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Incorporating prior biases in network models
of conceptual rule learning

SANGSUP CHOI, MARK A. McDANIEL, and JEROME R. BUSEMEYER
Purdue University, West Lafayette, Indiana

A series of simulations is reported in which extant formal categorization models are applied
to human rule-learning data (Salatas & Bourne, 1974). These data show that there are clear dif-
ferences in the ease with which humans learn rules, with the conjunctive the easiest and the
biconditional the hardest. The original ALCOVE model (an exemplar-based model), a configural-
cue model, and two-layer backpropagation models did not fit the rule-learning data. ALCOVE
successfully fit the data, however, when prior biases observed in human rule learning were im-
plemented into weights of the network. Thus, current empirical learning models may not fare
well in situations in which learners enter the concept-formation situation with preconceived bi-
ases regarding the kinds of concepts that are possible, but such biases might nevertheless be
captured within these models. By incorporating preexperimental biases, ALCOVE may hold
promise as a comprehensive category-learning model.

Theoretical and empirical work in human concept learn-
ing has undergone considerable transition since Hull’s
(1920) seminal master’s thesis. Hull’s work and the pre-
dominant stimulus-response theories of the time led to
an initial focus on concepts that were defined in terms
of specific stimulus attributes (e.g., size, shape) related
through bidimensional logical rules such as conjunction,
disjunction, and so on (cf. Horton & Turnage, 1976). By
the mid-1970s, an impressive body of literature had
accrued on concepts of this type, with extensive ex-
perimental and theoretical analysis devoted to the ques-
tion of how humans learn these rule-based concepts
(Bourne, 1967, 1974).

Very little attention has been devoted to rule learning
in recent years, however, because of a shift in the kinds
of concepts emphasized in current empirical and theoret-
ical work. Research has been redirected to ill-defined
(fuzzy) concepts that cannot be defined absolutely by a
simple combination of certain attributes (see, e.g., Medin
& Schaffer, 1978; Rosch, 1975), to ‘“abstractionist’’ par-
adigms in which continuous stimulus dimensions not made
explicit to the learner are used to construct a continuous
range of stimuli (see, e.g., Homa, 1984; Posner & Keele,
1968), or to probabilistic categories in which the critical
stimulus values are not deterministically related to cate-
gory membership (see, e.g., Estes, Campbell, Hatsopoulus,
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& Hurwitz, 1989; Gluck & Bower, 1988a). Accompany-
ing the shift in emphasis to ill-defined and nondeterminis-
tic concepts has been the popularization of new theoretical
approaches, two of the most prominent being the exemplar
frameworks of categorization (see, e.g., Brooks, 1978;
Hintzman, 1986; Medin & Schaffer, 1978; Nosofsky,
1987, 1988) and the adaptive network models of category
learning (see, e.g., Estes et al., 1989; Gluck & Bower,
1988a; Shanks, 1991). These models have enjoyed enough
success to stimulate considerable interest among concept-
learning theorists. First, they provide formal, quantita-
tively based theoretical vehicles for accounting for and
predicting categorization behavior, allowing more detailed
and principled instantiation of models than earlier qualita-
tively based approaches allowed (cf. Homa, Sterling, &
Trepel, 1981). Second, the hope (sometimes expressed
in explicit claims; see, e.g., Nosofsky, 1991) is that these
current models that have evolved from the consideration
of less well-defined categories will serve as general ac- .
counts of human concept learning, irrespective of the na-
ture of the concept.

When one considers the broad applicability of current
concept-learning approaches, one must remember that
these models emerged specifically to account for the find-
ings and data associated with categorization behavior of
ill-defined and nondeterministic categories. There have
been few attempts to directly assess the applicability of
these models to the wealth of findings concerning human
learning of well-defined concepts (a few notable excep-
tions are the efforts to simulate the results of Shepard,
Hovland, & Jenkins, 1961, with exemplar-based and
adaptive network models; see Gluck & Bower, 1988b;
Kruschke, 1992; Nosofsky, 1984). The absence of at-
tempts in the literature to empirically validate computa-
tional models of rule learning is especially serious from
the perspective of adaptive network models, because the
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cornerstone of their resurrection (from the perceptrons
of Minsky & Papert, 1969) was the demonstration that
adaptive networks could learn logical conceptual rules
such as the exclusive disjunctive (Rumelhart, Hinton, &
Williams, 1986)—rules for which human learning is well
documented (Bourne, 1974; Neisser & Weene, 1962).

Clearly, demonstrating sufficiency is only a first step
in evaluating the fruitfulness of these models. Given the
richness of the empirical literature on human conceptual
rule learning, it is imperative that the currently promi-
nent models be examined from the standpoint of how well
their learning performance parallels that demonstrated by
human learners.

More precisely, some of these models have proved to
be well suited for learning the relevant dimensions that
provide the basis for classifying a set of stimuli (see
Kruschke, 1992). However, rule learning embodies an-
other component of concept acquisition, that of learning
the critical relations among the relevant attributes (this
component of the concept might be viewed as the abstract
part of the concept). Empirical work suggests that unique
behaviors are associated with rule learning (Bourne &
Guy, 1968), and some have warned that otherwise suc-
cessful formal models (e.g., exemplar-based models) may
not capture the processes involved in rule-learning
(Kruschke, 1992).

