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The effects of information order and
learning mode on schema abstraction
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Three experiments investigated the effects of information order and representativeness on
schema abstraction in a category learning task. A set of category members, in which the vari-
ability and frequency of member types were correlated, was divided into four study samples.
In the high-variance condition, each sample was representative of the allowable variation in the
category and the frequency with which it occurred. In the low-variance condition, the initial
study sample focused only on the most frequently occurring category members. Subsequent
samples gradually introduced exemplars, and hence additional variance, from remaining mem-
ber types. After the fourth study sample, all subjects in all conditions had seen the same cate-
gory members. Experiment 1 revealed that transfer performance was better if subjects began
with a low-variance sample and were gradually introduced to the allowable variation on sub-
sequent samples than if they consistently saw representative samples. Experiments 2 and 3
suggested that this information-order effect may interact with learning mode: Subjects induced
to be more analytic about the material performed better if their initial and subsequent samples

were representative of the category variation.

To a large extent, learning involves the incorporation
of new information into some existing knowledge struc-
ture. A learner’s first exposure to some domain may
determine the nature of that structure, which in turn
can influence how subsequent information in that
domain is processed and incorporated into what is
already known. This study investigated how abstraction
of information about ill-defined categories is affected by
varying the nature of initial category exemplars that a
learner encounters and how subsequent exemplars are
introduced.

The idea that the order in which information is
received could affect both the learning process and the
ultimate knowledge representation is not particularly
new. General learning theories, such as Rumelhart and
Norman’s (1978) model of accretion, tuning, and re-
structuring, as well as social cognition models of impres-
sion formation (N. R. Anderson, 1968; Asch, 1946),
are sensitive to the notion that initial information can
affect the manner in which the learner incorporates
subsequent knowledge into what he or she already
knows. Early concept-identification research demon-
strated that information order can affect the discovery
of simple classification rules. Bruner, Goodnow, and
Austin (1956) suggested that the learner uses some

This research was supported in part by an NSF graduate
fellowship to the first author, who is now at the Alberta Re-
search Council, and ONR Contract N00014-81-0335 and NSF
Grant IST-80-15357 to the second author. We would like to
thank two anonymous reviewers for their helpful comments and
suggestions. Reprint requests should be sent to Renée Elio, Com-
puting Department, Alberta Research Council, 11315 87th Ave-
nue, Edmonton, Alberta T6G 2C2, Canada.

20

aspects of the first instances enountered to form a set
of hypotheses. Subsequent information then serves as
confirming or infirming evidence for what the learner
initially hypothesized as being potentially relevant.
Other concept-identification studies have also shown
that the order in which category exemplars and non-
exemplars are presented affects how hypotheses are
tested, retained, or rejected (Hovland & Weiss, 1953).

These concept-identification studies clearly demon-
strated the importance of information order on decision-
making and hypothesis-testing processes. However,
many of the categories people encounter do not follow
the kind of easily specified and tested rules that charac-
terize most of the early concept-identification research.
More recently, attention has been given to how people
learn ill-defined categories—categories for which there is
no single, easily specified rule that is singularly predic-
tive of category membership. Since information about
such categories does not reduce to a single rule, investi-
gating the nature of that information and how it is
represented has been the focus of considerable experi-
mental effort, We will refer to the process by which
such categories are learned from experience with cate-
gory exemplars as schema abstraction. Schema-abstrac-
tion experiments usually employ a two-stage paradigm
consisting of a study or training phase followed by a
transfer phase. In the study phase, a subject either
learns to classify a set of training items to criterion or
simply has some fixed exposure to them and their cate-
gory membership. In the transfer phase, subjects are
asked to categorize or recognize items that include
novel instances that they have not studied. It is their
transfer performance on the novel items that is used to
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evaluate the nature of the category information acquired
during experience with the training items.

Most schema-abstraction experiments have manipu-
lated the nature of the training items in order to dif-
ferentiate alternative models. There has been little in-
vestigation of factors affecting the acquisition of the
original training items. In general, whether a schema-
abstraction theory assumes that classification of novel
items is based on similarity to stored instances (Medin
& Schaffer, 1978), a central tendency or prototype
(Franks & Bransford, 1971; Posner & Keele, 1968),
or the frequency of feature and feature combinations
during learning (Elio & Anderson, 1981; Hayes-Roth &
Hayes-Roth, 1977; Neumann, 1974; Reitman & Bower,
1973), a default prediction seems to be that every study
item encountered will have an equal impact on the
final schema and this impact will be independent of
exemplar presentation order.

The nature of the exemplar training set as a whole
(e.g., its size and the variability of included items) has
been manipulated in several studies (Barresi, Robbins, &
Shain, 1975; Homa, 1978; Homa & Vosburgh, 1976;
Posner & Keele, 1968). Posner and Keele presented
subjects with either a high-variability or a low-variability
exemplar training set and predicted that experience
with a low-variance set would facilitate abstraction of
the central tendency. Although low-variance material
was learned faster, training experience with high-variance
exemplars led to the best transfer. Using visual stimuli,
Homa and Vosburgh demonstrated that, if the to-be-
learned category is large and variable, then transfer per-
formance is facilitated by giving the learner a large
exemplar training set that reflects the amount of allow-
able variation in the category. Along similar lines, Fried
and Holyoak (Note 1) proposed that a learner induces a
representation of the distribution of category members
across a feature space, based on the sample given for
training. According to their model, a nonrepresentative
sample not only hinders learning, but also reduces the
probability that an initial misconception can be cor-
rected. This concurs with Homa and Vosburgh’s finding
that a sample representative of category variance leads
to better transfer than one that does not reflect the
variation that is encountered during a transfer test.

