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Egocentric distance is assumed to play a central role in
visual spatial orientation, especially under reduced cue
conditions. The present article will focus on the locus of
perceived equidistance (LPED) in binocular vision, which
is constituted by the points in space that are apparently
located at a constant radial distance from the observer.
Various empirical studies have revealed a characteristic
change of the form of the LPED with increasing absolute
distance (e.g., Foley, 1966, 1970; Hardy, Rand, Rittler,
Blank, & Boeder, 1953), which has been attributed to the
influence of vergence-related binocular information (Foley,
1978, 1980). It will be shown that this interpretation is by
no means exclusively dictated by the data. An alternative
explanation considers the LPED as arising from an inde-
pendent combination of monocular information. The
precise nature of this independent combination is cap-
tured by a formal theory (Heller, 1997), which has been
shown to follow logically from a set of qualitative ax-
ioms. The purpose of the present study is to perform an
experimental test of the structural assumption lying at
the core of this axiomatic approach.

Preliminaries and Previous Work
Theories of binocular space perception seek to predict

perceived spatial relations, given the coordinates of the
respective stimuli in physical space. Nearly all of them

employ a bipolar coordinate frame, reflecting the fact
that our eyes are looking at the world from two different
vantage points. Usually, the position of the stimuli is
specified using head-centric bipolar coordinates, with
the rotation centers of the two eyes serving as the refer-
ence points. Figure 1A introduces two sets of bipolar co-
ordinates in the horizontal plane at eye level, to which I
will confine my consideration. The angles of monocular
azimuth α and β form a pair of monocular bipolar coordi-
nates that characterize the lateral deviation from straight
ahead (positive to the left, negative to the right) with re-
spect to the right eye and the left eye. Most theories of
binocular vision, however, refer to the binocular bipolar
coordinates γ and ϕ, which are related to α and β by

(1)

The trajectories of constant binocular parallax γ are known
as the Vieth-Müller circles, while the trajectories of con-
stant binocular azimuth ϕ are called the hyperbolas of
Hillebrand (see Figure 1B). Notice that the binocular
parallax γ characterizing a Vieth-Müller circle may be in-
terpreted as the vergence angle that the visual axes sub-
tend when any point on it is fixated.

The monocular bipolar coordinates α and β are com-
monly considered direct indication of the locus of the
proximal stimulus—namely, the retinal image. This inter-
pretation, however, heavily draws upon an idealization of
the relevant optics by identifying the center of rotation and
the optical node with the center of curvature of a spherical
eye. On the basis of this simplification, the Vieth-Müller
circle through the fixation point is considered the theoret-
ical horizontal horopter; that is, the locus of stimuli that
are projected onto corresponding retinal points (points that
are congruent when the two retinas are superimposed). In

γ α β ϕ α β= − = +
and

2
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Empirical studies of the locus of perceived equidistance in binocular vision have revealed a charac-
teristic change of its form, depending on absolute distance. This result is commonly taken to indicate
influence of vergence-related binocular information, a conclusion that is by no means exclusively dic-
tated by the data. Heller (1997) has suggested an alternative theoretical account that is based on the
idea of independently combining the outcome of monocular input transformations without any form
of binocular interaction. This article provides an experimental test of the structural assumption lying
at the core of the axiomatic foundation of Heller’s theory. I test the so-called Reidemeister condition
under reduced cue conditions in two settings for each of 7 subjects. The results provide strong evidence
for the validity of the Reidemeister condition and thus challenge the view that the locus of perceived
equidistance depends on vergence-related binocular information. The discussion of the factors contribut-
ing to the monocular input transformations emphasizes the role of the optical properties of the eyes.
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other words, the parallax difference exhibited by two
points can be identified with the horizontal disparity in-
duced by them. Accordingly, the hyperbola of Hillebrand
is the locus of symmetric retinal points, which deviate to
the same extent but in opposite directions from the foveas.