This paper describes our attempts to apply the extant
formal models of categorization to a prominent and well-
replicated set of rule-learning data. For pragmatic rea-
sons, we limit our report to the models that have been
the most successful (and have attracted the most interest)
in accounting for human concept learning, at least for par-
adigms other than the one examined here. These models
are the configural-cue adaptive network model (Gluck &
Bower, 1988b), a two-layer backpropagation network
model, and ALCOVE (attention learning covering map,
an exemplar model instantiated within a connectionist ar-
chitecture; see Kruschke, 1992). In the simulations that
follow, we first show that none of the models in unchanged
form fit the human data on rule-learning data well. Sec-
ond, we show that ALCOVE can fit the rule-learning data
almost perfectly (the configural-cue and two-layer back-
propagation models can fit moderately) when some of the
prior biases specified in Bourne’s (1974) inference model
are translated in a principled way into a particular weight
structure (and within which the particular links modified
during learning are constrained in the two-layer back-
propagation model). Finally, we show that allowing the
models to acquire a weight structure appropriate for a con-
junctive rule before performing the rule-learning task (to
mimic the observation that humans appear to have a con-
junctive bias upon entering the experimental setting), with-
out utilizing the inference model, does not provide an ade-
quate fit of the rule-learning data. Before reporting the
simulations, we describe the data set on which the models
were evaluated. These data represent human learning per-
formance for rules that were used extensively in the well-
defined concepts that dominated concept-learning research
from the late 1950s to the early 1970s.

Bourne’s Experiments on Logical Rule Learning

Bourne and his colleagues conducted a long series of
experiments to systematically investigate all of the ‘‘basic™’
logical rules (see Bourne, 1974, for a summary). This data-
base, which contains not only overall learning rates, but
also the detailed pattern of errors, provides a crucial bench-
mark for any theory of conceptual rule learning. Not only
are the results stable (as indicated below) and detailed, but
the basic procedures of the rule-learning task are compati-
ble with those embodied in current classification-learning
tasks. Moreover, the rules seem representative of the ab-
stract relational information incorporated in many real-
world concepts. As just one example, the inclusive dis-
junctive (either x or y or both must be present) helps ex-
press the concept of a strike in a baseball game (the pitch
must be swung at, or it must cross the plate between shoul-
ders and knees, or both). Finally, the processes under-
lying learning of well-defined concepts in the standard lab-
oratory paradigm seem to reflect the processes operating
when such concepts are embedded in richer, more natu-
ral contexts (e.g., the stock market; Kozminsky, Kintsch,
& Bourne, 1981).

In Bourne’s typical rule-learning experiment, each stim-
ulus represented one of three possible values (attributes)
for each of four dimensions (color, shape, size, and num-
ber). Two defining attributes (e.g., large, triangle) were
identified for the subjects at the outset, and the subjects
were instructed to classify the stimuli into two categories,
positive and negative, according to a rule relating the at-
tributes to the concept. On a trial, a stimulus was pre-
sented, and a subject, given as much time as was needed,
categorized it as a positive or negative example. The sub-
ject then received immediate feedback regarding the cor-
rectness of the response, and the next stimulus was pre-
sented after a S-sec intertrial interval.

Using this procedure, Salatas and Bourne (1974) inves-
tigated learning for eight rules: four primary rules and
four complementary rules. The primary rules were con-
junctive (AND), inclusive disjunctive (OR), conditional (1F),
and biconditional (1IF AND ONLY IF). The four complemen-
tary rules were obtained by negating the primary rules
(e.g., the complementary rule of the inclusive disjunc-
tive is that x and y must both be absent), and were la-
beled alternative denial, joint denial, exclusive, and the
exclusive disjunctive, respectively. The exclusive disjunc-
tive rule is often called the exclusive-or rule. Table 1
shows correct responses to different types of stimuli for
each rule, with ““+°’ standing for the positive category,
and *‘—’’ standing for the negative category. Types of
stimuli are defined by the presence or absence of the crit-
ical attributes: TT = both attributes present, TF = At-
tribute 1 present and Attribute 2 absent, FT = Attribute 1
absent and Attribute 2 present, and FF = neither attri-
bute present.

Table 1 also contains the mean number of errors be-
fore the learning criterion was reached (12 successive cor-
rect responses) for each rule (Salatas & Bourne, 1974).
The distribution of errors across four different types of
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Table 1
Errors for the Eight Bidimensional Rules by Human Subjects

Stimulus Types

Rules TT TF FT FF Mean Errors

Primary rules

Conjunctive 0.33 (+) 1.08 (—) 0.92 (—) 0.33 (—) 2.67

Disjunctive 0.42 (+) 1.25 (+) 0.67 (+) 1.00 (-) 3.33

Conditional 1.25 (+) 7.50 (-) 242 (+) 8.92 (+) 20.08

Biconditional 1.75 (+) 8.08 (-) 6.08 (—) 11.33 (+) 27.25
Complementary rules

Alternative denial 5.58 (—) 2.83 {(+) 2.67 (+) 2.67 (+) 13.75

Joint denial 4.92 (-) 6.50 (-) 3.50 (-) 6.50 (+) 21.42

Exclusive 5.17 (-) 3.25 (+) 2.58 (-) 1.67 (—) 12.67

Exclusive disjunctive  5.33 () 4.25 (+) 517 (+) 3.42 () 18.17

Note—The data are adapted from Salatas and Bourne (1974). Plus and minus signs represent the
correct categories, positive and negative, for each rule.

stimuli is also shown. The major finding to focus on at
this point is that there are clear differences in the ease
with which the rules were learned (with the conjunctive
the easiest, and the biconditional the most difficult). These
differences have proven stable: The ordering for the
primary rules is well established (Bruner, Goodnow, &
Austin, 1956; Haygood & Bourne, 1965; Hunt & Hov-
land, 1960; Neisser & Weene, 1962), and the ordering
for all eight rules was essentially replicated by Neuman
(1973).

Two additional points are noteworthy. First, a similar
ordering is obtained even in the more general concept-
learning paradigm in which subjects know neither the rel-
evant features nor the rule (Neisser & Weene, 1962). Sec-
ond, it has not proved possible to explain in a straight-
forward manner the factors that underlie the ordering of
rule difficulty. Formulations such as those based on the
number of primitive operations embedded in the rule
(Neisser & Weene, 1972), a positive category focus
strategy (see Bourne, 1974), and the informativeness of
positive (or negative) instances (see Bourne, Dominowski,
& Loftus, 1979) have not adequately captured the data.
Thus, these concept-learning data pose a nontrivial chal-
lenge for models of concept acquisition.