It seems, however, that most schema-abstraction
theories, whether they fall into the class of prototype,
strength, or exemplar models, would predict better
transfer performance given a training set that reflected
all the critical characteristics of the category and the
range of variation on specific dimensions. In other
words, it seems unreasonable to expect particularly
good classification of penguins and ostriches as birds
given a training set of robins, blue jays, and sparrows.
Those studies that have manipulated the nature of the
training material have demonstrated that schema abstrac-
tion is influenced by “what” is encountered, for ex-
ample, high-variance, representative material versus low-
variance, nonrepresentative material. In the set of experi-
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ments reported here, all subjects received the same set
of training material and, hence, encountered the same
degree of category variance. The manipulations involved
when and how they encountered that variance.

GENERAL METHOD

Our general goal was to evaluate the effects of infor-
mation order and variance on schema abstraction by
measuring transfer performance after different numbers
and different types of category exemplars had been
studied. By the end of Experiment 1, all our subjects
had been trained on the same category members, and, as
a consequence, the subjects in all conditions encountered
the same amount of category variability. What we
manipulated was how the set of category members was
divided into study samples, how these were ordered for
learning, and. therefore, how category variance was
encountered.

Our stimuli were descriptions of people belonging to
one of two clubs. A club member’s description was
created from five 4-valued dimensions. Each item could
be symbolically represented as five digits, one for each
characteristic of the person. The value of each digit
represented the value on that dimension. For example,
an item such as 12113 might translate as “works for the
government, is college educated, is single, plays chess,
likes jazz.” We constructed our categories using this
numerical item notation. Its correspondence to verbal
descriptions for our subjects will be explained in greater
detail below.

In order to test how schema abstraction might be
affected by how the category variance was encountered,
a large, variable category in which different member
types both shared many overlapping features and had
unique feature patterns was needed. We could then
manipulate exposure to category variance by exposing
subjects to all member types equally frequently or by
concentrating on a subset of these types.

One category’s items was arbitrarily defined to have
a majority of dimensions with values 1 and 2; the
alternative category’s items had a majority of dimen-
sions with values 3 and 4. To generate the first category,
we defined prototype feature patterns that differed in
which and how many dimensions had value 1 or value 2.
Type A prototype feature patterns had a single dimen-
sion in any position with value 2 (21111, 12111, 11211,
11121, and 11112). Type B prototype feature patterns
had two dimensions with value 2 in positions 1-3 (22111
and 12211). Type B’ prototype feature patterns had two
dimensions with value 2 in position 3-5 (11221 and
11122). Type C had three dimensions with value 2 in
positions 1-3 (22211); Type C' had three dimensions
with value 2 in positions 3-5 (11222).

From these prototype feature patterns, the actual
category members were generated by changing a dimen-
sion with value 1 to have either value 3 or value 4. The
set of all possible category members that could be gen-
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erated from these particular prototype pattemns would
be too large for subjects to learn. Therefore, only a
subset of possible members was used for each type,
with the constraint that values 3 and 4 each appear
approximately the same number of times for each
dimension. The members for category 1 are given in
Table 1. The members for category 2 were created by
interchanging values 1 and 4 and interchanging values 2
and 3. Thus, for the category-1 item 12213, there was a
corresponding category-2 item 43342.

Even with the constraints that different member
types have one, two, or three dimensions with value 2,
there are many more possible prototype patterns that we
did not use. We selected this particular set of prototype
feature patterns to create a framework of overlapping
feature patterns between different member types. For
example, although Type C items do not have many
overlapping features with the majority of other items in
the category, they share similar feature patterns with
Type B items.

The general aim was to give all subjects the same ex-
posure to category variance while manipulating the order
in which they encountered that variance. To accomplish
this, the set of category members was divided into four
equal study samples, all of which would be presented to
a subject during the course of the experiment. These
samples differed in which member types were included
and how many from each type were included. Different
sampling conditions were defined in terms of the initial
sample’s characteristics, since this was a subject’s first
exposure to the category. There were two primary samp-

Table 1
Stimulus Items for Experiments 1-3

Member Type
C B A B' c'

Prototypes
21111
12111
11211
11121
11112

Category Members
21113
21114
21131
21141
12311
12411
13211
11241
31211
11214
11321
11421
31112
41112
13112
14112

22211 22111

12211

11122
11221

11222

22231
22241
22213
22214

22113
22114
22311
22411
12231
12241
12213
12214

31221
41221
13221
14221
11322
11422
31122
41122

13222
14222
31222
41222

ling conditions. In the high-variance condition, the initial
sample contained items from all five member types in
frequencies proportional to their occurrence in the
whole category. In this respect, it was representative of
both the type of variation in the category and the fre-
quency with which that variation occurred. In the other
sampling condition, the initial sample was a low-variance
introduction to the category, because most of its items
were drawn from the member types with the most
members (e.g., Type A). If this were the subject’s only
experience with the category, the method would be
nearly identical to that in previous studies that manipu-
lated the variance of a single training set. However, sub-
sequent samples gradually introduced the remaining
category members. We measured transfer performance
after each sample had been studied, but the main inter-
est was final performance following the fourth sample,
at which point all subjects in all conditions had studied
all the category members. On the basis of previous
studies (Homa & Vosburgh, 1976; Posner & Keele,
1968) and of our own intuitions, we predicted that
subjects given representative samples of category vari-
ability would do less well initially but ultimately would
perform best.