The idea that the LPED coincides with the Vieth-Müller
circle is fundamental to the seminal work of Luneburg
(1947) in which he related depth perception to a non-
Euclidean geometrical structure of binocular visual space.
The assumption that any two points on the Vieth-Müller
circle are perceived at the same egocentric distance is
motivated by the fact that, if idealizing the optics of the
eye as described above, these points induce zero retinal
disparity. The Luneburg theory had an enormous impact
on the research in the field, and a large number of exper-
imental investigations have been devoted to an empirical
test of its basic assumptions and consequences (see Indow,
1991, for a review). Their results, besides revealing re-
markable individual differences, provide ample evidence
that the LPED exhibits systematic deviations from the
Vieth-Müller circle. In experiments presenting real point
sources of light, the LPED shows a tendency toward
physical equidistance and may be considerably skewed
with respect to the median plane (Foley, 1966; Hardy
et al., 1953; see present Figure 4). Discrepancies also re-
sult with stereoscopic presentation. However, in this case
the LPED turns out to be more concave than the Vieth-
Müller circle (Foley, 1970). Despite the different shapes
of the LPED in these studies, the resulting parallax dif-
ferences to the Vieth-Müller circle do not remain con-
stant but tend to decrease in size with increasing dis-
tance. This means that the LPED is characterized by a
pattern of parallax differences that varies with the ab-

solute binocular parallax of the reference point. Identi-
fying binocular parallax γ with the vergence angle that
the visual axes subtend when the respective point is fix-
ated led to the conclusion that vergence is involved in
judging equidistance (Foley, 1978, 1980). It is assumed
that the parallax differences (to the Vieth-Müller circle
defined by the reference point), commonly identified
with the horizontal retinal disparities, are evaluated on
the basis of oculomotor cues related to vergence. This
account of the LPED, however, seems to conflict with the
widely accepted view that vergence is not a reliable depth
cue, at least beyond a distance of about 2 m (e.g., Howard
& Rogers, 1995; Mon-Williams & Tresilian, 1999). Below,
I develop an alternative explanation of the LPED that
works without referring to vergence-related binocular
information, but exclusively rests upon an independent
combination of monocular information.

A Theoretical Account of the LPED
Most formal treatments of the LPED, like those of

Blank (1978) and Foley (1978, 1980), are cast within the
binocular bipolar coordinate frame. The γ and ϕ coordi-
nates seem to be the natural choice for the Luneburg the-
ory (Luneburg, 1947), which assumes that perceived dis-
tance only depends on γ, and that perceived direction
only depends on ϕ. The above mentioned experimental
results concerning the LPED, however, cast doubt on the
general usefulness of these coordinates. Moreover, the
often observed skewedness of the LPED with respect to
the median plane (e.g., Foley, 1966), which is most likely
due to monocular effects (e.g., aniseikonia), cannot be
accounted for in a straightforward way within the binoc-
ular bipolar coordinate frame.

Figure 1. (A) The angular coordinates � and � denote monocular directions with respect to the
right eye (R) and the left eye (L), relative to the dashed lines parallel to the x axis (positive to the left,
negative to the right). The bipolar parallax � associated to a stimulus is the angle subtended by the
visual axes when the eyes converge on the stimulus. The bipolar latitude ϕ describes the lateral de-
viation of a stimulus from the x axis. (B) Vieth-Müller circles � � � � � � constant and hyperbo-
las of Hillebrand ϕ � (� � �)/2 � constant for different values of the respective constants.
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The subsequently suggested theory is formulated on
the basis of the monocular bipolar coordinates, where
each stimulus is characterized by a pair (α, β ) of monoc-
ular azimuth angles (see Figure 1A). By (α, β ) ~ (α ′, β ′),
I will denote that the stimuli (α, β ) and (α ′, β ′) are
judged to be equidistant. Luneburg’s assumption that the
LPED is the Vieth-Müller circle—that is, the trajectory
γ � α � β � constant—then reads

(α, β ) ~ (α ′, β ′) iff α � β � α ′ � β ′. (2)

Notice that Equation 2 identifies the perceptually relevant
magnitudes with the monocular bipolar coordinates α, β.
It formally characterizes the LPED as the zero-disparity
horopter—that is, the trajectory satisfying γ � γ ′ � (α
� β ) � (α ′� β ′) � 0. A generalization of Luneburg’s
theory is obtained if the perceptually relevant magnitudes
are conceived as functions of α and β rather than being
identified with them. Within such an approach, the ob-
served discrepancy between the LPED and the Vieth-
Müller circle is assumed to result from input transfor-
mations which operate on the monocular information.
The effects captured by those transformations may be
caused by optical properties of the eye, such as differing
magnification factors of the lenses or by the retinas de-
viating from a spherical form. The transformations may
also capture effects of the neural processing that occurs
prior to binocular combination. These ideas are expressed
more precisely by stating them in a formal way.

