 6 below). In other words, the

Table 7
Stimulus-Response (S-R) Pairs in Experiment 3

Stimulus Stimulus Response
S-R Length Angle Duration
Pair (mm) (degree) (msec)

1 34.7 20 333
2 34.7 30 550
3 34.7 40 767
4 34.7 50 983
5 34.7 60 1200

6 52.0 20 550
7 52.0 30 717
8 52.0 40 883
9 52.0 50 1050

10 52.0 60 1217

11 69.4 20 767
12 69.4 30 883
13 69.4 40 1000
14 69.4 50 1117
15 69.4 60 1233

16 86.7 20 983
17 86.7 30 1050
18 86.7 40 1117
19 86.7 50 1183
20 86.7 60 1250

21 104.1 20 1200
22 104.1 30 1217
23 104.1 40 1233
24 104.1 50 1250
25 104.1 60 1267-- --~ -_._----_._-_ ...

Table 8
Mean Log Response Durations for Each Stimulus-Response (S-R)
Pair Averaged Over Subjects as a Function of Half-Session and
the Correct Log Response Duration For Each Pair in Experiment 3

Correct
S-R Log Half-Session

Pair Response 1 2 3 4 5 6

1 5.808 6.251 6.009 6.041 6.053 5.973 5.979
2 6.310 6.327 6.342 6.284 6.380 6.283 6.306
3 6.643 6.362 6.565 6.583 6.675 6.670 6.648
4 6.891 6.534 6.771 6.761 6.801 6.851 6.845
5 7.090 6.671 6.912 6.921 6.953 6.963 7.007

6 6.310 6.465 6.479 6.453 6.537 6.530 6.545
7 6.575 6.601 6.658 6.719 6.720 6.762 6.801
8 6.783 6.738 6.847 6.822 6.842 6.881 6.858
9 6.957 6.723 6.883 6.888 6.942 6.916 6.940

10 7.104 6.844 6.954 7.010 7.004 7.004 7.018

11 6.643 6.702 6.678 6.789 6.765 6.760 6.758
12 6.783 6.770 6.777 6.872 6.904 6.909 6.910
13 6.908 6.813 6.847 6.946 6.949 7.006 6.964
14 7.018 6.913 6.971 6.976 7.004 7.048 7.025
15 7.117 6.969 7.053 7.080 7.045 7.066 7.076

16 6.891 6.818 6.775 6.876 6.902 6.937 6.927
17 6.957 6.883 6.921 6.976 6.963 7.044 7.009
18 7.018 6.940 6.951 7.059 7.040 7.056 7.051
19 7.076 6.950 7.020 7.042 7.053 7.105 7.056
20 7.131 7.014 7.081 7.150 7.105 7.124 7.100

21 7.090 6.886 6.928 7.027 7.012 7.050 7.036
22 7.104 6.958 7.017 7.048 7.052 7.075 7.111
23 7.117 6.989 7.083 7.m 7.081 7.116 7.077
24 7.131 7.096 7.111 7.149 7.127 7.159 7.094
25 7.144 7.182 7.136 7.222 7.147 7.183 7.110

required combination rule is neither additive nor multiplicative.
Thus, the subjects could not learn the required combination rule
using a simple strategy of not transforming the stimulus and re
sponse variables logarithmically.

Five University of Rochester students participated as paid sub
jects. Each subject was paid about $5.50 per l-h session. None had
been in Experiment 1 or 2.

Results
Overall stimulus-response relation. Table 8 presents

log response durations, averaged over subjects, as a func
tion of stimulus-response pairs and half-sessions. The log
response durations for the first half of Session I and the
last half of Session 3 also appear in Figure 5 as a func
tion of stimulus lengths and angles.

As in Experiment 2, the observed responses systemati
cally deviated from the required ones during the first half
session (top panels). In particular, the observed responses
(circles on the solid curves) formed approximately par
allel lines, in sharp contrast to the converging dotted
curves that represent the required function. Again, it ap
pears that the subjects were biased to induce a multiplica
tive combination of power functions. The systematic bi
ases, however, decreased over half-sessions. Detailed
quantitative analyses support these interpretations.