EXPERIMENT 1

Method

Stimuli. The category items were descriptions of people who
belonged to one of two clubs. These descriptions were generated
from five 4-valued dimensions: job—(1) unemployed, (2) self-
employed, (3) government, (4) private firm; marital status—
(1) single, (2) married, (3) divorced, (4) widowed; education—
(1) grammar school, (2) high school, (3) college, (4) trade
school; hobby—(1) tennis, (2) chess, (3) golf, (4) bowling;
musical taste—(1) classical, (2) jazz, (3) rock, (4) bluegrass. Each
item could be symbolically described as five digits, one for each
dimension. The value of the digit represented the value on that
dimension. For example, using the order of dimensions and the
order of values within dimensions given above, the item 23411
would correspond to the description “self-employed, divorced,
trade school, tennis, classical.” Both the order of dimensions and
the order of values within a dimension were determined ran-
domly for each subject, so that this same item 23411 might be
instantiated as ‘jazz, college, golf, single, government™ for
another subject.

Design. Each category was divided into four samples, accord-
ing to the following selection rules. Each rule describes how
many items from each of the five member types (C, B, A, B, and
C") were included in a given sample. The frequency of items in
each member type for the whole category was 4-8-16-84 for
Member Types C, B, A, B, and C’, respectively. By varying the
number of items from each member type included in each
sample, we could construct samples that differed in category
variance and representativeness.

In the representative condition, each of the four samples
contained items from Types C, B, A, B’, and C' in frequencies
proportional to their occurrece in the whole category: 1-24-2-1.
Since all member types were included, these samples correspond
to high-variance training sets that reflect all the category varia-
tion. In the centered condition, the initial sample concentrated
on the member types with the most members, consisting of
0-1-8-1-0 items from Member Types C, B, A, B’, and C'. This
sample corresponds to a low-variance training set that does not



illustrate the allowable range of variation in the category. The
second and third centered samples had frequencies of 1-3-2-3-1
and 2-2-2-2-2 of Member Types C, B, A, B’, and C'. These
samples served to introduce member types and, hence, category
variation excluded from the initial sample. A variant of the
centered condition, the late-centered condition, reversed the
centered condition samples 1 and 3, so that the concentration
on Type A occurred later during learning, rather than initially.
All conditions used a representative sample as the fourth and last
sample in the series. The items in this representative sample were
fixed across subjects and across conditions.

The 10 items in each sample were selected randomly from
Club 1 according to the sampling constraints. The corresponding
10 items from Club 2 were then included, so that each sampie of
items contained 20 items altogether. By the end of the fourth
block, the four samples had introduced all 40 members of each
club.

Subjects. Forty-five male and female students from the
Carnegie-Mellon University community participated as subjects;
they received credit toward an optional psychology course
assignment and/or $3.00 per hour. There were 15 subjects in
each of three experimental conditions. The experimental session
lasted 2 h.

Apparatus and Procedure. The experiment was controlled
by a PDP-11/34 computer. The subjects were run in groups of
one to five. Each subject sat in a room that contained a CRT
screen on which items were presented. The subjects entered their
responses using the terminal keyboard.

The experiment was divided into four study-test blocks.
These four blocks corresponded to the four study samples de-
signed for each condition. In the study phase of each block, the
20 items of that block’s sample were presented 1 at a time on
the screen. Each study phase consisted of three passes through
the 20 items, although the subjects were told that they would
keep cycling through the 20 items until they had reached an
undisclosed criterion. The subjects were instructed to classify
each item as either a “Dolphin Club” or a “Koala Club” member
(these names were chosen to correspond to the keyboard keys
“d” and “k,” used as the response keys). They received immedi-
ate feedback, of the form “Right/Wrong, Dolphin/Koala Club.”
The feedback and the description remained on the screen for
10 sec. The screen was then erased, and the next item was pre-
sented. If the subjects did not respond within 10 sec of item
onset, the item’s club membership appeared automatically and
remained on the screen with the item for 10 sec. The subjects
were informed that failure to respond within 10 sec counted as
an error. After each pass through the 20 items, the subjects
were told their accuracy.

After the third study pass through the block’s study sample,
the subjects moved to a transfer test.' The transfer-item set
consisted of the current block’s 20 study items, the 20 never
studied prototypes, and 40 items (20 from Club 1 and the
corresponding 20 from Club 2) drawn randomly from remaining
club members. Transfer items appeared on the screen 1 at a
time, and the subjects were instructed to classify each item as
quickly as possible. The subjects did not receive feedback on
their classifications. After they had classified an item, they
entered a typicality rating from 1 to §, where 1 meant “not very
typical of the club [to which the subject had assigned it]” and
5 meant “very typical of the club [to which the subject had
assigned it].” The screen was erased immediately after the typi-
cality rating had been entered, and the next item was presented.

The experiment proceeded as an alternation between study
phases, during which a new sample was presented for learning,
and transfer phases. For each transfer test, study items from
previous blocks’ study samples were reinserted into the item
pool from which the transfer items for the current test could be
drawn. By the end of the experiment, all the items in both
categories had appeared once in a study phase (with feedback).
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Results

Mean accuracy and typicality ratings were computed
for each member type for each subject. Typicality scores
for a given member type were computed as the mean of
a subject’s typicality ratings on correct classifications
minus his or her typicality ratings on incorrect classifica-
tions of items within that member type. These typicality
scores ranged from —5 to +5.

Table 2 presents the mean accuracy and typicality
for the last (block 4) transfer test. The effect of samp-
ling conditions was significant [F(2,42) = 4.97, p <.02].
Newman-Keuls tests indicated that centered condition
subjects gave significantly higher typicality ratings than
did subjects in the other two conditions.> The accuracy
means presented in Table 2 followed the same pattern
as the typicality ratings, although the effect only ap-
proached significance [F(2,42) = 2.54, p = .09].

