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In the vast majority of experiments in cognitive psy-
chology, any information about the order in which em-
pirical observations are obtained is discarded. The im-
plicit assumption of this approach is that performance on
successive trials is not correlated and, hence, any vari-
ance unaccounted for by the experimental manipulations
can be considered random noise. In this article, we study
human performance in cognitive tasks from a quite differ-
ent perspective, focusing on how performance fluctuates
over time (cf. Gilden, 2001). In this time-series approach to
human cognition, the order in which observations are ob-
tained is not neglected but, in fact, provides the data of in-
terest. Thus, we seek to study the extent to which current

behavior can be explained on the basis of past behavior (or,
alternatively, the extent to which we can predict future be-
havior). In addition, the specific manner in which serial
correlations decrease as the number of intervening trials
increases can provide information about underlying cogni-
tive mechanisms.

Several researchers in cognitive psychology have stud-
ied serial correlations in human performance (e.g., Mer-
rill & Bennett, 1956; Verplanck, Collier, & Cotton, 1952;
Weiss, Coleman, & Green, 1955). In particular, Laming
(1968) reported and modeled the serial dependency struc-
ture of response times (RTs) in two-choice experiments.
Laming (1968) found that RTs on contiguous trials were
positively correlated, so that a relatively short RT tended
to be followed by another relatively short RT. These ser-
ial correlations decayed with increasing separation be-
tween trials (i.e., lag), so that there was evidence of sig-
nificant serial correlations only up to a lag of six or seven.
The fast decay of these serial correlations is consistent
with other work (e.g., Laming, 1979a) that has found
serial correlations to be small and transient (or even
nonexistent—e.g., Busey & Townsend, 2001; Townsend,
Hu, & Kadlec, 1988).

However, the popular belief that serial correlations in
human performance are small and transient has recently
been challenged. Specifically, it has been reported that
the pattern of serial correlations in human performance
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is characterized by a particular type of serial dependence
known as 1/ f noise (see, e.g., Chen, Ding, & Kelso,
1997; Gilden, 1997, 2001; Gilden, Thornton, & Mallon,
1995; Gilden & Wilson, 1995a; Gottschalk, Bauer, &
Whybrow, 1995; Van Orden, Moreno, & Holden, 2003;
Ward, 2002). Such 1/ f noise has several defining prop-
erties that make it of considerable theoretical and prac-
tical interest. For example, 1/ f noise is found to be self-
similar in that it possesses the same temporal
characteristics regardless of the time scale on which it is
examined (this property is discussed in more detail later
on). The property of 1/ f noise that is most relevant for
the present discussion is that the associated serial corre-
lations decay very slowly as the number of intervening
trials increases. The presence of 1/ f noise therefore in-
dicates that serial correlations are persistent, in contrast
with the traditional view that they are transient. Tran-
sient serial correlations are said to be short-range de-
pendent, whereas persistent serial correlations are said
to be long-range dependent. The differences and simi-
larities between short-range dependence (SRD) and
long-range dependence (LRD, or 1/ f noise) are the focus
of this article.

Processes that show LRD have generated a tremendous
amount of interdisciplinary scientific interest. One of the
reasons for this is that LRD appears to be ubiquitous, yet
it is not easily explained. Time series that show LRD have
been observed in a wide variety of systems encompassing
many different fields, such as physics, biology, technol-
ogy, hydrology, geophysics, economics, and sociology.
Specific examples that illustrate the ubiquity of LRD in-
clude the flow of the River Nile, stock market fluctuations,
sunspot activity, neuronal spike trains, network traffic,
pressure variations in music and speech, and magnetoen-
cephalographic time series (see, e.g., Baillie, 1996; Beran,
1992, 1994; Davidsen & Schuster, 2000; Hausdorff &
Peng, 1996; Kaulakys & Meskauskas, 1998; Novikov,
Novikov, Shannahoff-Khalsa, Schwartz, & Wright, 1997;
Pilgram & Kaplan, 1998; Schroeder, 1991; Voss, 1988;
and references therein).1

LRD has also recently been reported across a range of
tasks in cognitive psychology. These tasks include lexi-
cal decision, serial and parallel visual search, mental ro-
tation, simple RT, shape and color discrimination, tem-
poral estimation, estimation of applied force, estimation
of angular rotation, and estimation of spatial intervals
(see, e.g., Chen et al., 1997; Gilden, 1997, 2001; Gilden
et al., 1995; Gilden & Wilson, 1995a; Van Orden et al.,
2003; Ward, 2002). It should be noted that the serial cor-
relations observed in these studies are not only persis-
tent (i.e., they decrease slowly) but also relatively large
in absolute magnitude, exerting a powerful effect on task
performance. For instance, Gilden (2001) demonstrated
by analysis of his experiments that the presence of LRD
accounted for a considerable proportion of variability in
performance measures such as RT. The proportion of
variability accounted for by LRD was sometimes greater
than that accounted for by most standard manipulations
in cognitive psychology (see, e.g., Gilden, 2001, p. 39).