Multiple regression coefficients. As in Experiments
I and 2, Equation 2 was fit to the data. For 4 of the 5
subjects, the regression fits were quite good; the percent
age of variance accounted for ranged from 95.6% to
97.0%, with an average of 96.2 %. For the remaining sub-
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Figure S. Mean log response durations (natural logarithms of milliseconds)
averaged over subjects as a function of log stimulus lengths (natural logarithms
of millimeters) and log stimulus angles (natural logarithms of degrees from
horizontal) for the first half of Session 1 and the second half of Session 3 of
Experiment 3. (The dotted curves represent the required function, and the
circles on the solid curves represent the observed mean log respoese durations.)

ject, the percentage of variance accounted for was con
siderably lower (86.3%). Nonetheless, ANOVAs per
formed with and without the last subject's data yielded
essentially the same results. The results based on all 5
subjects' data are reported here.

The obtained regression coefficients averaged over sub
jects appear in Figure 6 as a function of half-sessions.
Solid lines represent the ideal values of the coefficients,
computed by fitting Equation 2 to the correct log response
durations (the regression fit accounts for 99.88% of the
variance of the correct log responses). The dotted lines
represent zero.

The obtained intercepts (c.) were initially smaller than
the ideal, but increased substantially over half-sessions
[F(5,20) = 4.89, MSe = .0022, P < .005]. The log-linear
coefficients for length (C2) were on average not signifi
cantly different from the ideal [F(l,4) < 1, MSe =

.0033]. As in Experiments 1 and 2, the log-linear coeffi
cients for angle (c3 ) were generally smaller than the ideal
[F(l,4) = 7.14, MSe = .0152,p < .1]. However, there
was a significant improvement over half-sessions [F(5,20)
= 2.88, MSe = .00065, p < .05].

Figure 6 shows that the ideal value (solid line) of the
coefficient for the interaction between log length and log
angle (C4) is quite different from zero (dotted line). The
obtained coefficients during the first half-session were
much closer to zero [F(1,4) = 5.44, MSe = .00045,
p < .1] than to the ideal value [F(l,4) = 199.6, MSe =
.00045, p < .001], but approached the ideal value with
practice [F(5,20) = 25.17, MSe = .00025,p < .0001].
A reasonable interpretation of this outcome is that the sub
jects initially used a multiplicative (log-additive) combi
nation rule, but gradually switched to the required rule
(or one similar to it). It is unlikely that the subjects adopted
a simple strategy of not transforming the stimulus and re
sponse variables logarithmically (i.e., fitting an additive
combination of linear functions) when a multiplicativerule
failed. The reason is that the expected value of C4 under
the strategy is -.031, which is far less negative than the
values observed in the later stages of learning. 7

The ideal values of the log-quadratic coefficients for
length and angle (c, and c6 ) are almost zero (see Figure 6).
The obtained coefficients were also close to zero. Mean
C6 was not statistically different from zero [F(l,4) < 1,
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Figure 6. Multiple regression coefficients averaged over subjects as a function of half-sessions in Experiment 3.
(The solid lines represent the ideal values of the coefficients, and the dotted lines represent zero.)

MSe = .0016]. Mean cs, however, was slightly but reli- Table 9
ably negative [F(I,4) = 26.96, MSe = .00000,p < .01]. Standard Deviations of Log Response Durations for Each