General Simulation Procedure

In performing the simulations, we attempted to follow
Salatas and Bourne’s (1974) experimental procedure
closely. Prominent in our considerations were the num-
ber of trials and the stimulus sequence, which were kept
the same for all the simulations reported. We used 160
trials because Salatas and Bourne used 160 for the maxi-
mum number of trials in learning a rule. The complete
presentation sequence for the stimuli was obtained by
counterbalancing the order of presentation of the four in-
put types of stimuli (TT, TF, FT, and FF) and counter-
balancing the stimuli within each of the TF, FT, and TF
input types, which yielded a sequence of 64 stimuli; this
sequence was then repeated until the number of trials
reached 160. Salatas and Bourne used a 40-stimulus se-

quence for each problem (repeating it if necessary), with
the constraints that it contain 10 stimuli from each stimu-
lus type, that the first 4 stimuli include 1 stimulus from
each stimulus type, and that the 1st stimulus be a TT stim-
ulus. Those constraints were observed in the first 40 trials
of our sequence.

The procedure for testing the models (the configural-
cue models, two-layer backpropagation models, and AL-
COVE models) was basically the same. With initial values
of parameters set by the modeler, the models performed
for 160 trials for each rule. On each trial, each model
was presented with a stimulus, then produced a classifi-
cation choice probability, and received feedback about the
correct category. The choice probabilities were derived
from the activation of output nodes. Using these choice
probabilities, we calculated the probabilities of reaching
the learning criterion at Trials 12-160 (the stopping cri-
terion was 12 consecutive correct responses in Salatas &
Bourne, 1974). These stopping probabilities were used
in concert with the choice probabilities to compute the
expected number of errors for each type of stimulus for
the eight rules. Then these 32 predicted data points (8 rules
X 4 stimulus types) were compared with 32 data points
from human subjects (see the Appendix for details). A
nonlinear optimization algorithm was used to find a set
of parameters that minimized the squared difference be-
tween the predicted data and the humans’ data.

Our first attempt to test these models was to have the
models learn the eight rules and compare the error distri-
butions produced by the models with those found for hu-
mans. For the two-layer backpropagation model, small
random weights (ranging from —0.25 to +0.25) were as-
signed to all the links as initial weights. For the configural-
cue model and the ALCOVE model, zero weights were
assigned (further details of the models can be found in
the following sections). The results were not encourag-
ing. Table 2 shows that none of the models were able to
reproduce the ordering of rule difficulty displayed by hu-
man subjects.! Moreover, the configural-cue model, the
two-layer backpropagation model, and the ALCOVE
model accounted for only 14.2%, 18.2%, and 68.6% of
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the variance in the human data, respectively. Notice that
the configural-cue model and ALCOVE predicted the
same results for the primary and complementary rules be-
cause a particular complementary rule partitions the ex-
emplars into the same subgroupings as does its respec-
tive primary rule. The only difference between the two
is that the labels applied to each subgrouping are reversed.
This difference, however, is transparent to the configural-
cue model and ALCOVE.

There are at least two explanations for why the formal
““‘off-the-shelf”” concept-learning models considered here
failed to account for the learning patterns of subjects faced
with rule-based concepts. As mentioned earlier, these as-
sociationist models may not capture the processes involved
in rule-based learning tasks. An alternative is that such
models are adequate in principle, but require modifica-
tion to reflect essential contributions of prior knowledge.
A number of researchers have noted that subjects appear
to adopt a conjunctive set at the outset of rule-oriented
concept-learning tasks (e.g., Bruner et al., 1956; Medin,
Wattenmaker, & Michalski, 1987), and Bourne (1974)
explicitly linked the pattern of rule difficulty to this con-
junctive set. It is possible that current models could pro-
vide an accurate representation of the data if appropriate
“‘prior knowledge’’ or biases were incorporated into the
models. In the remainder of this paper, we will explore
this possibility.

In incorporating prior biases, we relied mainly on
Bourne’s (1974) inference model of conceptual rule learn-
ing. Bourne’s inference model states that human subjects
come to the experiment with four prior biases. First, TT
stimuli are assigned to the positive category (Bias 1). Sec-
ond, FF stimuli are assigned to the negative category
(Bias 2). Third, TF and FT stimuli are assigned to the
category to which FF stimuli are assigned (Bias 3). Fi-
nally, TT and FF stimuli are assigned to different cate-
gories (Bias 4). In the following simulations, we try to
incorporate these biases into the configural-cue, two-layer
backpropagation, and ALCOVE models.

Table 2
Actual Human Errors and Predicted Errors Produced
by Unmodified Models

Human
Rules Data Config Backpr ALCOVE

Primary rules

Conjunctive 2.67 12.12 2.56 8.77

Disjunctive 3.33 15.69 4.52 14.47

Conditional 20.08 11.62 9.64 14.68

Biconditional 27.25 19.90 15.13 21.96
Complementary rules

Alternative denial 13.75 12.12 10.72 8.77

Joint denial 21.42 15.69 4.72 14.47

Exclusive 12.67 11.62 5.09 14.68

Exclusive disjunctive 18.17 19.90 18.18 21.96
R? 142 182 .686

Note—The scores of R? are based on all 32 data points (see Table 3;
the R? is the proportion of variance accounted for by the model}. Con-
fig = configural-cue model; Backpr = two-layer backpropagation model.
The human data are adapted from Salatas and Bourne (1974).

Configural-Cue Model

The configural-cue model is a one-layer linear network
model, with some of the input nodes representing con-
figural cues (Gluck & Bower, 1988b; Gluck, Bower, &
Hee, 1989). In the present stimulus domain, there were
nine configural input nodes that represented the unique
combination of the two critical stimulus attributes (e.g.,
flarge, medium, small] X [triangle, square, hexagon]).
In addition, there were six input nodes for the individual
attributes of stimuli. Thus the model had 15 input nodes
connected to two output nodes.