On the basis of the ubiquity of LRD in cognitive psy-
chology and a range of other fields, and on the basis of
the considerable impact of LRD on task performance, it
has been argued (e.g., Gilden, 2001; Van Orden et al.,
2003) that the persistence of serial correlations sheds new
light on the dynamics of human cognition, since it per-
tains to components of processing that are not addressed
in current models of information processing (see, e.g.,
Gilden, 2001; Ward, 2002). Clearly, the fact that perfor-
mance on trial n is dependent on performance on, say,
trial n � 30 is puzzling and presents a novel challenge to
current models of human information processing.

As we will show later, the distinction between SRD
and LRD can be quite subtle. Therefore, it is especially
important that systematic experimental investigations be
carried out, accompanied by rigorous data analysis tech-
niques. In addition, the presence of LRD in human per-
formance needs to be explained in terms of underlying
causal mechanisms. However, to date the research on 1/ f
noise and LRD has been rather exploratory in nature, and
several areas for improvement can be identified.

One area for development is the method of identifica-
tion of 1/ f noise in psychological time series. In order to
test for the presence of LRD in psychological studies
such as choice RT experiments, the observed trial-by-
trial sequence of RTs from a participant is kept intact2

and the time series is usually subjected to analysis in the
frequency domain. As will be explained in more detail
later, such an analysis decomposes the time series into
waves of different frequencies, each wave possessing a
particular strength. The presence of LRD is often deter-
mined solely on the basis of such a frequency domain
analysis, by judging the fit of a straight line through the
average log–log power spectrum by eye. In psychologi-
cal research, no principled statistical testing of LRD
against the alternative explanation of short-term depen-
dence is carried out.

A second area for theoretical development concerns
what the presence or absence of LRD can tell us about
human cognition. To date, no general explanation of the
universality of LRD (e.g., Kaulakys & Meskauskas, 1998;
Milotti, 1995) has been widely accepted. In the psycho-
logical literature, a thorough discussion of the various
ways through which LRD can arise has not been at-
tempted. One reason for this may be that it is as yet unclear
under what specific conditions LRD occurs in psycholog-
ical experiments, as the reported findings leave open some
important questions (a review of the empirical findings
will be presented later). Furthermore, few psychologically
interpretable models that generate LRD have been pro-
posed, underscoring the fact that psychological research
for long-range processes is at this point phenomenon dri-
ven rather than theory driven (cf. Newell, 1973).

The organization of this article roughly follows the
presentation of the issues above. First, we will discuss
the defining characteristics of LRD. LRD is also known
as long memory, long-term correlations, strong depen-
dence, and infinite memory; we choose to use the pres-
ent term to avoid confusion with psychological concepts
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such as long-term memory. The discussion of defining
characteristics will provide the necessary background
knowledge for the later sections. We also point out that
LRD and nonlinearity, which are sometimes associated
in discussions of LRD, are independent concepts. In the
subsequent sections, we discuss how rigorous identifica-
tion of both SRD and LRD can be accomplished through
autoregressive (AR) fractionally integrated moving-
average (ARFIMA) time series modeling in combination
with AIC model selection. With this approach, the fit of
a model containing only short-term dependencies is com-
pared with that of the same model with an additional LRD
component. Monte Carlo simulations illustrate that,
whereas the traditional spectral slope method is severely
biased in the presence of SRD, the combination of AR-
FIMA modeling and AIC model selection is relatively
robust to SRD.

After dealing with these methodological concerns, we
report three experimental tasks designed to address sev-
eral open questions that we encountered when surveying
the psychological literature on 1/ f noise. The results
show that serial dependence is most pronounced in a
temporal estimation task (cf. Gilden, 2001), and is at
least as prominent in a simple RT task as it is in a choice
RT task, in contradiction to previous claims (cf. Gilden
et al., 1995). In all three tasks (i.e., simple RT, choice RT,
and temporal estimation), ARFIMA analyses and ac-
companying model comparison techniques show support
for the presence of LRD.

We then discuss various psychological models we claim
can account for LRD, and we support these claims by
ARFIMA analyses of the time series generated by the
models. We point to general characteristics, such as ag-
gregation of short-range processes, that may explain the
phenomenon of LRD. For the temporal estimation task,
we introduce a simple regime-switching model that is
based on the assumption that subjects use different strate-
gies throughout the experiment, implemented via discrete
jumps of a temporal criterion. We also demonstrate how
sequential sampling models (see, e.g., Laming, 1968,
1979a; Ratcliff & Rouder, 1998) could naturally incor-
porate similar mechanisms to account for long-range se-
rial dependence in choice RT tasks.

WHAT IS 1/f � NOISE?

For a full understanding of the methods and arguments
presented in this article, an elementary knowledge of
time series analysis is required. We will first introduce
some general properties of several time series models
(Figures 1–5) and then present the defining characteris-
tics of long-range processes in more detail.