In addition to the category members, each transfer
test included the prototypes used to generate category
members, although these prototypes were never included
in any study phase. The lower portion of Table 2 gives
the prototype accuracy and typicality means as a func-
tion of sampling condition for the last transfer test.
There was a significant sampling effect on typicality rat-
ings given to the prototypes [F(2,42) = 4.49, p <.02].
Newman-Keuls tests indicated that the mean typicality
rating given in the representative condition was signifi-
cantly lower than those given in all other conditions.
The centered-condition typicality mean was significantly
larger than the late-centered-condition mean. There were
no main effects of sampling on accuracy [F(2,42)=1.65,
p =.20] and no main effects of member type.

Overall, the final transfer performance indicates an
advantage for beginning with a low-variance sample,
such as that in the centered condition, rather than a
high-variance sample that is representative of the allow-
able category variation. However, the block-by-block
transfer performance on specific member types provides
insight into how these final performance differences
evolved. Table 3 gives the mean typicality scores on
studied items for the three conditions as a function of
block and member type. For simplicity, the less frequent

Table 2
Mean Block-4 Accuracy and Typicality Ratings as a
Function of Condition in Experiment 1

Sampling Condition
Representa- Late-
tive Centered Centered Mean
Studied Items
Typicality 2.22 3.55 2.70 2.82
Accuracy .80 91 .84 .85
Prototypes
Typicality 2.68 425 3.59 3.51
Accuracy .85 .96 93 91
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Member Types B, B', C, and C' were collapsed into one
group for presentation in Table 3. There were significant
main effects of block and member type and significant
block x member type interactions (ps < .001) in all
cases. Representative subjects showed an uneven but
moderate improvement over blocks. In contrast, ac-
curacy in the centered condition rose consistently on
every block and every member type. The block-1 ac-
curacy and typicality means for the centered condition
showed some effect of the initial focus on Type A items.
With the introduction. of Member Types B-C and B'-C'
on blocks 2 and 3, there was a corresponding rise in
accuracy and typicality ratings for these items. Note
that the originally high accuracy on Type A in the
centered condition remained unaffected by the gradual
exposure to other member types. In fact, it continued to
rise on blocks 2 and 3, although the study samples for
these blocks contained very few Type A items.

Is the relatively poor showing of the representative
condition due solely to an initial “bad start”? Examining
the degree of improvement over blocks is one way to
evaluate this possibility. First, there was no advantage
of representative over centered presentation in the
degree of improvement on any specific member type.
When performance is collapsed across member types,
subjects in both the centered and the late-centered con-
ditions improved their accuracy by 13%, whereas sub-
jects in the representative condition improved by 7%.
Second, the poor performance of subjects in the late-
centered condition relative to that of subjects in the
centered condition indicates that the beneficial effects
found with a low-variance sample depend on encounter-
ing that sample initially, rather than at any time, during
learning.

Since all the items eventually appeared in study
phases, the distinction between transfer items and
study items differs from what characterizes the usual
schema-abstraction paradigm. That is, inferences based
on transfer performance usually depend on subjects’
reaching equivalent degrees of learning on training
items. However, the differential acquisition of study
information is part of the phenomenon we are investi-
gating. It was possible to separate performance on the
last transfer test into that block’s immediately preced-
ing study items and its cumrent transfer items. Under
this breakdown of data, the conditions still differed on

typicality ratings given to items that had not just ap-
peared in the preceding study sample [F(2,42) = 4.16,
p = .02}. The mean typicality ratings for these items
were 2.20, 2.56, and 3.45 in the representative, late-
centered, and centered conditions, respectively. Centered-
condition subjects were also 10% more accurate than the
representative-condition subjects on these items (89%
vs. 79%, respectively), although the overall main effect
of sampling on accuracy was not significant.

Discussion

The overall finding of Experiment 1 was that the
abstracting of category information is facilitated by
beginning with a low-variance sample rather than with
one that reflects the amount of allowable variation that
will be encountered. The fact that accuracy effects are
only marginally significant is not disturbing in light of
the substantial typicality-rating differences. Rosch and
Mervis (1975) found typicality ratings to be a sensitive
measure of how natural categories are represented. The
two categories we used were fairly discriminable; ac-
curacy performance was high even in the worst cases. We
believe that the significant differences found in typi-
cality ratings, with consistent supporting trends in ac-
curacy, indicate that the final conceptions of these cate-
gories were different for different sampling conditions.

As noted earlier, the transfer tasks were unique in
that all so-called transfer items had been studied with
feedback once during the course of the experiment. It
is important to consider whether the subjects’ per-
formance reflects differences in item memory, rather
than abstraction: Did centered-condition subjects just
learn a larger number of items to a better degree than
did representative-condition subjects? A number of
findings suggest this was not the case. If the paradigm
evaluated only differences in item memory, then dif-
ferences in prototype classification would not be ex-
pected. Second, if the high degree of interitem similarity
within low-variance training samples facilitated item
learning rather than abstraction, then it would be dif-
ficult to explain how reordering of samples (centered vs.
late-centered) resulted in different performance. The
contrast between the centered and late-centered condi-
tions, which differed only in the presentation order of
otherwise identical study samples, testifies to the impact
of when the variance is encountered. For ex-

Table 3
Mean Typicality Ratings as a Function of Member Type, Block, and Sampling Condition for Experiment 1

Noncentered Items*

Centered Items**

Block Block
Condition 1 2 3 4 1 2 3 4
Representative 1.82 2.05 1.90 2.36 1.55 1.64 1.84 1.96
Centered 1.97 3.04 3.61 3.71 2.75 2.81 3.37 3.24
Late-Centered 1.39 2.00 2.06 2.72 1.26 1.96 2.00 2.67

*Types B, B', C,and C'. **Type A.
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ample, subjects in the late-centered condition also
received a chance to learn the low-variance, frequently
occurring Type A items in the block-3 sample. If the
subjects were learning items rather than abstracting
category information, then one might expect subjects in
the late-centered condition to do better than centered-
conditon subjects on Type A items, since they encounter
them more recently (on block 3 rather than on block 1).
This did not occur.