The first three input nodes coded for the dimension of
size.? The first node represented the relevant size, and
it was activated when the relevant size was present in the
stimulus. The second and third input nodes represented
irrelevant sizes; they were activated when a correspond-
ing irrelevant size was present in the stimulus. The fourth,
fifth, and sixth nodes coded for the dimension of shape.
The fourth node represented the relevant shape, and the
fifth and sixth nodes represented irrelevant shapes. Their
activation behaved in a fashion paralleling that described
for the size input nodes.

The 7th-15th nodes represented configural cues. One
of these input nodes represented stimuli that had both the
relevant size and the relevant shape (TT stimulus type).
This TT node was turned on when a TT stimulus was pre-
sented, and it was turned off otherwise. Another two in-
put nodes represented stimuli that had the relevant size
but an irrelevant shape (TF stimulus type). The next two
input nodes represented stimuli that had an irrelevant size
but the relevant shape (FT stimulus type). The last four
of these configural input nodes represented stimuli that
had both an irrelevant size and an irrelevant shape (FF
stimulus type). The two output nodes represented the posi-
tive category and the negative category, respectively.

To reflect subjects’ tendencies as they begin the exper-
iment (cf. Bourne, 1974), we preset the model toward a
conjunctive rule, and the weights were used as the initial
weights for the target problems. Because a conjunctive
tendency could be instantiated in several different ways,
only one of which might capture the bias presumably dis-
played by humans, we attempted to instantiate Bourne’s
specification of subjects’ microbiases mediating the con-
juncture set in the architecture of the configural-cue
model. This biasing was achieved by making the node rep-
resenting the TT configural cue excite the positive-
category output node and inhibit the negative-category out-
put node (Bias 1), and by making the nodes representing
the TF, FT, and FF configural cues inhibit the positive-
category output node and excite the negative-category out-
put node (Bias 2). The nodes representing individual at-
tributes were set equal to zero.? Biases 3 and 4 were not
implemented because the configural-cue model, at least
in the current one-layer architecture, could not capture
the interacting relations among different types of stim-
uli. Eleven parameters were used: nine for setting the ini-
tial weights from the input nodes to the output nodes, one
for the learning rate, and one (¢ in Equation 2) for map-



ping the activations of the output nodes onto the response
probabilities.

In this one-layer network, activation on output node &
is given by

(M

where wj is the weight from input node j to output node
k, and ai" is the activation of input node j. The probabil-
ity that the kth category response is made is given by

exp(¢ay™)/ L, exp(¢ai™), e)

where ¢ is a mapping constant. The learning rule used
to update weights is given by

out __ in
a" = ij,-kaj,

Py

€)

where Awj is weight change, \ is a learning rate, and
tx is a teaching signal, which was set to +1 for the cor-
rect category and —1 for the incorrect category.

The model was presented with the stimulus set, and it
produced output activations on the output nodes follow-
ing each stimulus presentation. The stimulus presentation
sequence comprising the 160 trials was that described in
the General Simulation Procedure. We estimated learn-
ing errors for the model as follows. For each trial, a choice
probability was computed according to Equation 2. Then,
identically to the procedure described in the General Sim-
ulation Procedure, the choice probabilities for all 160 trials
were used to compute the expected number of errors. We
used a nonlinear optimization algorithm to find a set of
parameters that minimized the squared difference between
the predicted and the humans’ data, and that satisfied the
biases specified by the modeler.

Results. Overall, the configural-cue model provided a
reasonably good fit accounting for 86.8 % of the variance
in the 32 data points obtained from human subjects and

Aij = )\aj-“(tk—zjwjka}"),
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correctly producing the relative difficulty within the set
of primary rules and within the set of complementary rules
(see Table 3). However, the model made fewer errors in
learning the conditional than in learning the exclusive dis-
junctive, which is the reverse of the humans’ data. With
regard to the relative difficulty of stimulus types within
rules, the configural-cue model again provided a gener-
ally good fit, except for the alternative denial and exclu-
sive disjunctive (see Table 4). The correlations between
the predicted and observed errors across the four stimulus
types were .71, .71, 1.00, .99, .21, .86, .68, and —.04
for the conjunctive, inclusive disjunctive, conditional, bi-
conditional, alternative denial, joint denial, exclusive, and
exclusive disjunctive, respectively. With regard to the rel-
ative difficulty of a stimulus type collapsed across rules,
the model provided an excellent fit. The correlations be-
tween the predicted and observed errors across the eight
rules were .97, .96, .93, and .95 for the TT, TF, FT, and
FF stimulus types, respectively. In sum, building prior con-
junctive bias into the configural-cue model substantially im-
proved both the variance accounted for and the accuracy
of the rule-difficulty ordering. Nonetheless, the model was
not perfectly successful; it did not completely produce the
qualitative patterns observed for human learners—that is,
the order of rule difficulty.

Configural-Cue Model
With Conjunctive Training

One might argue that Bourne’s inference model was not
necessary to simulate Salatas and Bourne’s (1974) data,
and that a more successful simulation could be obtained
by just letting the network learn the initial tendency favor-
ing the conjunctive rule, and then treating this tendency
as the bias that subjects bring to the experiment. To test
this idea, we trained the configural-cue model to produce
the same initial output activations (at the outset of learn-

Table 3
Actual Human Errors and Errors Produced by All Three Models With Bias
Human Modeler-Constructed Bias Trained Bias
Rules Data Config  Backpr ALCOVE Config Backpr ALCOVE

Primary rules

Conjunctive 2.67 2.89 4.31 0.71 2.88 1.32 4.26

Disjunctive 3.33 4.38 5.18 3.63 4.38 2.35 5.23

Conditional 20.08 17.98 18.85 19.51 17.98 38.63 13.90

Biconditional 27.25 27.11 27.73 27.37 27.11 9.85 24.54
Complementary rules

Alternative denial 13.75 13.98 13.20 14.64 13.98 17.38 17.14

Joint denial 21.42 23.21 21.38 20.91 23.21 18.03 24.36

Exclusive 12.67 11.00 13.67 12.55 10.99 44 .47 12.04

Exclusive disjunctive 18.17 18.46 17.10 18.14 18.45 5.05 19.36
R? .868 .841 .987 .868 224 943
No. of parameters 11 10 8 2% 3* 4*

Note—The scores of R? are based on all 32 data points (see Table 4; the R? is the proportion of variance
accounted for by the model). Config = configural-cue model; Backpr = two-layer backpropagation model.