Serial Dependence in Standard Time Series

Figure 1 shows prototypical time series generated by
five different statistical models. The first model (Fig-
ure 1A) is a “purely random process” (Priestley, 1981), in

which successive observations are independently drawn
from some distribution. Hence,

Xt � et, (1)

where Xt denotes the value of the observation on time t
and e denotes a randomly drawn value from a Gaussian
distribution, for instance. (For the time series from Fig-
ure 1, e is always drawn from a standard normal distri-
bution.) The random variable e is sometimes termed in-
novation in the time series literature. Thus, Xt forms a
sequence of uncorrelated random variables—that is, for
all s � t, cov{Xs, Xt} � 0; this model is said to generate
white noise.

The second time series (Figure 1B) is generated by a
random walk process. A random walk process is a run-
ning sum of independent observations—that is,

(2)

or, equivalently,

(3)

In contrast to the other time series discussed here, the ran-
dom walk process is nonstationary because its variance
increases over time. Equations 2 and 3 show that adding
(integrating) successive observations generated by the
purely random process yields a random walk process, and
taking the difference between successive observations
(i.e., differencing) in a random walk process yields a
purely random process (see, e.g., Kasdin, 1995). Hence-
forth, the term differencing will refer to the procedure of
constructing a new time series by the subtraction of the
successive observations from the old time series—that is,
by calculating the differences between Xt and Xt�1.

The third time series (Figure 1C) is generated by an
autoregressive (AR) model. In an AR model, the value of
the current observation depends partly on the value of the
previous observation,

(4)

where the magnitude of the dependence is quantified by
f1, where f1 Œ  (�1,1). For the present illustration, we let
the value of an observation on time t depend only on the
value of the observation on time t�1. This model is
called a first-order AR model [i.e., an AR(1) model]. In
general, an AR(p) process is described by

(5)

Figure 1C shows an AR(1) series with f1 � .7, indi-
cating a positive relationship between successive obser-
vations. For an RT experiment, this would indicate that
fast responses tend to follow fast responses and slow re-
sponses tend to follow slow responses. The effect of a
partial dependency (i.e., f1 � .7) instead of a complete
dependency (i.e., f1 � 1, which gives a random walk
process) is to keep the values of the observations within
certain bounds, preventing them from drifting to either
very high or very low values. The simplicity and concep-
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tual transparency of the AR(1) model arguably makes it
the most often used time series model. We will later use an
AR(1) model and additive white noise as the default time
series model against which to test more complex models.

The fourth time series (Figure 1D) is a f irst-order
moving average (MA) process denoted MA(1), where

(6)

In an MA model of order 1, performance at time t de-
pends on a combination (i.e., weighted average) of the
current random innovation et and the previous random
innovation et�1. The value of previous innovations e that
fall outside of this window comprising the current inno-
vation, and the innovation immediately preceding it are

completely unrelated to Xt. In general, an MA(q) process
is described by

(7)

Consequently, for an MA model of order q, the impact of
et will be completely absent (i.e., cut off ) after q trials.
Traditionally, MA processes have been used as filters to
remove irregularities and thus to smooth an observed
time series (see, e.g., Kettunen & Keltikangas-Järvinen,
2001; Priestley, 1981).

Both the AR model and the MA model consist of linear
combinations of uncorrelated variables et (i.e., the purely
random process). The difference between the two models
is that an AR process absorbs the e into Xt , meaning that a

Xt t t q t q= + + +- -e q e q e1 1 ... .

Xt t t= + -e q e1 1.

A. white noise time series B. random walk time series

C. AR1 (   = .7) time series D. MA1(   = .7) time series

E. 1/f time series
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Figure 1. Prototypical time series generated by five models: (A) a white noise process, (B) a ran-
dom walk process, (C) AR(1) with �1 � .7, (D) MA(1) with �1 � .7, and (E) 1/f noise. See text for
details.
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value for e at time t will exert an influence on the values
of all future events Xt�k , whereas an MA process expresses
Xt as a finite combination of previous es, such that the ran-
dom innovation on time t, et , will have no effect on Xt�k
when k exceeds the order q of the MA model.

Note that a time series need not consist of the obser-
vations from only a single type of process. A pth-order
AR process and a qth-order MA process can be com-
bined in what is called an ARMA( p, q) process:

(8)

The f irst two terms of Equation 8 correspond to the
AR( p) process identified in Equation 5, whereas the last
two terms correspond to the MA(q) process of Equa-
tion 7 (the middle term et in Equation 8 plays a role in
both equations). The ARMA process is the combination
of an AR and an MA process, and thus inherits proper-
ties of both the AR and the MA components.