I assume that there exist (strictly increasing) functions
f and g, such that for all stimuli (α, β ), (α ′, β ′),

(α, β ) ~ (α ′, β ′) iff f (α) � g(β) � f (α ′) � g(β ′). (3)

The monocular input transformations f and g in Equa-
tion 3 characterize the perceptually relevant magnitudes
as functions of the position of the distal stimulus relative
to the right eye and the left eye, respectively. The above
mentioned interpretation of these transformations sug-
gests an observer-specific choice of these functions,
which is in line with the observed individual differences
concerning the LPED.

The contributions of both eyes are assumed to com-
bine in an independent way, without any form of binoc-
ular interaction. This becomes obvious if we rearrange
the terms in Equation 3 to obtain

(α, β ) ~ (α ′, β ′) iff g(β) � g(β ′) � f (α) � f (α ′). (4)

The left-hand side of the representing equation depends
only on information coming from the left eye, while the
right-hand side depends only on information coming from
the right eye. Thus, according to Equations 3 and 4, judg-
ments of equidistance result from simply comparing
both monocular contributions and do not draw upon any
binocular information. Moreover, Equation 4 implies
that the perceptually relevant monocular information

does not depend on the absolute position of the stimuli.
For any pair of stimuli with fixed coordinates β and β ′,
for example, the perceptually relevant information in the
left eye [represented by the difference g(β ) � g(β ′)]
stays the same, regardless of the respective α coordi-
nates—that is, regardless of the absolute position of the
stimuli. This is in clear contrast to Foley’s (1978, 1980)
idea that disparities are evaluated on the basis of oculo-
motor cues related to vergence. If the observer converges
on the stimuli (as will usually be the case whenever the
eyes are allowed to move freely), by changing their ab-
solute position a reevaluation of the monocular informa-
tion is predicted by Foley’s theory, even if the β coordi-
nates remain constant.

In principle there are two different ways to check the
validity of the theory formalized by Equation 3. One
strategy requires the introduction of a priori assumptions
as to the form of the functions f and g in order to derive
a concrete prediction of the LPED that may be tested
against data by a global goodness-of-fit test. The scope
of such a test, however, is clearly limited by the empiri-
cal adequacy of these additional assumptions. I thus pre-
fer to follow a different strategy that allows for testing
the theory in its general form and tries to pin down the
functions in a second step. Such a general test can be de-
veloped within a measurement–theoretic approach (cf.
Krantz, Luce, Suppes, & Tversky, 1971). Heller (1997)
provided a set of qualitative axioms that are sufficient
for proving the existence of functions f and g, satisfying
a slightly more general version of Equation 3. The key
property in this set of axioms is the so-called Reide-
meister condition, a property that is well known in the
context of conjoint measurement (Krantz et al., 1971;
Chapter 6). Given the judgments of equidistance

(α1, β1) ~ (α0, β0), (R1)

(α1, β3) ~ (α0, β2), (R2)

(α3, β3) ~ (α2, β2), (R3)

the Reidemeister condition requires that

(α3, β1) ~ (α2, β0), (R4)

holds. It is easily seen that the Reidemeister condition is
a necessary consequence of the proposed theory. By ap-
plying Equation 4 to the indifferences R1, R2, and R3,
we obtain the equation at the bottom of the page. This
sequence of equations implies equality of the leftmost
and rightmost expressions, which is equivalent to R4.