What this unexpected negative log-quadratic trend means Stimulus-Response (S-R) Pair Averaged Over Subjects
as a Function of Half-Session in Experiment 3

is unclear. Yet, the trend is relatively small, and proba-
Half-Sessionbly does not affect the conclusions drawn from other as- S-R

pects of the present results. Pair I 2 3 4 5 6

Variable errors. Table 9 lists the variable errors aver- 1 0.318 0.239 0.262 0.251 0.156 0.182

aged across subjects for each combination of half-sessions 2 0.345 0.307 0.245 0.187 0.213 0.195
3 0.444 0.224 0.191 0.173 0.166 0.186

and stimulus-response pairs. As in previous experiments, 4 0.365 0.175 0.188 0.168 0.182 0.179
the variable errors decreased substantially over half- 5 0.363 0.170 0.169 0.140 0.166 0.138
sessions [F(5,20) = 12.81, MSe = .023, P < .0001]. The 6 0.307 0.275 0.314 0.256 0.214 0.171
average variable errors for the six half-sessions were .276, 7 0.304 0.207 0.186 0.143 0.165 0.164
.185, .173, .151, .157, and .146. The variable errors also 8 0.226 0.152 0.153 0.125 0.161 0.168

differed significantly stimulus-response pairs 9 0.295 0.172 0.173 0.169 0.164 0.156across 10 0.219 0.183 0.135 0.141 0.143 0.151
[F(24,96) = 6.56, MSe = .005, p < .0001]. The variable

11 0.258 0.188 0.210 0.166 0.254 0.168errors in Experiment 3 were comparable in magnitude to 12 0.238 0.183 0.184 0.124 0.161 0.128
those found in Experiments I and 2. Again, it appears 13 0.250 0.199 0.144 0.129 0.141 0.124
that the type of required function had an effect on the pat- 14 0.211 0.155 0.154 0.129 0.143 0.124
tern of response biases, but not on response variability. 15 0.257 0.194 0.173 0.131 0.128 0.116

16 0.305 0.181 0.211 0.165 0.164 0.168

Discussion 17 0.277 0.174 0.121 0.146 0.152 0.106

The primary outcome of Experiment 3 closely resem-
18 0.275 0.147 0.144 0.134 0.162 0.122
19 0.260 0.157 0.144 0.149 0.128 0.117

bled that of Experiment 2. During the early phases of 20 0.286 0.164 0.120 0.137 0.130 0.123
learning, the subjects showed systematic response biases 21 0.282 0.215 0.156 0.149 0.139 0.141
toward a multiplicative combination of power functions, 22 0.241 0.169 0.143 0.123 0.140 0.119
but the biases gradually decreased over the sessions. This 23 0.132 0.149 0.140 0.120 0.125 0.134

outcome provides strong evidence against the possibility 24 0.238 0.116 0.144 0.138 0.121 0.132
25 0.222 0.151 0.135 0.098 0.121 0.141that subjects simply leave out the logarithmic transfor-



mation of the stimulus and response variables when the
function they must learn deviates significantly from a mul
tiplicative combination of power functions. Instead, it ap
pears that subjects' strategy of induction is general enough
for acquiring combination rules other than multiplicative
and additive ones.

GENERAL DISCUSSION

Summary of Results
The present research provides a clear demonstration that

in some situations people can learn multiplicative combi
nations of power functions more easily than other two
dimensional functions (e.g., additive combinations of
linear functions). In learning to relate stimulus length and
angle to response duration, the subjects behaved initially
as if they were inducing a multiplicative combination of
power functions. This happened regardless of whether the
required two-dimensional function was a multiplicative
combination of power functions (Experiment 1), an ad
ditive combination of linear functions (Experiment 2), or
a more complex combination of linear functions (Experi
ment 3). In particular, systematic response biases oc
curred during the early phases oflearning in Experiments
2 and 3. The biases, however, decreased substantially
across sessions.