As will be explained, the time series generated by the
AR and MA processes discussed above are short-range
dependent. In contrast, the last time series shown in Fig-
ure 1 (panel E) is generated by an LRD process. It is this
type of process that is the focus of this article. We will
postpone a more detailed quantitative treatment of the
identifying features of LRD until after discussing Fig-
ures 2–5 (a mathematical description of a statistical model
that generates LRD can be found in the Appendix). Some
qualitative features of time series with LRD are discussed
by Beran (1994, p. 41) and Samorodnitsky and Taqqu
(1993). First, note that the series in Figure 1E shows rela-
tively long periods of low values and of high values. Man-
delbrot coined this the Joseph effect in reference to the
biblical character Joseph, who was confronted with a long
period of plenty followed by a long period of famine (see,
e.g., Mandelbrot, 1977; Mandelbrot & Van Ness, 1968).
Second, the isolated periods of high values versus those
of low values might give the impression that the series is
nonstationary (i.e., that its mean and variance change
over time), displaying local trends or cyclical behavior.
Nonetheless, the overall series looks stationary.

The five time series from Figure 1 differ in the nature
of their serial dependencies. The serial structure of time
series can be analyzed by correlating the series with a
copy of itself shifted over by k observations (cf. Priestley,
1981, pp. 106–110). An autocorrelation function (ACF)
can then be constructed by plotting the correlation coef-
ficient between observations at time t and time t�k for
increasing values of k. Formally, the ACF is defined as

where C(k) denotes the value of the autocorrelation at
lag k, E denotes expected value, Xt is the value of time

series X at time t, and m denotes the arithmetic mean of
time series X. Figures 2 and 3 both show the resulting
ACFs for each type of time series depicted in Figure 1.
To more clearly bring out the theoretical properties of
the types of time series under consideration and at the
same time give the reader a feeling of the noisiness of the
ACF, Figure 2 shows the ACF of an individual series,
whereas Figure 3 shows the average ACF based on 100 re-
alizations of the same process. Figures 2A and 3A show
the ACF of a purely random process: all k correlations be-
tween the value of an observation at time t and the value
of successive observations t � k, k � 0 are zero. This fol-
lows from the fact that a purely random process consists
of independent observations.

From an inspection of Figure 1B, it is evident that, in
the case of a random walk, the value of an observation at
time t can be used to predict the value of the following
observation with considerable accuracy. This is reflected
in the random walk ACF, shown in Figures 2B and 3B,
where the autocorrelations fall off very slowly with in-
creasing lag k.

In contrast, the ACF of the AR(1) process (Figures 2C
and 3C) falls off relatively quickly with increasing lag k.
Specifically, the ACF of an AR(1) process follows an ex-
ponential function:

(9)

where C(k) is the value of the ACF at lag k (i.e., the corre-
lation coefficient between pairs of observations separated
by lag k). Because C(k) is a geometric series, the sum of the
autocorrelations converges to a finite value (see, e.g.,
Apostol, 1966, p. 388). More specifically, if |f1| � 1, then

If |f1| � 1, the sum of the series diverges. Note that the
negative autocorrelations for the longer lags in Fig-
ure 2C are due to sampling error: Figure 3C shows that
the averaged, less noisy ACF does not have these nega-
tive autocorrelations at the longer lags.

The ACF of an MA process (see, e.g., Figures 2D and
3D) of order q is given by

(10)

(Priestley, 1981, p. 137). Note that, as was mentioned
above, the autocorrelations are zero when the lag be-
tween observations exceeds the size of the averaging
window, which is the order of the MA process plus one.
This can be seen in the figure as a sharp cutoff at lag 2,
where the autocorrelations then remain at zero.

Now consider the ACF of a series that shows LRD. As
can be seen from Figures 2E and 3E, the ACF decays
more gradually than for an AR(1) process. To be precise,
the ACF of a long-range dependent series falls off with
lag k as a power function:
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The autocorrelations of a process adhering to Equation 11
are not absolutely summable (i.e., the sum of the series di-
verges; see Apostol, 1966, p. 398 for details), so that

(12)

In the sciences, Equation 12 is one of the widely ac-
cepted definitions of a long-range process (see, e.g.,
Beran, 1994; Samorodnitsky & Taqqu, 1993; but see
also Hall, 1997).3 We will mention this definition in an
alternative form when we discuss Figures 4 and 5.

So far, we have been concerned with analysis in the time
domain. We will now turn to analysis in the frequency do-

main. Any stationary time series (i.e., one whose statistical
properties are constant over time; Jenkins & Watts, 1968,
p. 147; see also Brockwell & Davis, 1987, pp. 11–14;
Kantz & Schreiber, 1997, pp. 13–17) can be reexpressed as
an infinite sum of sine and cosine terms, each with a spec-
ified frequency and amplitude; this process is called Fourier
analysis (for an introduction to Fourier analysis, see, e.g.,
Bloomfield, 2000; Jenkins & Watts, 1968; Priestley,
1981). In physics, a description in the frequency domain is
often preferred because it shows the amplitude (or, as is
conventional, the squared amplitude or power) for separate
frequency bands (a frequency band being a specific inter-
val on the frequency scale). This information is extremely