The Reidemeister condition can be interpreted as a di-
rect test of the assumption that the perceptually relevant
monocular information (induced by a pair of α coordi-
nates in the right eye and a pair of β coordinates in the
left eye) does not depend on the absolute position of the
stimuli. The indifferences R1 and R2 state that the monoc-

(R1) (R2) (R3)

g(β1) � g(β0) � f (α1) � f (α0) � g(β3) � g(β2) � f (α3) � f (α2)
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ular information induced by the pairs β0, β1 and β2, β3
both match the one induced by α0, α1. If now the pair
α2, α3 also matches β2, β3, as requested in indifference
R3, it also has to match the monocular information in-
duced by β0, β1 (indifference R4). In its illustration in
Figure 2, the Reidemeister condition translates into a
nice geometrical property. The trajectories of the monoc-
ular bipolar coordinates involved in the indifferences R1
to R4 form two quadrangles (their corners are indicated
by circles, and by triangles and squares, respectively, in
Figure 2). If three pairs of stimuli, represented by corre-
sponding corners of these two quadrangles, are each
judged to be equidistant, so are the stimuli represented
by the remaining pair of corners.

The subsequently described experiment was designed
as an experimental test of the Reidemeister condition
and implements the following rationale. If the coordi-
nates α0, α1, α2, β0, and β2 are fixed in the above indif-
ferences, the monocular azimuth α3 can be empirically
determined in two independent ways. First, the coordi-

nate β1 is chosen to satisfy the indifference R1, and then
the estimate α3

1 of α3 is determined according to indif-
ference (R4). (Note that the superscript on α3 identifies
whether it is the first or second estimate of α3.) Second,
after getting β3 from the indifference R2 an independent
estimate α3

2 of α3 emerges from indifference R3. The
Reidemeister condition then forces the two estimates to
coincide—that is, it is equivalent to the equation Δα �
α3

1 � α3
2 � 0.

METHOD

Subjects
Seven female undergraduate students, 20–39 years of age, par-

ticipated in the experiment. All subjects were naive with respect to
the present study and had normal (Subjects 1–4, 6, 7) or corrected-
to-normal (Subject 5) vision.

Apparatus
The computer-controlled experimental setup implemented the

viewing conditions of primitive visual space (Roberts & Suppes,
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Figure 2. Graphical illustration of the Reidemeister condition. The points on
the right—and thus the coordinates �0, �2, �0, and �2—are fixed in both set-
tings. In setting ��, first the points represented by squares are moved along the
line defined by �1 in order to obtain the matches R1 and R2, which provides
the coordinates �1 and �3. Then the points represented by triangles are moved
along the lines defined by these angles until the matches R4 and R3 are ob-
tained. If the Reidemeister condition holds, the resulting positions have identi-
cal � coordinates. Setting �� proceeds in an analogous way.
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1967). The experiment was carried out in darkness in a totally light-
proof room, and the subjects were prevented from observing the ap-
paratus before they had finished their last session. Red light-emitting
diodes (LEDs) with a diameter of about 2 mm were presented as
stimuli. The setup consisted of four LEDs mounted on tripods that
were placed at fixed positions, and four movable LEDs mounted on
mechanical units. Driven by step motors, which were serially con-
nected to a digital port of a PC, the LEDs of these units could be
moved within a range of 94.5 cm in the direction of the x axis and
a range of 87.6 cm in direction of the y axis, with a resolution of
about .25 mm. All LEDs were set to a constant luminous intensity of
9 
 10�6 cd. The subjects were exclusively presented with static stim-
ulus configurations—that is, the LEDs were only moved when all of
them were turned off. The head was held fixed by a rest supporting
the chin and forehead, which was individually adjusted at the begin-
ning of each session so that all stimuli were lying in the horizontal
plane at eye level. The eyes were allowed to move freely. A panel
with two response keys was set in front of the subject.

Procedure
At the beginning of each session the subject stayed in complete

darkness for 8 min to allow for dark adaptation. In the subsequent
trials, the subject was presented with a reference point in the right
half of the visual field, and a test point in the left half. Within a
yes–no paradigm, the task was to decide whether the perceived ra-
dial distance to the test point was larger than that to the reference
point. Judgments were communicated by pressing the correspond-
ing response key. The position of the test stimulus was varied within
an adaptive procedure, which is known as accelerated stochastic
approximation (Kesten, 1958), along a trajectory of constant coordi-
nate α or β, respectively. Starting with a subject-specific initial value
of 0.9–1.5 arcmin, the stepsize was decreased after each occurrence
of a response change. The procedure was stopped after six response
changes corresponding to a minimal stepsize of 0.15–0.25 arcmin.