Relation to Past Studies of Function Learning
The present results replicate and extend Koh and

Meyer's (1991) finding that in unidimensional function
learning people have a bias toward inducing power func
tions. On the other hand, the results seem to be in con
flict with other previous results showing that people learn
additive combination rules and linear functions more eas
ily than nonadditive combination rules and nonlinear func
tions (Brehmer, 1969, 1974; Carroll, 1963; Deane et al.,
1972; Hammond & D. A. Summers, 1965; S. A. Sum
mers et al., 1969). The two sets of results (i.e., those
showing the primacy of multiplicative combinations and
power functions and those showing the primacy of addi
tive combinations and linear functions), however, are not
as different as they might seem at first. As noted earlier,
multiplicative combinations of power functions and ad
ditive combinations of linear functions are closely related
in that a logarithmic transformation of stimulus and re
sponse variables turns the former into the latter. Thus,
a parsimonious account of both sets of results would be
that people have an a priori bias for inducing additive
combinations oflinear functions, except that, under some
circumstances, stimulus and response variables are first
transformed logarithmically.

According to this account, one of the main research
questions about function learning is the question of what
factors determine whether or not people transform the
stimulus and response variables logarithmically for a par
ticular function learning task. At what stage and why does
the logarithmic transformation occur? The present exper
iments were not designed to address these issues specifi
cally, but some speculation may be in order.
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There are two possible stages at which the logarithmic
transformation could occur. One possibility is that cer
tain stimulus and response variables are transformed
logarithmically during the initialencoding stage (i.e., their
psychophysical functions are logarithmic). Despite argu
ments made by S. S. Stevens and his colleagues in favor
of power psychophysical functions (J. C. Stevens, Mack,
& S. S. Stevens, 1960; S. S. Stevens, 1956, 1957, 1961;
S. S. Stevens & Guirao, 1963), the existing empirical evi
dence does not exclude the possibility of logarithmic
psychophysical functions (Ekman, 1964; MacKay, 1963;
Shepard, 1981). However, the simple hypothesis that
some variables are always encoded logarithmically is un
likely to be true, given that line length was used in some
of the studies showing the primacy of additive combina
tions of linear functions (Brehmer, 1969), as well as in
the present study. It may be that the way a stimulus vari
able is encoded depends on the response modality. Per
haps, the psychophysical functions for line length and
orientation are linear when numerical estimates or line
lengths are used as responses, but are logarithmic when
durations are used as responses. This is not unreasonable
in light of the findings in the psychophysical scaling liter
ature suggesting that different procedures (e.g., magni
tude estimation vs. category judgment) yield different
psychophysical functions (S. S. Stevens & Galanter,
1957; S. S. Stevens & Guirao, 1962).

Alternatively, the logarithmic transformation may oc
cur at some later stage, depending on people's (uncon
scious) hypothesis about the most likely type of function
to be learned in a given situation. A multiplicative com
bination of power functions has a simplest (linear and ad
ditive) representation when its variables are transformed
logarithmically. Thus, when the required function is ex
pected to be a multiplicative combination of power func
tions, it would make sense for the learning mechanism
to first transform the variables logarithmically so as to
simplify the form of the function to be induced. In this
way, the same inductive process that has a predisposition
toward an additive combination of linear functions can
be used to deal with situations in which multiplicative
combinations of power functions are likely, as well as sit
uations in which additive combinations of linear functions
are likely.

These considerations raise the intriguing question of
why multiplicativecombinations of power functions might
be considered most likely in some situations. (This ques
tion is independent of the question of whether the logarith
mic transformations occur during early sensory encod
ing or during later inductive processing.) One reason the
subjects in the present experiments exhibited a bias toward
inducing a multiplicative combination of power functions
may be that physical laws concerning variables such as
distance and duration are often multiplicative combina
tions of power functions. 8 People may have evolved a
learning mechanism with a bias toward inducing these
functions in order to interact with the physical environ
ment efficiently. The perceptual and motor variables (es
pecially the motoric nature of the keypress responses) used



for simplicity, I will use two-dimensional functions to de
scribe it. According to the revised model, the response
to a stimulus is selected by means of either a polynomial
function

or a log-polynomial function
k

log R = f(U,V) = E Q) Ubi V c
)

);\

k

= g(S,n = E Q) (log S)b) (log T)c), (3b)
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in the present experiments might have allowed this mech
anism to come into play. Incontrast, estimating numbers
is a cognitive rather than a sensorimotor activity. Perhaps
people are biased toward inducing an additive combina
tion of linear functionsamong numerical estimates because
mental addition is practiced more frequently than is mental
multiplication.