C k
k

( ) .= •
=

•

Â
1

Figure 2. Autocorrelation functions (ACFs) of the time series from Figure 1. For clarity, autocor-
relations are plotted for only the first 30 lags. The dashed lines correspond to an autocorrelation of
zero.
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useful for applied purposes; for example, it can be used to
construct filters that selectively block out certain frequen-
cies or vibrations, a procedure that is crucial for various
practical applications such as radio signal transmission
and the construction of airplane wings. In psychology, RT
data can also be subjected to analysis in the frequency do-
main (i.e., spectral analysis; cf. Sheu & Ratcliff, 1995;
P. L. Smith, 1990), where frequency is defined as inverse
trial number (Gilden, 2001). In this case, high-frequency
components correspond to trials that are close together,
whereas low-frequency components correspond to trials
separated by a large number of observations.

It is a common practice to calculate the power spectrum
of a series rather than the standard Fourier transform. The
power spectrum function is defined as the squared ampli-
tude of the Fourier transformed times series—that is,

(13)

For details on the calculation of the power spectrum, see,
for instance, Brigham (1974) or Press, Flannery, Teukol-
sky, and Vetterling (1986).4

Following Figures 2 and 3, Figure 4 shows power
spectra for the single series of Figure 1, whereas Figure 5

S f
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Figure 3. Average autocorrelation functions (ACFs) based on 100 realizations of the processes
that generated the time series from Figure 1. The dashed lines correspond to an autocorrelation of
zero.
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shows the average power spectrum based on 100 realiza-
tions of the same processes. All spectra reported in this
article were smoothed using modified Daniell smoothers
of order (3, 5) (see Bloomfield, 2000, for details). The
power spectra are plotted on log–log scale; the reason for
this is that long-range dependent processes will follow a
power function and will thus be linear in log–log coordi-
nates. Figures 4A and 5A show that for a purely random,
or white noise, process, the power spectrum is an ap-
proximately straight line with a slope of zero. This indi-

cates that each frequency band has the same amplitude,
in the same way that white light is composed of light
waves of all frequencies (i.e., colors), each with an equal
strength.

As can be seen from Figure 1B, the random walk time
series is characterized by large “waves”—that is, low-
frequency components (those points toward the origin)
with high amplitude. Figures 4B and 5B show the corre-
sponding log–log power spectra, which are linear and have
negative slopes due to the impact of the low-frequency

Figure 4. Log–log power spectra of the time series from Figure 1. The dashed lines have a slope
of �1.
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components (note that low frequencies are toward the left
in the figures). Theoretically, the log–log power spectrum
of a random walk is a straight line with a slope of �2; that
is, S( f ) � 1/ f a, where a � 2 (see, e.g., Kasdin, 1995).
Recall that by differencing data generated by the random
walk model (with a � 2) we can obtain white noise (with
a � 0), and integrating white noise yields a random walk.
Hence, we can see that one-time differencing of a random
walk decreases a from 2 to 0, and integrating white
noise increases a from 0 to 2. Generally, differencing

increases the power spectrum slope by 2, and integrat-
ing decreases the slope by 2 (Pilgram & Kaplan, 1998).

Figures 4C and 5C show the log–log power spectra for
the AR(1), f1 � .7 process. There are two important
points to note about the AR(1), f1 � .7 spectrum. One is
that more power is present in the low-frequency bands
than in the high-frequency bands. Thus, in the AR(1),
f1 � .7 model, as in the random walk model, SRD (i.e.,
a relation between the value of an observation on trial t
and trial t�1) leads to the occurrence of low-frequency

Figure 5. Average log–log power spectra based on 100 realizations of the processes that generated
the time series from Figure 1. The dashed lines have a slope of �1.
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components that have more power (i.e., a higher ampli-
tude) than high-frequency components. However, the sec-
ond point to note is that the log–log power spectrum for
the AR(1) process is not a straight line. Rather, the spec-
trum curves and flattens out at the low frequencies, re-
flecting the fact that there is no LRD. Generally, the
power spectrum of an AR(1) process crosses over from a
slope of –2 at high frequencies (as for a random walk) to
follow a white noise power spectrum at low frequencies
with a slope of 0 (see, e.g., Hausdorff & Peng, 1996).

The log–log power spectra for the MA(1) process with
f1 � .7 (Figures 4D and 5D) are very similar to the spec-
tra for the purely random process (Figures 4A and 5A),
except that the MA(1) process has a very steep slope at
the highest frequencies. This reflects the fact that, for an
MA(k) process, the dependencies are zero for lags ex-
ceeding the averaging window and are highly dependent
for observations within the window. For an MA(1) pro-
cess, which has a window size of 2, SRD is exhibited
only at the very highest frequencies.