The human data are adapted from Salatas and Bourne (1974).

*These numbers of parameters are not

directly comparable with those for models with modeler-constructed bias, because training plays a role simi-
lar to that which parameters (9, 8, and 4 for the configural-cue, two-layer backpropagation, and ALCOVE
models, respectively) used for the modeler-constructed bias do.
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Table 4
Error Distribution Produced by All Three Models With Modeler-Constructed Bias

Stimulus Types

Two-layer
Configural-Cue Backpropagation ALCOVE
Rules TT TF FT FF TT TF FT FF TT TF FT FF
Primary rules
Conjunctive 0.20 1.28 0.64 0.77 047 239 1.22 023 0.12 0.41 0.15 0.03
Disjunctive 0.03 226 1.53 0.57 0.51 1.65 2.40 0.62 0.08 1.16 1.42 0.97
Conditional 095 678 1.44 881 1.89 7.36 406 554 0.14 7.88 2.10 9.37
Biconditional 226 857 5.19 11.09 3.11 6.58 5.56 12.48 1.74 8.06 6.52 11.05
Complementary rules
Alternative denial 3.93 243 257 505 447 2.07 250 4.16 498 2.62 3.44 3.60
Joint denial 331 699 343 947 527 501 353 756 552 5.14 430 595
Exclusive 372 375 1.29 225 586 401 3.08 071 449 246 244 3.16
Exclusive disjunctive 4.36 5.81 4.27 4.01 6.49 3.06 457 298 5.66 3.10 4.62 4.77

Note—Refer to Table 1 for comparable human data.

ing) as those produced by the configural-cue model with
prior biases, and then used this state as the initial starting
bias.

This conjunctive-trained network had the same num-
ber of input nodes and output nodes as did the configural-
cue model with prior bias that we tested. To reflect the
initial conjunctive bias that subjects apparently bring to
the experiment, initial weights were obtained by training
the network until it produced the same output activations
on output nodes (for nine input stimuli, respectively) as
did the model with prior bias at the outset. The conjunc-
tive training played the same role as did the eight param-
eters of the previous model that were used to set the prior
biases. In order to optimize the chance of finding the best
fit that this conjunctive-trained model would support, two
extra parameters were used: one for the learning rate, and
one for the mapping constant.

Results. The conjunctive-trained configural-cue model
did not improve the fit: It accounted for 86.8% of the vari-
ance in the 32 data points for human subjects, as did the
configural-cue model with prior bias. The qualitative fit
in terms of predicting rule difficulty was unchanged as
well (see Table 3). In sum, regardless of whether the bias
was acquired by the model or set by the theorist, the model
still failed to completely produce the order of rule diffi-
culty manifested by subjects.

Two-Layer Backpropagation Model
With Prior Bias and Structural Constraints

Some theorists have argued that a one-layer network
model is too simplistic to support complex learning
(Minsky & Papert, 1969; Rumelhart & McClelland,
1986). Therefore, we next examined two-layer network
models with nine input nodes, various numbers of hid-
den nodes, and two output nodes (9:n:2 models). The nine
input nodes represented nine input stimuli (e.g., [large,
medium, small] X {triangle, square, hexagon]), respec-
tively. The two output nodes represented the positive and
the negative categories. We chose to report the follow-

ing model, which has three hidden nodes, because it was
the most successful of the backpropagation models.
As described earlier, Bourne’s (1974) inference model
specifies four initial biases that presumably mediate sub-
jects’ initial tendencies to adopt a conjunctive set. Bor-
rowing from Bourne’s ideas, we structured a network at
the outset to reflect the particular collection of tenden-
cies outlined in Bourne’s inference model. This network
model is diagrammed in Figure 1. Bias 1 of Bourne’s in-
ference model (for a description of the biases, see the Gen-
eral Simulation Procedure above) was implemented by
having the TT input node exclusively excite the first hid-
den node (representing the TT stimuli), which excited the
positive output node and inhibited the negative output
node. Bias 2 was implemented by having the FF input
nodes excite the third hidden node (representing the FF
stimuli), which excited the negative output node and in-
hibited the positive output node. Bias 3 was implemented
by having the TF and FT input nodes excite the third hid-
den node. Bias 4 was implemented by having the FF in-

OUTPUT

"Positive”

"Negative”

= 19.16

[-

FF4
INPUT

Figure 1. A two-layer network model with prior bias and struc-
tural constraints. (The numbers indicate best-fitting initial weights.)



put nodes inhibit the first hidden node. Given the short
period of time during which the subjects experience the
experimental materials, we assume that the organizational
tendencies do not change; that is, no learning occurs in
the input-hidden links. Ten parameters were used: eight
for setting the weights, one for the learning rate of the
hidden-output layer, and one for the mapping constant (¢
in Equation 5).

In this two-layer network, activation on output node &
is given by

oul E W_,kahld, (4)

where wjt is the weight of the link from hidden node j
to output node &, and a is the activation of hidden node
J. The probability that the kth category response is made
is given by

Pr = U[l+exp(—oa™)]. o)

The learning rule was the delta rule modified to include
a momentum term (Rumelhart et al., 1986), which was
used to increase learning rate without oscillation so that

Awi(t) = N (te —ag"Yag™ (1 —ag™)
+ BAwi(t—1), ()]

where Awji(?) is weight change at trial ¢, \ is a learning
rate, I is a teaching signal, which was set to +1 for the
correct category and O for the incorrect category, and 3
is a momentum term that was set to 0.9. The setting of
B to 0.9 is typical in simulations by Rumelhart et al.
(1986).