In summary, the nature of the stimulus and response
variables involved may influence the a priori assumptions
people make about the type of function to be learned,
which in tum determine whether or not logarithmic trans
formations of the variables (either during sensory encod
ing or during later inductive processing) occur. Below,
these ideas are formalized as an extension of the adaptive
regression model of function learning (Koh & Meyer,
1991).

R = f(S,n
k

E Q) Sb) TCl,
);1

(3a)

in which L I is the sum of squared deviations, L 2 is the
curvature of the fitted function, and Ais the weight that
controls the relative contributions of the two components
(0 -s A -s 1).

The first component L" which represents the closeness
of the fitted function to the stored data, is defined as

in which S;, T;, and F; denote, respectively, the magni
tudes of the two stimulus variables and the feedback re
sponse variable of the ith stimulus-response trace; n is
the number of stored stimulus-response traces, and
f(S;,T;) and g(S;,T;) are the fitted polynomial and log
polynomial functions defined in Equations 3a and 3b.

The second loss component ~ is the curvature (i.e.,
deviation from a plane) of the fitted function defined as

rY. rX. { [f 2
(X,y)] 2 [f 2(X,y)]2 [f 2(X,Yl] 2}

L2 = J J 0 2 + 2 0 0 + 0',2 Oxoy,Yi X, x xoy r

(6)

in which Xiand Y/ represent the lower bounds of the stim-

in which S, T, and R are the magnitudes of the two stim
ulus variables and the response variable, respectively. U
and V denote log S and log T, respectively. Each Q) rep
resents a polynomial coefficient, and b, and Cj are non
negative integers representing the powers to which the
stimulus variables are raised. Equation 1, introduced in
Experiment 1, is an example of the log-polynomial
function.

The coefficients of the function are estimated as in the
original adaptive regression model on the basis of the
memory traces of the stimuli and corresponding feedback
responses. Specifically, the estimation process attempts
to minimize the following loss (badness of fit) function:

L = ALI + (1 - A) L 2 , (4)

Adaptive Regression Model
The adaptive regression model was proposed by Koh

and Meyer (1991) to account for their finding that people
learn power functions more readily than other types of
function. According to it, people learn unidimensional
stimulus-response relations through a process analogous
to statistical regression. The model assumes that each trial
with feedback leaves a memory trace of the magnitudes
of the stimulus and correct feedback response. The stim
ulus and correct-response magnitudes are first transformed
logarithmically, and then a polynomial (e.g., cubic) re
gression is performed. The logarithmic transformation of
the stimulus and response magnitudes turns power func
tions into linear functions, allowing a simple implemen
tation of the power-function bias as a constraint on the
curvature of the fitted polynomial function.

In a standard regression analysis, parameters (poly
nomial coefficients) are estimated by minimizing a sum
of squared deviations between data and the fitted regres
sion function. In the adaptive regression model, however,
the parameters are estimated so as to minimize a weighted
combination of (1) the sum of squared deviations and
(2) the curvature of the fitted function in logarithmic coor
dinates. This method of parameter estimation is analo
gous to regularization methods often used in computational
vision (Poggio & Girosi, 1990; Poggio, Torre, & Koch,
1985). The curvature component represents the degree
to which the fitted function deviates from a power func
tion. The relative contribution of the second component
decreases with practice, and the model can gradually learn
nonpower functions as well.9

The adaptive regression model, as originally formu
lated, has a few limitations. First, it applies only to
unidimensional function learning. Second, it does not al
low the possibility that, under some circumstances, linear
functions are more easily learned than power functions.
The model is therefore extended to account for multi
dimensional function learning and is modified such that
the logarithmic transformations of stimulus and response
variables are optional. Although the revised model can
be applied to functions involving more than two variables,

n

L, = E [f(S;,T;) - F;Y,
;;\

or
n

L, = E [g(S;,1i) - log F;Y,
;;\

(5a)