Figures 4E and 5E show the log–log power spectra of
the time series from the LRD process (Figure 1E). As for
the random walk model and the AR(1), f1 � .7 model,
low-frequency components have more power than high-
frequency components. However, the log–log LRD power
spectrum can be distinguished from the AR(1) spectrum
in that it follows a straight line, here with slope � �1. The
straight-line property, particularly at the low frequencies,
mirrors the fact that the ACF of a long-range process is a
power function. This means that in the frequency domain
a long-range process goes to infinity as the frequency goes
to zero: S( f ) ~ f a. Time series that exhibit this relation go
under various names: pink noise, flicker noise, power law
noise, burst noise, low-frequency divergent noise, and,
most commonly, 1/ f noise. The term 1/ f noise implies that
a � 1, but a is generally taken to vary from 0.5 to 1.5 in
the physical sciences literature, and we will therefore use
the more general term 1/ f a noise. Processes that generate
1/ f a noise by definition generate LRD (the focus of this
article), but 1/ f a noise is also associated with other prop-
erties, such as scale invariance and self-similarity, dis-
cussed in the next section.

In summary, Figure 3 shows that a power spectrum
with low-frequency components that have a higher am-
plitude than high-frequency components does not neces-
sarily indicate the presence of a long-range process. The
AR(1), f1 � .7 model has an ACF that falls off expo-
nentially (i.e., that has no LRD), yet the cumulative ef-
fect of first-order dependencies results in low-frequency
components with high amplitude (see Figures 4C and
5C). In order to distinguish an AR(1) process from a
long-range process in the time domain, one has to deter-
mine whether the ACF falls off as an exponential func-
tion, indicating SRD, or as a power function, indicating
LRD. In the frequency domain, a log–log power spec-
trum that flattens at the low frequencies indicates SRD,
whereas a log–log power spectrum that follows a straight
line, particularly at the low-frequency end of the scale,
indicates LRD.

Defining Characteristics of 1/f Noise

Having given this brief introduction to standard time
series analysis, we can now provide a more rigorous de-
finition of a long-range process (cf. Beran, 1994). In the
time domain, {Xt} is defined as a stationary process with
LRD if

(14)

where C(k) denotes the value of the ACF at lag k, mc is a
constant �0, and g � (0,1) gives the (inverse) rate of
decay toward zero.5 In the frequency domain, {Xt} is a
stationary process with LRD if

(15)

where S( f ) is the power spectral density function, ms is
a constant �0, and a � (0,1) is the slope of the line in
a log–log plot. From Equations 14 and 15, it can be seen
that the defining feature of LRD is not the absolute size
of the dependence at short lags, but rather the slow rate
of decay of the dependence with increasing lag and,
more specifically, the asymptotic behavior of the system
as lag tends to infinity. Additional defining features of
long-range processes will be discussed below. These sec-
tions, up until Estimation of LRD, are not a prerequisite
for the material in the remainder of this article and may
be skipped on a first reading.

Long-Range Dependence, Scale Invariance, Self-
Similarity, and 1/f � Noise

Up to this point, we have treated LRD and 1/ f noise as
more or less synonymous. The focus of our discussion is
the interpretation and estimation of long-range correla-
tions in the serial pattern of human behavior. As has been
defined above (cf. Equation 15), long-range dependencies
show up as a straight line in the log–log power spectrum,
S( f ) ~ f a with slope a. Processes with a � 1 constitute a
special case (i.e., a subset) of processes with LRD. These
a � 1 processes (i.e., strict 1/ f noise) are scale invariant.
As the name suggests, a process that is scale invariant has
the same statistical structure across all scales of measure-
ment—that is, the characteristics of the system convey no
information about the scale of measurement. Mathemati-
cally, this means that for a fixed ratio of frequencies, f1/f2,
the integrated power is constant. Thus, if the power spec-
trum is S( f ) � m/f, where m is a constant, the integrated
power is

Scale invariance is not an all-or-none concept, however.
For a power function f (t ) � t a, the relative change f (kt) /
f (t ) � ka is independent of t, and in this sense all power
functions lack a characteristic time scale. This means
that if a small subset of the series is taken and replotted,
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both series would have the same defining characteristics.
Popular examples of scale-invariant phenomena are
clouds and coastlines, both of which possess the same
characteristics at various scales of distance, in such a
way that a photo does not reveal whether the picture was
taken from 10 m away or from 1,000 m away. Although
a weak form of scale invariance will provide the basis of
one of the psychologically plausible models for LRD
that we will discuss toward the end of this article, scale
invariance in the strict sense is not a central issue here.
The interested reader should consult G. D. A. Brown,
Neath, and Chater (2002) and Maylor, Chater, and Brown
(2001) for demonstrations and discussions of scale in-
variance in human cognition.

Long-range processes are self-similar in the sense that
a rescaling of the time axis will leave their distributional
properties unaffected (see Figure 1 of Maylor et al., 2001,
for an example). A process is self-similar with param-
eter H � (1/2,1) if c�H Xct � d Xt , where c is the positive
stretching factor, � d denotes equality in distribution, Xct
is the rescaled process, and Xt is the original time series
(see, e.g., Beran, 1994; Saupe, 1988, p. 75; Voss, 1988).
Note that for a power function such as f (x) � cxa, f (x) is
proportional to xa, whatever the rescaling of x (i.e., mul-
tiplication of x by a constant; Schroeder, 1991).