With this experimental setup, the Reidemeister condition was
tested in two settings, which will be called Δα and Δβ. The stimu-
lus configurations were chosen to meet two constraints: They had
to fall within the range investigated in most of the previous empir-
ical studies of the LPED (e.g., Foley, 1966), and they had to be as
large as possible to allow for a strong test of the Reidemeister con-
dition. In order to properly place the limited range of the movable
LEDs according to the individual judgments, the exact coordinates
of some of the presented points had to be varied slightly over sub-
jects. For all subjects and in both settings, the point (α2, β0) had
fixed Cartesian coordinates x � 257.80 cm and y � �82.60 cm.
The x coordinate of (α0, β2) varied over subjects between 281.50 cm
and 303.86 cm, and its y coordinate between �88.20 cm and
�94.65 cm. Converting these Cartesian coordinates into monocular
bipolar coordinates, based on the individual interpupillary distance,
also fixes points (α0, β0) and (α2, β2). In addition, in setting Δα the
value α1 � 10º was chosen, while in setting Δβ the coordinate β3
was set to β3 � 8.95º for all subjects, except for Subject 5, where it
was set to β3 � 8.84º.

Each session consisted of a complete test of the Reidemeister
condition in either setting Δα or setting Δβ. Sessions were divided
into two parts. The first part in setting Δα consisted of two inter-
leaved adaptive procedures for estimating β1 and β3 via the indif-
ferences R1 and R2, respectively. In Figure 2, this corresponds to
assessing the required matches by moving the points represented
by squares along the line defined by α1. The obtained values were
then used in the second part to determine the estimates α3

1 and α3
2 of

α3 via R4 and R3, again by running two interleaved adaptive pro-
cedures. In Figure 2 this means that α3

1 was determined by moving
the point (represented by a triangle) along the line defined by β1 to
find the match in R4, and α3

2 was determined by moving the point
(again represented by a triangle) along the line defined by β3 to find
the match in R3. The difference Δβ was estimated in a similar way.

After fixing the coordinates α0, α2, β0, β2, and β3, estimates of α1
and α3 were obtained via R2 and R3, respectively. These coordi-
nates then entered into the independent determination of two esti-
mates for β1 via R1 and R4.

To keep their motivation at a high level, the subjects received
feedback on the precision of their performance after each session.
The measure of precision used was the average of the standard de-
viations of all the adaptive procedures within the session, which did
not provide any directional information.

After three training sessions, each subject took part in as many
sessions as were necessary to collect five estimates in each of the
settings. Whenever an adaptive procedure required a point that
could not be presented with the current experimental setup, all the
results of the particular session were discarded, and the session was
repeated with an appropriately modified setup as long as a total of
20 sessions was not exceeded. Due to this limit, there are only four
estimates in setting Δα for Subjects 3 and 7. Each session lasted
about 30 min.

RESULTS

Figure 3 shows the results of Subject 6 (setting Δα)
and Subject 1 (setting Δβ ) in Cartesian coordinates.
These data plots of two contrary cases are easy to read
because it was not necessary to readjust the reference
points (indicated by the symbols at the right) in the course
of the experiment. Each of the corresponding symbols at
the left represents a single-session estimate of the point
of perceived equidistance. In both settings, the symbols
�, �, �, and � denote the points involved in the indif-
ferences R1 to R4, respectively. The differences of the
α coordinates of the points represented by � and � enter
into the statistical test in setting Δα. In setting Δβ, the
test is based on the differences of the β coordinates of
the points represented by the symbols � and �. In any
case, Figure 3 also illustrates the layout of the experi-
mental setup, which covered a range of about 250 cm
along the x axis, and about 210 cm along the y axis.

The difference Δα was computed for points that were
nearly 200 cm apart from each other, at a distance of
more than 250 cm from the observer. In setting Δβ, the
respective points were located about 80 cm apart from
each other, and slightly closer to the observer. The dif-
ferences Δα and Δβ, however, do not only depend on
these particular points, but also on the remaining points
in each of the configurations. Figure 3 indicates a slight
deviation of the data points from a line of constant monoc-
ular azimuth α and β, respectively. This deviation, how-
ever, is small compared with the variance that the data
points exhibit along this line.