(5b)



ulus ranges (either untransformed or logarithmically trans
formed), and Xu and Yu represent their upper bounds;
j2(x,y)lax2, j2(x,y)laxay, and j2(x,y)lay2 denote the
second-order partial derivatives ofj(x,y), wherejrefers
to the polynomial function defined in Equations 3a and
3b (Lancaster & Salkauskas, 1986). This curvature com
ponent embodies the constraint that treats data as if an
additive combination of linear functions (when Equations
3a and 5a are used) or a multiplicative combination of
power functions (when Equations 3b and 5b are used)
characterizes them. Even if the parameter A in Equation 4
remains fixed throughout learning, the relative contribu
tion of the curvature component to the loss function de
creases as the number of stimulus-response traces in
creases, thus allowing the fitted function to gradually
approach functions other than the preferred type. How
ever, by permitting Ato change over time, a slower or
faster rate of convergence may be achieved. 10

A computer simulation was performed to determine how
well the model captures the regularities found in the
present data. In the simulation, all four variables involved
(two stimulus variables, a feedback variable, and a re
sponse variable) were transformed logarithmically-that
is, Equation 3b (up to the quadratic terms) and Equation
5b were used. The four variables were treated as normally
distributed random variables. Preliminary simulation re
sults were obtained with two free parameters, a common
standard deviation (a) for the four random variables and
A in Equation 4. The same set of parameter values was
used to simulate all three experiments. The value of the
parameter a was chosen so that the overall variability for
the simulation experiments equaled the average observed
variability. The value of the parameter Awas chosen so
as to minimize the sum of squared differences between
the simulated and actual mean responses. There was a total
of 450 mean responses (for three experiments x six half
sessions x 25 stimulus-response pairs). Best-fitting pa
rameter values were a = .164, and A = .25, yielding root
mean squared errors of .062, .054, and .073, for the three
experiments, respectively.

Even though the fits seemed reasonably good, the pre
liminary results also revealed a few differences between
the model's data and human data. First, the rate of de
crease in systematic response biases observed in human
data surpassed the rate of decrease obtainable with a fixed
value of A. In order to increase the rate of change in re
sponse bias, Afor the ith half-session was set to i*'/..o. (An
increase in A corresponds to a decrease in influence of
the curvature component.) Second, unlike the human sub
jects, the model learned the effects of angle and length
at the same rate. In order to simulate the difference in
learning rate for length and angle, a third parameter
(0: > 1) was added. (More specifically, 0: for the ith half
session was set equal to 1 + O:oli, where 0:0 > 0.) The
parameter 0: was used to set the standard deviations for
length and angle equal to ala and a*o:, respectively. In
other words, 0: was used to simultaneously decrease the
variability along the length dimension and increase the
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variability along the angle dimension. The difference in
variability along the two stimulus dimensions may be in
terpreted in terms of a difference in perceptual discrimina
bility. An alternative interpretation is that even though
the two stimulus dimensions were equally discriminable,
the subjects paid more attention to length than to angle,
and that paying more attention to a stimulus dimension
is analogous to being able to remember the values along
the dimension more accurately. According to this latter
interpretation, the parameter 0: has a similar role as the
attentional weight parameter used in Nosofsky's (1986)
context model of categorization.

The revised model with three parameters (i. e., a, '/..0,
and 0:0) was fit to the data using the same criteria as de
scribed above. The fits were considerably better than be
fore. Best-fitting parameter values for the revised model
were a = .164, '/..0 = .12, and 0:0 = 1.3, yielding root
mean squared errors of .052, .040, and .063, for the three
experiments, respectively. The close fit between the
model's data and human subjects' data can be seen in Fig
ure 7, which presents the simulation results for the three
experiments along with the corresponding human results.
Mean log responses (simulated and actual) are plotted as
a function of log stimulus lengths for the first and last
half-sessions. The closed symbols on the solid curves rep
resent the actual human data (from Figures 1, 3, and 5),
and the open symbols on the dotted curves represent the
simulated data. Overall, the revised adaptive regression
model accounts for the present results quite well. 11 This
is particularly impressive given that the same parameter
values were used to simulate all three experiments.