We focus on long-range processes instead of on strict
1/ f noise because long-range processes are more general
and encompass the case of strict 1/ f noise. Also, the
slope of the log–log power spectrum tends to vary, and
the label 1/ f noise is deemed applicable for a wide range
of as anyway (from about 0.5 to about 1.5). In the fol-
lowing, we will use the labels 1/ f a noise and long-range
dependence (or LRD) interchangeably.

1/f � Noise and Nonlinearity
A common catch phrase in discussions relating to LRD

and scale invariance is that the presence of 1/ f a noise is
“a signature of dynamic complexity” (Gilden, 2001, p. 33;
see also Gottschalk et al., 1995). It is true that 1/ f a noise
can arise in self-organizing critical systems after pertur-
bation (see, e.g., Gilden, 1997; Jensen, 1998). It has also
been claimed that 1/ f a noise is due to the accrual of func-
tional fractal ambiguity (Van Orden, Pennington, &
Stone, 2001, p. 147), although we find this description
unclear. The common interpretation of 1/ f a noise as an
indication of dynamic complexity might lead one to
falsely conclude that 1/ f a noise is also an indication of
nonlinearity or chaos, since these are two central con-
cepts in dynamical systems theory. We will argue here
that the presence of 1/ f a noise does not necessarily indi-
cate the presence of nonlinearity or deterministic chaos:
In fact, 1/ f a noise and nonlinearity are to a large extent
orthogonal concepts. This is an important point, not only
because the necessary relation between 1/ f a noise and
nonlinearity sounds (falsely) plausible given the rela-
tionship elsewhere between chaotic functions and self-
similarity (e.g., the Mandelbrot set; Mandelbrot, 1982),
but also because the presence of nonlinear structure in

the dynamics of human cognition has received some at-
tention recently (see, e.g., Busemeyer, Weg, Barkan, Li, &
Ma, 2000; Elman, 1998; Heath, 2000; Heath, Kelly, &
Longstaff, 2000; Kelly, Heathcote, Heath, & Longstaff,
2001; Kelso et al., 1998; Ploeger, van der Maas, & Hartel-
man, 2002; Port & van Gelder, 1995; Pressing, 1999a; Roe,
Busemeyer, & Townsend, 2001; Thelen & Smith, 1994;
Usher & McClelland, 2001; Ward, 2002).

It is well known that biological units such as the brain
and the heart function at least in part on the basis of non-
linear components or processes. Examples of such non-
linear dynamics include interactions between sympathetic
and parasympathetic innervations, adaptation and satura-
tion of receptors, changes in gain of feedback systems
coupled with delays, and so forth (see Kaplan, 1997, and
references therein). It might be tempting, on the basis of
the wide occurrence of nonlinearity in biological systems,
to dismiss a linear description of an observed biological or
psychological time series beforehand. However, the pres-
ence of nonlinear components does not guarantee that the
observed data from the system as a whole in fact contain
nonlinear structure. In order to conclude that a time series
includes nonlinear structure, it is necessary to demon-
strate that a description by means of the simpler, linear
time series methods is inadequate.

It is the case that 1/ f a noise can be generated by both
nonlinear models (see, e.g., Davidsen & Schuster, 2000;
Schroeder, 1991) and linear models (see, e.g., Milotti,
1995). Milotti remarks: “I wish also to stress the impor-
tance of having 1/ f noise from linear processes: this
agrees well with most experimental observations of 1/ f
noise statistics, and entails a considerable mathematical
simplification.” (p. 3099). More specifically, the ARFIMA
model (Granger & Joyeux, 1980; Hosking, 1981, 1984),
discussed in the next section, can produce LRD and allows
a reformulation either as an infinite-order AR process—
that is,

or as an infinite-order MA process, 

(Beran, 1994, p. 65; Hosking, 1981). This implies that
the value of Xt depends on the past in a linear fashion.
Wold’s decomposition theorem (Wold, 1938; Priestley,
1981, pp. 755–760) states more generally that any sta-
tionary purely stochastic process can be expressed as a
linear function of an infinite number of past innovations
(i.e., random perturbations) e.6 A similar conclusion is
reached when one considers the definition of LRD in-
troduced above. As was discussed, the main definition
of LRD is that the autocorrelation function of a series
follows a power function. Note that since this deals with
(lagged) correlations, this measure is by its very defini-
tion linear. Thus, the hallmark of 1/ f a noise is that the
accuracy with which future observations can be linearly
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predicted from current ones falls off as a power function.
Indeed, a generally accepted method of testing for non-
linearity is to construct a surrogate time series that pre-
serves all the linear structure of the observed time series
(i.e., it matches the time series under scrutiny for nonlin-
ear structure with respect to the ACF and power spec-
trum) but has no nonlinear structure (for details, see Heg-
ger, Kantz, & Schreiber, 1999; Kantz & Schreiber, 1997;
Schreiber & Schmitz, 2000). In this case, the surrogate
series is the simpler model (the statistical H0 hypothesis)
against which the more complex model is tested.