The results of the experiment and the performed sta-
tistical tests are summarized in Table 1. The listed means
differ from zero, the value predicted by the Reidemeis-
ter condition, in the magnitude of 0.012 to 5.76 arcmin.
In most cases, the standard deviations are in a range of a
few minutes of arc, too. Two different procedures were
employed to evaluate the statistical significance of the
means of Δα and Δβ. The p values that result from a stan-
dard parametric one-sample t test against zero with the
given degrees of freedom df are denoted by the symbol
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p*. In the present context, however, the underlying as-
sumption of a normal sampling distribution may be vio-
lated. Although the Reidemeister condition forces the
differences Δα and Δβ to vanish for all situations con-
sidered in the experiment, changing configurations over
sessions, which was necessary in some cases, will most
likely affect the sampling distributions of these differ-
ences. Thus a randomization test (cf. Edgington, 1995;
Good, 2000) was used, which does not rely on paramet-
ric assumptions. The values p† provide the (exact) prob-
abilities of obtaining a more extreme absolute t value (or
mean, respectively) than the one obtained under system-
atic permutations of the order of the two estimates from

which the session-specific differences Δα and Δβ are
computed. Statistical decisions will be based on the exact
probability p†. A liberal significance level of 0.2 is cho-
sen in order to control for Type II error. Under these con-
ditions, the statistical decisions based on p*, however, do
not differ from those based on p†, except for two cases in
which the t test turns out to be more conservative.

Two significant values occur in each of the settings Δα
and Δβ, but for none of the subjects do the data signifi-
cantly deviate from the predictions in both settings. For
Subjects 2, 6, and 7, the data unequivocally speak to the
validity of the Reidemeister condition because their re-
sults are nonsignificant in both settings. Notice that
some of the resulting p values are remarkably large (see
Subject 2, for example).

DISCUSSION

The characteristic shape of the LPED in binocular vi-
sion is commonly taken as providing evidence for the in-
fluence of vergence-related binocular information (Foley,
1978, 1980). In contrast to this approach, Heller (1997)
suggested a theoretical account based on the idea of com-
bining the monocular information without any binocular
interaction. It provides a straightforward generalization
of the classic Luneburg theory (Luneburg, 1947) and is
characterized by a set of qualitative and empirically
testable axioms within a measurement–theoretic approach.
This allows for testing the theory in its most general
form and, in particular, avoids the necessity of specify-
ing a psychophysical relationship. The present article is
devoted to an experimental test of the key axiom, the

Figure 3. Graphical illustration of the results of Subject 6 (setting ��) and Subject 1 (setting ��). The
reference lines indicate the locus of constant coordinates � and �, respectively.

Table 1
Results of All Subjects in Both Settings (�� and ��)

Subject Setting M SD t df p* p†

1 Δα �0.028 0.046 �1.332 4 .254 .313
Δβ �0.026 0.027 �2.181 4 .095 .125

2 Δα �0.008 0.057 �0.314 4 .769 .813
Δβ �0.012 0.061 �0.452 4 .675 .875

3 Δα �0.036 0.029 �2.545 3 .084 .000
Δβ �0.008 0.046 �0.376 4 .726 .563

4 Δα �0.040 0.038 �2.399 4 .074 .000
Δβ 0.008 0.028 0.616 4 .571 .563

5 Δα 0.001 0.081 0.037 4 .972 .875
Δβ �0.064 0.055 �2.616 4 .059 .063

6 Δα �0.001 0.050 �0.045 4 .966 .813
Δβ �0.005 0.070 �0.153 4 .886 .813

7 Δα 0.020 0.161 0.249 3 .819 .875
Δβ �0.004 0.058 �0.154 4 .885 .813

Note—Means and standard deviations are in degrees. *p values re-
sulting from a parametric t test. †p values resulting from a nonpara-
metric permutation test on the t values.
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Reidemeister condition, the rationale of which is illus-
trated in Figure 2. It amounts to checking whether two
points, resulting from certain successive equidistant
matches, have the same monocular direction.