The simulated data reproduced all of the major trends
in the actual data. First, in Experiments 2 and 3, both
the model and human subjects exhibited systematic re
sponse biases toward a multiplicative combination of
power functions (i.e., parallel lines) during the first half
session. Second, the response biases decreased substan
tially with practice. By the last half-session, the responses
(both simulated and actual) were much closer to the re
quired responses. Third, the model learned the effects of
angle at a slower rate than it learned the effects of length.
Multiple regression analyses of the simulated data showed
that the coefficients for angle were smaller than the coeffi
cients for length throughout training, and that the angle
coefficients remained smaller than the ideal even after
three sessions of training. In other words, the difference
in variability of the two stimulus variables (or the param
eter 0:) had a lasting effect on the regression coefficients.
As pointed out earlier, this happened because measure
ment errors in independent (or stimulus) variables result
in biased regression coefficients (Hays, 1988).

In conclusion, the present research provides strong sup
port for the central idea behind the adaptive regression
model-namely, that function learning involves a com
promise between evidence from specific examples and
general a priori constraints on the form of the function
(cf., Poggio & Girosi, 1990). It also raises several im
portant questions: What factors determine which type of
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Figure 7. Simulated and actual data for the first balf of Session 1 and the second half of Session 3 of Experiments
I, 2, and 3. (Log response durations are plotted as a function of log stimulus lengths. The closed symbols on the
solid curves represent the actual human data, which are the same as those in Figures I, 3, and 5, and the open sym
bols on the dotted curves represent the simulated data. The same parameter values were used to simulate all three
experiments.)

function is learned most readily in a particular function
learning situation? Why are certain aspects of a task
learned more slowly than others? The present research
paradigm, with its emphasis on analysis of response bi
ases as a function of learning, may prove to be a power
ful tool for addressing these questions.
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NOTES

1. S. S. Stevens's (1965) exponents for length and duration are close
to 1.0, suggesting that the physical and perceptual magnitudes for these
dimensions are proportional to each other. In addition, multidimensional
scaling solutions for stimuli similar to the present ones (varying in length
and angle of orientation) have indicated that the perceptual space is
linearly related to the physical space (Nosofsky, 1986). I therefore as
sume that the psychophysical transformations for the stimulus and re
sponse dimensions are proportional.

2. Compared with a l-msec resolution timer, a 12-msec resolution
timer may seem quite inaccurate. As pointed out by Ulrich and Giray
(1989), however, the added uncertainty in timing has only a small ef
fect on the distribution of the measured response durations (i.e., no
change in the mean and an increase of a few milliseconds in the stan
dard deviation).

3. If Iines are drawn on the AppleColor monitor using only two gray
levels (i.e., black and white), they can appear jagged, depending on
the orientation. With the full use of the 256 gray levels available on
the monitor, however, lines that appear smooth at all orientations can
be drawn. The antialiasing algorithm described in Thompson (1990) was
used to create smooth lines.

4. The present experimental paradigm is a natural two-dimensional
extension of the one developed by Koh and Meyer (1991) for unidimen
sional function learning. There is, however, one major difference. The
studies of Koh and Meyer included some transfer stimulus-response pairs
about which subjects did not receive any feedback. The transfer pairs
provided valuable data concerning the generalization process, but they
were not necessary for assessing relative learnability of functions. The
reason is that systematic response biases, which occurred not only for
transfer pairs but also for practice pairs, served as a sensitive measure
of learnability. Because the main objective of the present experiments
concerned learnability of various combination rules, no transfer pairs
were included. Nonetheless, trials without feedback were included. This
was done to keep the procedure close to the one used by Koh and Meyer
(I99\). It seems reasonable to assume that the conclusions drawn from
the results of the present experiments do not depend on this manipulation.