The superiority of the centered condition over the
representative condition suggests that an initial, low-
variance sample of the most frequently occurring mem-
bers may allow the learner to get a “fix” on what will
account for most of the category members. If successful
transfer hinges on exposure to the total amount of cate-
gory variability in the training set, then we should have
found a superiority of representative sampling in the
transfer test after block 1.

There are several differences between this experi-
ment and Homa and Vosburgh’s (1976) study that may
account for the differences in results. The first is their
use of visual stimuli and our use of verbal stimuli. The
extent to which any schema-abstraction model depends
on a domain in which dimensions are continuous (usu-
ally visual) or discrete (usually verbal) is troublesome
for interexperiment comparisons. Second, our centered-
condition subjects did not see one type of category
information (e.g., Type A items) to the exclusion of
some other category information (e.g., Type C or
Type C' items). In contrast, Homa and Vosburgh did
exclude certain types of instances from their low-
variance sample. This is a more easily corrected differ-
ence between our study and theirs. Specifically, since
the items in the centered-condition sample did demon-
strate that any value could appear on any dimension, it
may not have been as “low variance,” relative to Experi-
ment 1’s category, as Homa and Vosburgh’s low-variance
materials were, relative to their whole category. In an
attempt to replicate their main finding with our ma-
terials, we ran a second experiment that included a
fourth sampling condition. In this condition, the initial
sample intensified the bias toward the most frequently
occurring feature patterns by including only prototype
patterns like those listed for Member Types B, A, and B’
in Table 1. None of the items had dimensions with
values 3 or 4 on them, and the ratio of value-1 dimen-
sions to value-2 dimensions was either 4:1 or 3:2. Since
so little of the category variability was evident in this
sample, we expected transfer to be very poor given this
initial training set.

Experiment 2 included this fourth sampling condition
along with the other three described in Experiment 1.
Since the block-by-block data from Experiment 1 sug-
gested evolving category schemas, we asked our subjects
directly what they thought governed category member-
ship. During the course of Experiment 2, we obtained
brief written protocols to provide additional insight into

how schemas were evolving differently for the various
sampling conditions.

EXPERIMENT 2

Method

The design, stimuli, and procedure for Experiment 2 were
exactly as described for Experiment 1, with the following
exceptions. A fourth sampling condition, called the extreme
condition, was included. The block-1 sample for this condition
contained 10 randomly selected prototypes constructed similarly
to those listed for Types A, B, and B’ in Table 1. This set was
increased with the items 21121, 21112, 12121, and 11212 to
obtain a large enough item pool from which to draw the block-1
sample. Note that this group of subjects did not encounter all
category members in a study phase by virtue of having studied
these prototype-like items in block 1. Blocks 24 in the extreme
condition were identical to the samples used for the centered
condition.

The second change involved collecting written protocols
from all subjects immediately after each transfer test and before
the study phase for the next block. The subjects were given a
questionnaire that asked them, “What is your current conception
of the two clubs? What determines membership in the Dolphin
Club? in the Koala Club?” Forty students, 10 in each of the
tour sampling conditions, participated in the study.

Results

Table 4 gives the overall accuracy and typicality
means as a function of sampling condition for the final
transfer test. Analyses of variance across all blocks
revealed no significant differences among groups on
typicality [F(4,45) = 1.16, p = .34] oraccuracy [F(4,45)
= 1.46, p = .22]. Additional analyses on block4 per-
formance, presented in Table 4, also revealed no signifi-
cant effects of sampling. As we expected, however,
the extreme condition did fare the worst, having the
lowest mean typicality and accuracy ratings.

The mean accuracy and typicality ratings on proto-
types as a function of condition are also given in Table 4.
None of the differences among conditions on the final
transfer test on any measure was statistically reliable.

The means in Table 4 indicate that the relative order-
ing of groups on each measure was markedly different
from that found in Experiment 1. Table 5 provides a
comparison of Experiment 1’s and Experiment 2’s

Table 4
Mean Block<4 Accuracy and Typicality Ratings as a
Function of Condition in Experiment 2

Sampling Condition
Representa- Late-
tive Centered Centered Extreme Mean
Studied [tems
Typicality 2.80 2.74 2.58 2.14 2.57
Accuracy .84 .86 .83 .76 .82
Prototypes
Typicality 3.80 3.81 3.82 3.80 3.81
Accuracy .96 96 .95 .95 96
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Table §
Mean Block-4 Typicality and Accuracy Ratings for
Representative and Centered Conditions
in Experiments 1 and 2

Sampling Condition
Representative Centered
Typicality
Experiment 1 2.22 3.55
Experiment 2 2.80 2.74
Accuracy
Experiment 1 .80 91
Experiment 2 .84 .86

results for the centered and representative conditions.
Note that both accuracy and typicality means dropped
for the centered conditions in Experiment 2 relative to
those for the conditions in Experiment 1, whereas the
representative-condition subjects gave somewhat higher
typicality ratings in Experiment 2.