The experimental results show that the discrepancies
from the predictions of the Reidemeister condition, as
well as the observed standard deviations, tend to be very
small in most cases. In view of the relatively large stimu-
lus configurations and the considerable distance between
the points that enter into the statistical tests, this would not
be expected if vergence were significantly affecting judg-
ments of equidistance. At a liberal significance level of
α � 0.2, which was chosen to limit the probability of Type
II error, statistically significant deviations only occur in 4
out of 14 cases. Notice that the expected number of sig-
nificant cases is 2.8 even if the null hypothesis holds.
Thus, I interpret the results of the present study as an em-
pirical validation of the Reidemeister condition.

From this, it may be concluded that neither relative
nor absolute vergence is an effective depth cue in this ex-
perimental situation. Foley and Richards (1972) already
have shown that results with static fixation do not differ
from those obtained with eye movements allowed unless
the parallax differences between the stimuli are larger
than 1º. Thus, it is unlikely that fixating stimuli in turn
provided effective oculomotor cues to relative depth,
since points of equal egocentric distance will fall within
this range in most cases. The ineffectiveness of absolute
vergence is an immediate consequence of the Reide-
meister condition, which constitutes a direct test of the
assumption that the perceptually relevant monocular in-
formation does not depend on the absolute position of
the stimuli. The Reidemeister condition implies that for
any pair of stimuli (α, β), (α ′, β ′), the perceptually rele-
vant information in the left eye remains constant with the
coordinates β and β ′ fixed, independent of the respec-
tive α coordinates. This means that, even though ab-
solute vergence varies with different α coordinates, there
is no indication of a reevaluation of the monocular in-
formation related to the β coordinates as suggested by
Foley’s (1978, 1980) theory. This result is in line with the
widely accepted view that vergence is not a reliable depth
cue at the distances of the presented stimuli, whereas Fo-
ley’s account of the LPED heavily draws upon a percep-
tion of vergence that is not necessarily veridical but very
sensitive. In general, the role of vergence may be different
when stimuli are within arm’s reach (see Mon-Williams
& Tresilian, 1999), and the validity of the Reidemeister
condition remains to be tested under these circumstances.
Due to the systematic discrepancy between the LPED
and the Vieth-Müller circle, disparity and vergence pro-
vide slightly divergent information. Vergence may thus
affect the equidistance judgments, although it is not nec-
essary to evaluate absolute distance for solving the ex-
perimental task. However, I expect that, even in near
space, the disparity cues will prevail over a more reliable
yet imprecise vergence cue. This point of view is cor-
roborated by Viguier, Clément, and Trotter (2001). They

found that equidistance settings in the vicinity of a ref-
erence point located 60–80 cm in front of the observer
were veridical only if disparity cues were available.

Another remarkable result is evident from Figure 3.
Although the loci of perceived equidistance vary over a
considerable range in radial direction, the variation of
considered coordinate differences Δα and Δβ remains at
a low level (see Table 1). Obviously, the performed exper-
imental tests of the Reidemeister condition are not affected
by the observed variation of the LPED. This clearly is a
benefit of the employed measurement–theoretic approach,
which is capable of eliminating from the analysis the
variance due to monocular effects. The indifferences R1
to R4 characterize the assumed independence of the eyes
in terms of qualitative empirical observations that are not
tied to a particular choice of the monocular input trans-
formations. Thus, the observed pattern of results is con-
sistent with Equation 3 not only if the functions f and g
are time invariant, but even if they vary over sessions.