Activation on hidden node j has a range of —1 to +1
and is given by

a' = 2/[1+exp(- L wyal")] - 1, ™

where wy; is the weight of the link from input node i to
hidden node j, and a}" is the activation on input node i.

Results. The two-layer backpropagation model with
both a conjunctive bias and structural constraints provided
a reasonably good fit to the Salatas and Bourne (1974)
human rule-learning data (compare columns 1 and 4 of
Table 3). The model accounted for 84.1% of the vari-
ance in the 32 data points obtained from human subjects,
and it correctly ordered the primary rules in terms of dif-
ficulty. Only the alternative denial and the exclusive were
reversed by the model.

The structurally constrained network model also pro-
vided a reasonably good fit for individual stimulus types
(see Table 4). With regard to the relative difficulty of
stimulus types within rules, the network model provided
a good fit except for the inclusive disjunctive rule. The
correlations between the predicted and observed errors
across the four stimulus types were .93, .18, .85, .94,
.63, .77, .96, and .85 for the conjunctive, inclusive dis-
junctive, conditional, biconditional, alternative denial,
joint denial, exclusive, and exclusive disjunctive, respec-
tively. With regard to the relative difficulty of a stimulus
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type collapsed across rules, the structurally constrained
model provided an excellent fit. The correlations between
the predicted and observed errors across the eight rules
were .95, .93, .90, and .93 for the TT, TF, FT, and FF
stimulus types, respectively.

Two-Layer Backpropagation Model
With Conjunctive Training

To test the idea that conjunctive training without utiliz-
ing Bourne's inference model would be enough to simu-
late the human concept-learning data, we trained the two-
layer backpropagation model to produce the same initial
output activations as those produced by the two-layer
backpropagation model with prior bias, and then used this
state as the initial bias. The conjunctive-trained backpropa-
gation model had the same number of input nodes, hid-
den nodes, and output nodes as did the backpropagation
model with prior biases and structural constraints.

Unlike the backpropagation model with prior bias, for
the conjunctive-trained model learning occurred in the first
layer. The learning rule for updating weights from input
nodes to hidden nodes is given by

AW.’j (t)

— 2)\a:na;ud( hld Z [(tk azut oul(l_ oul)wjk]

+ BAw;(t—1). - (8)

In addition to the conjunctive training that replaced the
eight parameters of the two-layer backpropagation model
with prior bias to set prior biases, three extra parameters
were used: two for the learning rates, one for the map-
ping constant.

Results and Discussion. The conjunctive-trained back-
propagation model showed a dramatic decrease in the fit
of the human concept-learning data (see Table 3). The ex-
clusive, which was the third easiest for humans, was the
most difficult for the model. The biconditional, which was
the most difficult for humans, was the fourth easiest for
the model. The model accounted for only 22.4% of the
variance observed in the humans’ data. Thus, simple con-
junctive training of the hidden-node network was not suffi-
cient to simulate the humans’ data. This may not be sur-
prising, given that human learners have almost certainly
not acquired their presumed conjunctive bias on the ba-
sis of experience with one laboratory concept problem.
Perhaps if one could specify the experiences (training) by
which humans acquire the biases that enter into the rule-
learning task, a hidden-node network could be trained to
capture the knowledge state at which humans enter the
rule-learning task.

The fact remains that a faithful implementation of
Bourne’s (1974) inference model into a network with hid-
den nodes or into the existing configural-cue model can
produce a reasonably good fit of the humans’ rule-learning
data. Still, neither model perfectly captured the ordering
of rule difficulty evidenced by subjects.
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Next, we explore ALCOVE (Kruschke, 1992), which
combines the error-driven learning of networks with the
successful exemplar-oriented representations of previous
categorization models (see, e.g., Medin & Schaffer, 1978;
Nosofsky, 1986). With these features, ALCOVE can ac-
count for many effects of categorization: It can learn to
attend to relevant stimulus dimensions and to correlated
stimulus dimensions, it is not prone to catastrophic inter-
ference, and it shows three-stage learning of rules and
exceptions (Kruschke, 1992).

ALCOVE With Prior Bias

In the current stimulus domain, there were two input
nodes (stimulus dimension), nine hidden (exemplar)
nodes, and two output (category) nodes. The first node
represented the dimension of size; the second input node
represented the dimension of shape. The three values of
each dimension were coded as —1, 0, and +1. Relevant
attributes were coded as 0, and irrelevant attributes were
coded as —1 and +1.% The first two biases of Bourne’s
(1974) inference model were implemented in the hidden-
output layer: The TT exemplar excites the positive out-
put node, and inhibits the negative output node (Bias 1).
The four FF exemplars inhibit the positive output node
and excite the negative output node (Bias 2).

Biases 3 and 4 were not implemented, because the im-
plementation was not possible with ALCOVE’s activa-
tion function of exemplar nodes (Equation 9) that was an
important element of ALCOVE. Eight parameters were
used: two for the learning rates of attention strengths and
association weights, one for the specificity constant (c in
Equation 9), one for the mapping constant (¢ in Equa-
tion 11), and four for setting the initial weights from hid-
den nodes to output nodes.

For a given stimulus, the activation of the jth hidden
node is given by

@ = exp[~c(X, il hii—al* ")), ©®

where c is the specificity constant of the node, «; is an
attention strength for the ith dimension, Aj; is the value
of the ith dimension for the hidden node j, and a;'" is the
value of the ith dimension for the input stimulus. In this
simulation, we used a city-block metric (r = 1) with ex-
ponential similarity gradient (g = 1).

The activation of output node k is given by

ag = ¥ wika)", (10)

where wijx is the association weight of the link from hid-
den node j to output node k. The output activations are
mapped onto the response probabilities by

P = exp(¢a”)/ L, exp(pay™), (11)

where Py is the probability that the kth category is chosen,
and ¢ is a mapping constant.