The protocols revealed little information about how
subjects generally approach a task such as this and less
about the impact of our sampling conditions. Only a
few, general characteristics emerged. Almost all subjects
described very gestalt-like views of the clubs (e.g.,
“Koalas seem to be a civil rights group”; “Dolphins are
probably a singles’ jazz appreciation club™). The extreme-
condition subjects differed from the other subjects by
(1) including the only reports (four cases) of a cue-
validity strategy (e.g., “‘I counted up how many features
there were for one club or the other and used that to
classify a person”) and (2) reporting changes in category
rules and/or increasing difficuity as the experiment
progressed (e.g., “Koala Club is letting in a higher class
of people now [after block 2]”; “The reasons for classi-
fication seemed much more complex as the experiment
continued [final comment after block 4] ).

Discussion

The results of Experiment 2 were surprising, since it
was identical in all respects to Experiment 1, save for
the collection of protocols. However, the fact that we
did not find the same results, but almost a reverse
pattern, prompted us to reconsider the impact of proto-
col giving. Reber (1967, 1976) and Brooks (1978)
have made distinctions between explicit and implicit
learning and between analytic and nonanalytic modes of
learning, respectively. “Analytic” mode has come to
denote the conscious effort on the part of the subject
to generate hypotheses and extract the regularities in a
set of data. When a learner is in “nonanalytic” mode, he
or she is presumed to be attending to the exemplars
per se, encoding them rather than generating hypotheses
about them. It is possible that the protocol-giving exer-
cise may have induced our subjects to approach the task
in a more analytic manner, which both Reber and
Brooks have demonstrated influences performance in

tasks such as this. When we considered Experiments 1
and 2 as parts of a larger design, the possibility of an
interaction between information order and learning
mode was suggested: Namely, it may be better to begin
with a low-variance sample if the training material was
learned nonanalytically (Experiment 1), but with a
high-variance, representative sample if the training
material was learned nonanalytically. We designed a
third experiment to test this interpretation and ex-
amined the effects of processing mode on only the
centered and representative conditions, since these two
sampling conditions offered the most theoretically
interesting contrast. In Experiment 3, we crossed the
sampling manipulation (representative or centered)
with protocol giving (present or absent). Our interpreta-
tion of the first two experiments predicted an inter-
action between these two factors.

EXPERIMENT 3

Method

The sampling manipulation included only the representative
and centered conditions described for Experiment 1. This factor
was crossed with the rule manipulations: The subjects were
either asked to indicate which features were relevant to club
membership (rule condition) or were not (no-rule condition).
This yielded four experimental conditions: representative-rule,
representative-no rule, centered-rule, centered-no rule.

The procedure in the no-rule conditions was identical to that
described for Experiment 1. The procedure for the rule condi-
tion was slightly different from that used in Experiment 2.
Instead of the written protocol procedure used in Experiment 2,
we presented each value of each dimension on the terminal
screen and asked subjects to indicate whether they currently
considered it relevant to determining membership in (1) the
Dolphin Club, (2) the Koala Club, or (3) neither club. The sub-
jects entered their responses by hitting the terminal keyboard
keys “d,” “k,” or “n,” respectively. Sixty-four students par-
ticipated in the experiment, with 16 subjects in each of the four
experimental conditions.

Results

Table 6 presents the mean accuracy and typicality on
the final transfer test as a function of study condition
and rule condition. Although the effects are small, the
interaction of sampling and rule manipulations was
significant for both accuracy [F(1,60) = 4.63, p <.04]
and typicality [F(1,60) = 6.93, p < .02]. Performance
was better in the rule condition given representative
materials and better in the no-rule condition given
centered materials. Both the accuracy and typicality
interactions were significant for a transfer-item set that
excluded the immediately preceding study items [F(1,60)
= 6.50 and 8.15, respectively, ps < .02]. There were no
effects of either sampling or rule giving on prototype
performance and no interactions.

Table 7 presents the typicality and accuracy data as
a function of member type and block for the four
experimental conditions. The most important observa-
tion to make from these data is the different impact
the rule-giving mode had on typicality ratings over time
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Mean Block4 Accuracy and Typicality Ratings as a’lr;llll:'nl:t?on of Rule and Sampling Condition in Experiment 3
Studied Items Prototypes
Typicality Accuracy Typicality Accuracy
Sampling Condition R NR D R NR D R NR D R NR D
Representative 2.82 2.17 +.65 0.87 0.80 +.07 2.46 2.59 =13 0.94 0.94 0
Centered 2.13 2.64 -.51 0.77 0.83 -.06 241 241 0 0.94 0.94 0

Note—R = rule; NR = no rule; D = difference.

and member type for the two sampling conditions. In
the representative condition, subjects in the rule condi-
tion maintained a constant advantage over subjects in
the no-rule condition across member types and blocks.
An analysis of variance on data from just these two
conditions indicated that this advantage was significant
[F(1,30) = 4.74, p < .04] and did not interact with
block [F(3,90) < 1], member type [F(5,150) = 1.11,
p = .3], or block and member type [F(15,450) <1].
For the centered condition, the data in Table 7 indicated
that the typicality ratings of subjects in the centered-
rule condition dropped on Type A items (which had
served as their initial introduction to the category) and
rose slightly on the less frequently occurring items. The
interaction of rule condition and member type was sig-
nificant for the typicality data of subjects in the centered

Table 7
Mean Accuracy and Typicality as 2 Function of Member
Type and Block for Experiment 3