The effects captured by the monocular input transfor-
mations may be caused by optical properties of the eye
or by the neural processing that occurs prior to binocu-
lar combination. It is highly plausible that some of the
systematic deviations to the Vieth-Müller circle are due
to the oversimplified eye model that forms the basis of
its derivation as a theoretical LPED. Asymmetries of the
LPED with respect to the median plane, which may in-
dicate aniseikonia (cf. Howard & Rogers, 1995), can eas-
ily be explained by appropriately choosing the functions
f and g in Equation 3. It can be shown that the LPED is
symmetric if and only if f (α) � �g(�α) � r holds with
an arbitrary constant r. Other relevant optical factors
may be the dissociation of optical node and rotation cen-
ter of the eye (cf. Gulick & Lawson, 1976), and the de-
viations of the retinas from a spherical form. Modeling
these effects will contribute to determining the form of
the functions f and g within a bottom-up approach. A
top-down strategy attempts to limit the possible forms of
these functions by applying functional equation tech-
niques. Aczél, Boros, Heller, and Ng (1999) were able to
prove that—under appropriate side conditions—only
two distinct forms of the functions f and g are possible
whenever the LPED is characterized by a constant pat-
tern of differences to the Vieth-Müller circle in terms of
binocular parallax. Both functions are either linear or of
a special exponential form. These possibilities also cover
the Luneburg theory, which holds if and only if the func-
tions f and g both are linear with identical slopes. How-
ever, if the observed pattern of parallax differences is not
constant, as the available data suggest, both forms can
be excluded from consideration.

Figure 4 illustrates how closely the empirically observed
LPED can be predicted by a specific choice of the func-
tions f and g in Equation 3. The points in the graphs on the
left show average equidistance settings to four reference
points presented straight ahead for two subjects of Foley
(1966). The solid curves represent the predictions of these
data that are derived from the functions f and g depicted
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in the graphs on the right (see Heller, 1997, for details on
the functions and the applied goodness-of-fit criterion).
Notice that a labeling of the ordinate can be omitted, be-
cause the functions are unique up to independent shifts
of their origins and the choice of a common unit. Their
shape may be interpreted with respect to the dashed ref-
erence line representing the identity function. A compar-
ison of the upper and lower pair of graphs reveals that
the curvilinear form of the functions f and g for Subject 1
is responsible for the LPED being less curved than the
Vieth-Müller circle. In both cases, the plotted standard
deviations indicate that the predictions are within exper-
imental error.

It can be concluded that the theory proposed by Heller
(1997) is not only capable of predicting the characteris-
tic features of the empirically observed LPED (see Fig-
ure 4) but also passes the explicit test of its axiomatic
foundation. Moreover, it allows for an integrated treat-
ment of perceived egocentric distance and direction,
which constitutes an important advantage over previous

approaches. Usually, binocular direction is treated sepa-
rately from egocentric radial distance (e.g., Blank, 1978;
Foley, 1965, 1991). Defining

(5)

however, yields a psychologically significant recoordi-
natization of physical space generalizing Equation 1.
From the reported results, it follows that the coordinate
Γ characterizes the LPED. The trajectories of constant
coordinates Γ and Φ are related to each other in exactly
the same way as are the Vieth-Müller circles and hyper-
bolas of Hillebrand (see Figure 1B), reflecting the rela-
tionship between the notions of corresponding and sym-
metrical retinal points. This motivates the consideration
of Φ as a characterization of the locus of constant binoc-
ular direction, a hypothesis that has not yet been con-
firmed experimentally (mainly due to the difficulties of
maintaining single vision with points of equal binocular
direction). Notice that substituting Γ, Φ for γ, ϕ at each

Γ Φ= − = +
f g

f g
( ) ( )

( ) ( )
,α β α β

and
2

Figure 4. The graphs on the left show average equidistance settings to four reference points presented
straight ahead for Subjects 1 and 10 of Foley (1966). Radial line segments indicate standard deviations. The
solid curves represent the predictions derived from the functions f and g, as illustrated by the graphs on
the right.
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of their occurrences in the Luneburg theory (Luneburg,
1947) leads to a straightforward generalization of that
model.

The experimental results presented here challenge the
view that the LPED depends on vergence-related oculo-
motor cues as proposed by Foley (1978, 1980). They
demonstrate that Foley’s account is by no means exclu-
sively dictated by the data. From the perspective advo-
cated in the present article, the supposed dependence of
the LPED on binocular information is an artifact that
arises from oversimplifying assumptions concerning the
optics of the eye and the neural processing of monocular
information. The theory of Heller (1997) provides a for-
mal framework that is able to capture realistic assump-
tions with respect to these factors by monocular input
transformations, the particular form of which remains to
be determined.
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