5. The formula used to compute the point score (P) was P = max{O,
[10 - 0.033 ID. - Dcl]}, where D. and D, denote the actual and cor
rect response durations (in milliseconds), respectively.

6. Similar analyses were also performed on untransformed data. A
quadratic equation based on the raw stimulus and response variables
was formulated as follows:

M(D) = b, + b,L + b,A + b.LA + b,L' + b.A',

where M(D) denotes the mean of untransformed response durations,
and L and A denote untransformed length and angle. The above equa
tion was orthogonalized and fit to the data. The equation reduces to an
additive combination of linear functions when bs, b, and b. equal zero.
A nonzero value of b. indicates a deviation from an additive combina
tion rule, and nonzero values of b, and b. indicate deviations from linear
functions. The conclusions based on these analyses were essentially the
same as those based on the analyses of logarithmically transformed data.
Analyses of transformed data are reported here because the primacy
of multiplicative combinations of power functions can be seen most
clearly in logarithmic coordinates.

7. To compute the expected value of c. under the strategy of fitting
an additive combination of linear functions, the correct response dura
tions were first fit to a regression equation of the form D = d, + d-L
+ d,A, in which D, L, and A denote response duration, stimulus length,
and stimulus angle, and d, d

"
and d, denote regression coefficients.

Next, the fitted equation was used to compute the predicted durations.
Then, the predicted durations were logarithmically transformed and fit
to Equation 2.

8. Luce (1959) showed that when variables lie on ratio scales, power
functions (and by extension multiplicative combinations) are the only
ones that have the desirable property of invariance under admissible re-
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scalings of variables. Not all physical laws are strictly multiplicative
combinations of power functions, however. For example, the amount
of time (D) that a ball takes to roll down an inclined plane of length
L and angle A has the functional form D = k(L/sin A)", where k is a
constant. Specifically, the angle term involves a sinusoidal transforma
tion. It is possible, as suggested by Price, Meyer, and Koh (1992), that
in certain situations people initially assume a linear relationship between
logarithmically transformed duration and sinusoidally transformed an
gie. The present results, however, do not distinguish between this pos
sibility and the alternative possibility that people initially assume a linear
relationship between logarithmically transformed duration and logarith
mically transformed angle. This is because, for the range of angles used
in the present studies, the logarithmic and sinusoidal transformations
are not very different. Further experiments with a wider range of an
gles in a variety of context might prove valuable.

9. Brehmer (1974) proposed a related model of function learning,
which is based on the assumption that people have a hierarchically or
ganized set of hypotheses about function types. The difference between
Brehmer's model and the adaptive regression model is discussed in de
tail in Koh and Meyer (1991).

10. The proposed model belongs to the class of rule-based models
of inductive learning. It may be possible to formulate an exemplar-based

model (analogous to the models developed by Hintzman, 1986, Medin
& Schaffer, 1981, and Nosofsky, 1984, 1986, for category learning)
that could also account for the present results. However, such an ex
ernplar model would probably include a special mechanism for biasing
initial responses toward a certain type of function, as well as a mecha
nism for reducing the response biases over time. In other words, the
exemplar model would be able to account for the present results pre
cisely because it embodies the same computational objective as the pro
posed rule-based model, and it would be virtually impossible to distin
guish between the two models on empirical grounds (Barsalou, 1989).
The rule-based approach is chosen here because it allows a simple,
straightforward specification of a priori biases.

11. The model showed little decrease in variability over half-sessions.
Additional learning mechanisms, such as learning to produce intended
response durations accurately, may be necessary to model the observed
pattern of decrease in response variability as a function of practice.

(Manuscript received August 14, 1992;
revision accepted for publication January 4, 1993.)