Member Type
No-Rule Condition Rule Condition
NC C NC C
Typicality
Representative
Block 1 1.53 1.91 1.95 2.18
Block 2 1.97 2.01 2.62 2.51
Block 3 1.90 2.16 2.60 2.63
Block 4 2.23 2.05 2.97 2.55
Centered
Block 1 1.56 2.08 1.63 2.13
Block 2 2.19 2.32 1.74 1.78
Block 3 2.58 2.39 1.90 1.65
Block 4 2.57 2.79 2.24 1.92
Accuracy
Representative
Block 1 .73 a1 5 79
Block 2 71 .79 .86 .84
Block 3 .76 81 85 .84
Block 4 .82 .80 .90 .83
Centered
Block 1 N .76 .69 .80
Block 2 .80 .81 .74 .74
Block 3 .82 .82 .76 .74
Block 4 .84 .85 .80 .76

Note-NC = noncentered Types B, B, C, and C'; C = centered
Type A.

condition [F(15450) = 1.79, p < .04]. Although the
apparent change in member-type typicality ratings over
time for the two rule conditions was not statistically
reliable, the trends in the Table 7 means suggest that
subjects in the centered-rule condition initially gave
about the same typicality ratings as did subjects in the
centered/no-rule condition, but seemed to learn about
the nature of the category more slowly than did their
counterparts in the no-rule condition.
Rule-condition-subjects’ block-by-block classifications
of features as relevant or irrelevant determinants of club
membership were scored for accuracy by comparing the
relevancy judgment of a particular feature with that
feature’s association with one club or another. For each
dimension, two of the values (e.g., those randomly
assigned to the numbers 1 and 2 for a subject’s particular
stimulus set) were more often associated with the
Dolphin Club and the other two values were more often
associated with the Koala Club. We tabulated the fre-
quency with which a subject correctly or incorrectly
judged a given value of a dimension as relevant for
determining membership in the club with which it was
associated. The highest attainable score, collapsed across
dimensions and blocks, was 80 (4 values x S dimensions
x 4 blocks). The mean correct relevancy judgment was
36.2 for subjects in the representative-rule condition and
37.6 for subjects in the centered-rule condition. The
mean incorrect judgement was 9.0 for subjects in the
representative-rule condition and 13.3 for subjects in
the centered-rule condition. Both groups of subjects
assigned approximately the same number of features to
the “relevant to neither club” category (27.3 and 29.1
for representative-rule and centered-rule, respectively).

Discussion

Experiment 3 provided some confirming evidence for
an interaction of information representativeness and
learning mode. These results suggest that, if a leamer is
in analytic mode, it may be best to present samples
that are representative of the allowable variation. Con-
versely, if the learner is approaching the task nonanalyti-
cally, it may be best to present a low-variance sample
and gradually to introduce variation. The small size of
the interaction for category members and the absence
of an interaction for prototypes is troublesome: The
overall level of performance of subjects in the centered/
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no-rule condition is notably lower than that found in
Experiment 1. This may be due to a subject-sampling
effect. Also, the method of protocol collection in
Experiment 3 may have lessened the degree to which
subjects were analytically considering the category
exemplars by emphasizing individual features, rather
than feature combinations.

GENERAL DISCUSSION

There are two major implications of this study. First,
if a leamner is processing category exemplars nonanalyti-
cally, performance is facilitated when the initial study
set is a low-variance sample, with subsequent samples
gradually introducing variation. Second, if a learner is
processing category exemplars analytically, performance
may be facilitated when the inital and subsequent study
samples are representative of the category distribution.
This interaction is problematic for most schema-abstrac-
tion models. Although some models can account for
either the first or the second result, there does not
seem to be a model that can account for both, that is,
for an interaction of information representativeness and
processing mode. We will consider these results in the
framework of models that can each account for one of
the main findings, but not for both.

The advantage of beginning with a low-variance
sample and gradually introducing variation can be ac-
counted for by the ACT generalization model (J. R.
Anderson, Kline, & Beasley, 1979; Elio & Anderson,
1981). The ACT theory, on which the model is based,
proposes a generalization process that is the unconscious,
automatic detection of similarities across a set of data.
This process creates a representation of those similari-
ties. For example, the Type A items 21113, 21114,
31112, and 41112 would yield generalizations such as
2111~, -1112, -111-, in which a dash indicates a
dimension that may take any value. A more detailed
application of this model to schema-abstraction tasks
can be found in J. R. Anderson et al. (1979) and Elio
and Anderson (1981). The important assumption of the
model for the present argument is that a feature pattern,
either for a specific item or for a generalization, has an
associated strength that (1) reflects the number of
items it successfully classifies and (2) determines the
probability that it will be accessed to classify a given
item. When a feature pattern successfully matches an
item (i.e., correctly classifies it), the strength of all
more general patterns consistent with the specific
pattern is also increased. Since this ensures that a gen-
eralization will accrue more strength, over time, than
any of the specific patterns from which it was formed,
eventually these more general feature patterns, rather
than patterns corresponding to specific exemplars,
will be the basis for item judgments.