As learning occurs, the association weights and atten-
tion strengths are, respectively, updated by

Ollt)

Awjx = )\w(tk—ak ahid, (12)

J

where Ay is a learning rate for the association weights, and

Aa,-
= —XQE,[Ek(tk-az“‘)w,-k]a}‘“’cIhﬁ - a", (13)

where A, is a learning rate for the attention strengths,
and # is a teaching signal at output node k. The teaching
signal is set to the maximum of +1 and a?"' for a correct
category, and to the minimum of —1 and ag"* for an in-
correct category.

On each trial, the model was presented with a stimu-
lus, and it produced a choice probability. The choice prob-
abilities for all 160 trials were then used to compute the
expected number of errors as described in the General
Simulation Procedure.

Results. ALCOVE with prior bias perfectly simulated
the relative difficulty of both the primary and the com-
plementary rules (see Table 3). ALCOVE accounted for
98.7% of the variance in the 32 data points obtained from
human subjects. With regard to the relative difficuity of
stimulus types within rules, the model provided a reason-
ably good fit (see Table 4). The correlations between the
predicted and observed errors across the four stimulus
types were .82, .59, 1.00, 1.00, .87, .76, .71, and .39
for the conjunctive, inclusive disjunctive, conditional, bi-
conditional, alternative denial, joint denial, exclusive, and
exclusive disjunctive, respectively. With regard to the rel-
ative difficulty of a stimulus type collapsed across rules,
ALCOVE provided an excellent fit. The correlations be-
tween the predicted and observed errors across the eight
rules were .98, .98, .95, and .98 for the TT, TF, FT,
and FF stimulus types, respectively.

ALCOVE With Conjunctive Training

To test the idea that conjunctive training without con-
sideration of Bourne’s (1974) inference model would be
enough to simulate the human concept-learning data, we
trained ALCOVE to produce the same initial output acti-
vations as those produced by ALCOVE with prior bias,
and then used this state as the initial bias. The conjunctive-
trained ALCOVE model had the same number of input
nodes, hidden nodes, and output nodes, and the same
value of the specificity constant to produce the same initial
bias. In addition to the conjunctive training that replaced
the four parameters used to set biases for ALCOVE with
prior bias, three extra parameters were used: two for the
learning rates, and one for the mapping constant.

Results. The conjunctive-trained ALCOVE accounted
for 94.3% of the variance in the human data. Although
the fit in terms of accounted-for variance decreased by
only 4.4% relative to the version with prior bias, the
qualitative fit to the order of rule difficulty declined. Ex-
amination of Table 3 shows that the conditional and the
biconditional now become indistinguishable in difficulty
and that the exclusive and the exclusive disjunctive also
become indistinguishable, whereas for humans, the con-



ditional is easier than the biconditional, and the exclusive
is easier than the exclusive disjunctive.

General Discussion

We examined a configural-cue model, a two-layer back-
propagation model, and an exemplar-based model (AL-
COVE) in terms of their ability to mimic human learning
of well-defined concepts based on logical rules. We tried
to test these models under conditions that closely approx-
imated the experimental paradigm under which the hu-
man data were originally collected, so that the success
or failure of the models could not be assailed in terms
of a poor match between the learning conditions for the
model and those for the human learners. The results were
quite encouraging regarding the ability of at least one
model —~ALCOVE—to incorporate biases that human
learners presumably bring to the rule-learning situation,
given sufficient input into the network’s weights from the
modeler. This finding significantly extends the range of
category-learning effects that can be accounted for by AL-
COVE. The empirical results to which ALCOVE has been
applied (and for which models of this type have been tar-
geted) derive from either (1) paradigms in which the
primary task is to ascertain the relevant stimulus dimen-
sions used for classification or (2) so-called fuzzy cate-
gories, in which there may be no easily explicated rule
that defines the category boundaries (see Kruschke, 1992).
The data considered here were from a paradigm in which
dimensional learning was purposefully circumvented (by
providing learners with the relevant attributes) to reveal
the learning process involved in abstracting the rule that
governs classification (Bourne, 1967). The success of AL-
COVE in capturing the data in the rule-learning paradigm
adds to its appeal as a possible foundation for a compre-
hensive category-learning model.

It is instructive to compare ALCOVE with the other
models, to get possible insight into why ALCOVE fits
better than the other models. One distinction is that AL-
COVE can adjust attention strengths that are used to dis-
criminate among different stimuli. (A larger attention
strength for a dimension means that the model pays more
attention to the dimension. A larger average of attention
strengths of the involved dimensions produces more dis-
criminable stimuli for the model.) We found that when
ALCOVE, with prior bias, learns the complementaryrules
(alternative denial, joint denial, exclusive, and exclusive
disjunctive), attention strengths become about three or
four times larger than they do when it learns the primary
rules (conjunctive, inclusive disjunctive, conditional, and
biconditional). In other words, to learn the complementary
rules, ALCOVE individuates among stimuli much more
than it does when it learns the primary rules. On the other
hand, the two-layer backpropagation and configural-cue
models, lacking a mechanism to change the amount of
attention during learning, cannot change the stimulus dis-
criminability. It might be the capability to adapt attention
(i.e., stimulus discriminability) that gives ALCOVE an
advantage in fitting the rule-learning data.
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Despite this apparent advantage, allowing ALCOVE to
acquire its own conjunctive bias did not appear to cap-
ture the nature of the bias that human subjects apparently
come into the rule-learning experiments with (the same
held for the configural-cue and two-layer backpropaga-
tion models). Thus, there appear to be several different
ways in which one might represent a conjunctive bias,
not all of which reflect what human learners do (see Pavel,
Gluck, & Henkle, 1988, for a similar point). More gener-
ally, merely making an adaptive network mimic superfi-
cial response tendencies observed in experimental data
(e.g., in the present work, the initial conjunctive tenden-
cies) may not necessarily constrain the network enough
to allow it to acquire representations and processes under-
lying human concept learning. This point reinforces
McCloskey’s (1991) assertion that to allow an adaptive
network to build itself is less preferable as a modeling
technique than to use such networks as a tool to formal-
ize the theorist’s explicit assumptions and intuitions about
the structures underlying the process of interest.