A low-variance study sample, in which there is a
maximum amount of similarity among items, would be
particularly conducive to forming strong category

generalizations. Elio and Anderson (1981) showed that
generalizations are more likely to be formed when
similar instances occur close together in the study
sequence. Although the centered condition’s initial
sample may have provided a strong set of generalizations
about the category’s most frequently occurring mem-
bers, these generalizations would not match members
of less frequently occurring member types on subse-
quent study and test phases. However, contrary to our
initial intuitions that centered-condition performance
would begin to deteriorate relative to that in the repre-
sentative condition, it rose on subsequent blocks. It is
possible that although the centered condition’s second
and third samples were less likely to match previously
formed generalizations, they were not so disparate as to
prevent their refining or strengthening old generaliza-
tions. The similarity between adjacent member types
made it likely that new items in these samples would
both partially fit existing generalizations and give rise to
new generalizations. For example, a generalization like
2111- formed from Type A members would not match
a Type B member such as 22114. Since the generaliza-
tion process operates on all feature patterns—both those
corresponding to specific exemplars and those cor-
responding to generalized patterns—encountering an
item like 22114 would spawn another pattern such as
2-11- that could then classify a wider range of items.
In order for the generalization mechanism to detect
such regularities and successfully yield more general
feature patterns, there must be a minimal amount of
discrepancy between previously formed generalizations
and new item patterns.® The gradual incorporation of
variation in the centered condition would be particularly
conducive to such processes.

A different kind of model is required to account for
the relative performance of rule-condition subjects
given representative and centered samples. We assume
that subjects are in a more explicit hypothesis-testing
mode under these circumstances. It has been shown
(Levine, 1966; Trabasso & Bower, 1966) that subjects
have rather poor memory for the instances on which
their hypotheses are based. As noted earlier, the initial
rules formulated from a centered, low-variance sample
would be inappropriate for a considerable number of
category members. If subjects were not storing complete
instance-specific information, they would not have the
information necessary to revise their rules when they
began to fail. Any revisions they did make may have
been governed by their hypotheses about which dimen-
sions were relevant and which were irrelevant. In the
centered condition, these hypotheses would be biased
toward the Type A members by the initial low-variance
sample. Although subjects in the representative condi-
tion may not have been able to formulate a set of rules
that completely described the category structure after
one sample, at least they were not biased to (1) dis-
regard certain features and values as irrelevant or (2) be-
lieve certain features or value patterns were perfectly



predictive of one category or another. This may account
for their improved performance relative to that of sub-
jects in the centered condition in analytic mode.

Since we have claimed that a generalization mech-
anism adjusted inadequate generalizations in Experi-
ment 1, but that rule revision in analytic mode would be
unsuccessful, it is important to clarify the distinction
between a generalization and a rule. Both can be de-
scribed as feature patterns with various contingencies
among dimensions and values. However, we claim the dif-
ference is what and how information is processed. The
generalization process is posited to be an automatic and
unconscious detection of co-occurring feature patterns.
A rule is taken to be the product of a conscious, active
hypothesis-testing effort. The examples given for Experi-
ment 2’s protocols are good illustrations of such rules.
The information on which the generalization mechanism
works is the encoded feature patterns corresponding to
specific exemplars. The more accurately these encoded
feature patterns correspond to studied items, the more
useful generalizations abstracted from them will be,
When the subject is actively formulating rules and hy-
potheses, we assume that he or she is encoding only a
subset of stimulus attributes, presumably those attri-
butes currently considered to be relevant to category
membership, This stored exemplar information could
be regarded as somewhat impoverished. Thus, we do
not propose that a generalization mechanism does not
operate when subjects are formulating rules, but that the
stored information on which the mechanism works is
considerably different.

It is important to consider how instance-based models
that use interitem similarity to account for schema-
abstraction performance apply to the present data.
According to an instance-based model such as Medin
and Schaffer’s (1978) model, classification of items,
both old and new, is based on their similarity to stored
exemplars. Instance-based models posit that no higher
order information is abstracted about the category
during learning. Medin (Note 2) argued that one very
attractive feature of such models, relative to a prototype
approach, is the ease with which old information can be
updated when new information is acquired. It seems
this argument would predict that item order should have
no ultimate effect on performance, although the present
study indicates otherwise. Medin and Schaffer’s model
does, however, include a selective-attention mechanism
that enables the model to predict that initial items
could influence the dimensions to which a subject
attends and hence how subsequent exemplars are en-
coded. Medin and Smith (1981) demonstrated how this
component of the context model could predict transfer
performance under different instructional or strategic
sets that presumably bias learners to encode different
aspects of the stimuli. With only variations in similarity
parameters for each attribute, the context model was
able to account for the superior performance of subjects
given neutral or “look for rules plus exceptions” instruc-
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tions relative to subjects given “form an average [i.e.,
prototype] member for each category” instructions.
Thus, the context model might predict poorer perfor-
mance given an initial low-variance sample, a result the
present study did find, but only when subjects were

‘processing the material analytically.

In summary, by presenting category information bit
by bit, we were able to identify some factors affecting
the evolution of a schema, rather than simply assessing
the end product. The present study underscores the
importance of the analytic/nonanalytic leamning dis-
tinction in this sort of learning. Our view is that the
analytic/nonanalytic distinction is best regarded as
determining what information gets encoded and the
inductive processes that act upon the encoded informa-
tion. In the analytic mode, only selected aspects of
exemplar information are encoded and conscious hy-
pothesis testing takes place. In nonanalytic mode, a
more unbiased sample of information is encoded, but
only simple, automatic generalization processing occurs.
Which combination of information and processes occurs
will depend on characteristics of the problem, the to-be-
learned material, and the learner. These experiments
have shown that one important problem characteristic
is the order in which the information is acquired.
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NOTES

1. Our use of the term “transfer test™ is nonstandard, since
by the last block, all items had been seen in a study phase.

2. All Newman-Keuls tests reported here were significant at
the .05 level.

3. A more detailed presentation of the ACT model’s mech-
anisms that correspond to these processes can be found in
J. R. Anderson et al. (1979).
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