Interestingly, however, implementation of the success-
ful ALCOVE with bias did not require explicit inclusion
of all the prior biases hypothesized by Bourne (1974).
Bourne’s inference model assumes that subjects have bi-
ases such that TF and FT stimuli belong to the category
where FF stimuli are placed (Bias 3) and that TT and FF
belong to opposing categories (Bias 4). In ALCOVE,
Bias 3 is operating only when the perceived similarity
among the TF, FT, and FF stimuli is relatively high (i.e.,
low attention strengths). ALCOVE does not have Bias 4
at all. It seems, then, that Bourne’s theoretical account
and the ALCOVE-with-bias model might produce differ-
ent predictions regarding aspects of behavior not captured
in the mean error data (i.e., behaviors relating to the re-
lations specified in Biases 3 and 4). If so, ALCOVE with
bias could provide a modified theory for Bourne’s infer-
ence model of conceptual rule learning. The ALCOVE
model could also be used to detail the transitions from
the learner’s initial tendencies to the eventual structure
that mediates criterial performance, something that has
not been achieved so far.

More generally, the present work demonstrates that an
incremental, associative learning model can account for
learning on concept problems for which hypothesis-testing
models have been traditionally favored. Indeed, such
models are still favored, as indicated by a recent computa-
tional model of rule-based concepts that features hypothe-
sis testing (Pazzani, 1991). We may need to reexamine as-
sumptions regarding subjects’ use of hypothesis-testing
procedures in learning well-defined rules (see also Kellogg
& Bourne, 1989), because ALCOVE was successful in
recapitulating rule-learning data despite its lack of mecha-
nism for hypothesizing and testing rules (Kruschke, 1992,
p- 40). On the other hand, we suggest that the incremen-
tal learning formalized in adaptive networks is not neces-
sarily incompatible with hypothesis-testing processes. One
might view our zero-weighted associations in the back-
propagation model between input and hidden nodes as a
hypothesis regarding which associations are most relevant
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for the task presented to the model. The suggestion here
is that the particular network configuration that we have
described might be viewed as a formal approximation of
the hypotheses or inferential tendencies that subjects form
after receiving the particular instructions associated with
the experimental task. If significant aspects of the instruc-
tions and stimuli were to change (as, e.g., in Pazzani’s,
1991, paradigm), the configuration of the particular net-
work would necessarily change to reflect changes in the
hypotheses. An example of how one might formalize the
mechanism(s) that coordinate the formulation and dynamic
selection of such networks (hypotheses) can be found in
Busemeyer and Myung (1992).
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NOTES

1. We also varied the number of hidden nodes for the backpropaga-
tion model (9:3:2, 9:8:2), but could not get a satisfactory fit. The per-
formances of these models are available on request.

2. For purposes of exposition, the two relevant dimensions will be
specified as size and shape. This is an arbitrary choice; the particular
dimensions are irrelevant to the models.

3. It may seem more natural to make the relevant-attribute nodes ex-
cite the positive-category output node and inhibit the negative-category
output node, and to make the irrelevant-attribute nodes inhibit the
positive-category output node and excite the negative-category output
node. With this nonzero biasing, however, the configural-cue model
produced a worse fit, accounting for 69.7% of variance in the 32 data
points from human subjects.

4. When relevant attributes were coded as —1 (or +1), and irrele-
vant attributes as 0 and +1 (or 0 and —1), results (not reported) were
essentially the same, accounting for 97.3% of the variance of the hu-
mans’ data. Although this coding seems reasonable for size and num-
ber dimensions, it may not work well for color and shape dimensions.
(Are triangles and hexagons psychologically twice distant from each other
as they are from squares?)

APPENDIX

Here, we will describe (1) how we derived the expected num-
ber of errors for each stimulus type and the expected number
of total errors made during rule learning, and (2) how we esti-
mated parameters for the models.

Define the predicted probability of a correct response on trial
t as P.,. We obtain the probability of error on trial ¢ from

Pe,1= 1 '_‘Pc,p.

A subject always reaches Trial 12 because the criterion is 12
consecutive correct responses. The probability that the subject
will stop at Trial 12 is given by

P(Slz) = I-I;:lpc,i-

Generally, the probability that the subject will stop at trial ¢ (S,),
given that the subject has reached trial ¢ (R,), is given by
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0, <=1
PSR) = (I}, Peir 12 =<1t=159
1, t = 160.

The probability that the subject will reach trial ¢ is given by

1, I <1t =< 12.
PRy =
[I=P(Set | RCHIPR-). 13 <

A
A

< 160.

(Note that P[R,;] = 1.)
The probability that the subject will reach trial ¢ and stop on
trial ¢ is given by

P(S:NR)) = P(RIP(S:|Ry).

Now, the expected sum of errors contributed by Trial 1 is given
by

E(e,) = P.,X;% P(SiNR).

Generally, the expected sum of errors contributed by trial ¢ is
given by
E(e) = PocX, P(SiNR), 1<t < 148.

The expected total of errors for each stimulus type (TT, TF,
FT, and FF) of a rule is given by

E(estimulus (ypc) = EE((.’,'),

where the sum above extends across all trials, i, on which a par-
ticular stimulus type occurred.
The expected total of errors for a rule is given by

E(erie) = ZE(es!imulus type),

where the above sum extends across all four stimulus types.

Now we have 32 data points (4 stimulus types X 8 rules) pre-
dicted by a model, and 32 data points from human subjects. To
estimate parameters, we obtain the sum of squared prediction
errors by summing up the squared differences between the hu-
mans’ data and the data predicted by the model. Then, using
a nonlinear optimization algorithm, we find a set of parameters
that minimizes the sum of squared prediction errors.
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