The dissociation between nonlinear structure and 1/ f a

noise is not merely theoretical. Gilden (1997, p. 300)
used surrogate data series analysis to test for the pres-
ence of nonlinear structure, and although Gilden (1997)
did report 1/ f a noise, nonlinear dynamics were not de-
tected. The reverse pattern was found by Kelly et al.
(2001), who reported evidence of nonlinear dynamics
without any strong indication of 1/ f a noise. This rein-
forces the orthogonal distinction between nonlinearity
and 1/ f a noise and also highlights the importance of sta-
tistical testing against a simpler alternative hypothesis, a
recurring theme throughout this article.

ESTIMATION OF LRD

An LRD process is characterized by a persistent, slowly
decaying dependence of current performance on perfor-
mance in the past. More specifically, the preceding section
showed that for an LRD process the slow decay of serial
dependence with the number of intervening trials is de-
fined as following a power function. In other words, for an
LRD process both the autocorrelation function (time do-
main) and the power spectrum (frequency domain) follow
a power function. When plotted on logarithmic axes, the
power spectrum for an LRD process will therefore be lin-
ear. Visual inspection of the power spectrum is the method
used to detect 1/ f a noise in the physical sciences, and it
plays a central role in the detection of 1/ f a noise in human
cognition (see, e.g., Gilden, 2001; but see also Chen et al.,
1997, and Pressing & Jolley-Rogers, 1997). LRD is
deemed to be present when the best-fitting linear equation
for the log–log power spectrum, whether for a particular
subject or averaged over several subjects, has a slope be-
tween �0.5 and �1.5. Alternatively, the slope is compared
to its theoretical value for LRD (�1) and to its theoretical
value under independence (i.e., the simpler alternative hy-
pothesis, which corresponds to a slope of 0; Chen et al.,
1997; Van Orden et al., 2003). This comparison process is
usually qualitative, and inferential testing is rarely per-
formed on the data.

Although the alternative hypothesis of a white noise
process is acceptable at face value, it does involve strong
assumptions about the nature of the measures being used.
In particular, it assumes that the measures of LRD under
consideration (such as the spectrum slope, which is pri-
marily used) are sensitive only to long-range correlations
and are not spuriously affected by short-range correla-

tions. If it turns out that these measures are sensitive to
the presence of short-range correlations, so that they are
shifted from the theoretical value for white noise only in
the presence of short-term correlations, then some cor-
rective procedure must be used when hypothesis testing
is performed.

A related problem associated with the use of the spec-
trum slope is that in fitting a line to the power spectrum,
linearity and, hence, the presence of LRD, is assumed be-
forehand. The slope of the best-fitting line serves only to
determine the parameter of this assumed underlying pro-
cess and to quantify the intensity of the assumed LRD.
Thus, if a linear fit has the appropriate slope, 1/ f a noise
will be deemed to be present regardless of whether or not
the true shape of the log–log power spectrum is a straight
line. Although use of such a scheme means that 1/ f a noise
will almost always be correctly accepted as 1/ f a noise, the
obvious consequence is that a short-range process such as
that generated by a simple AR model may often be mis-
identified as LRD, because its nonlinear log–log power
spectrum (see Priestley, 1981, pp. 238–239) can give a lin-
ear fit with the appropriate slope. In other words, this pro-
cedure carries the danger of extreme Type I error rates, al-
though the Type II error rates may be acceptable.

These comments also apply to an alternative 1/ f a fitting
method employed by Gilden (1997, 2001; cf. Gottschalk
et al., 1995). Gilden noted that in many cases psychologi-
cal time series do not represent perfect examples of 1/ f a

noise and argued that part of the variability in the residu-
als is due to white noise. In order to estimate the amount
of white noise “contamination” in the residuals, Gilden
(1997, 2001) fitted a two-source model to data from sev-
eral choice experiments. The two-source model is for-
malized as residualt � 1/ f a

t � b N(0,1), where b deter-
mines the relative contribution of a white noise process N
with zero mean and unit variance, and a determines the
estimated slope of the long-range process. The fits of the
two-source model (see, e.g., Gilden, 1997, 2001) are
quite good and generally yield estimated values of a � .7
(i.e., within the typical 1/ f a range). However, the two-
source model suffers the same drawbacks that apply to
the standard slope estimate, because it assumes before-
hand that 1/ f a noise is present in the time series and,
hence, does not test whether or not the data show LRD.
That is, an alternative model without LRD might also fit
the data well.

A final problem with the spectral slope method (as well
as many other LRD estimators) is that its discriminatory
power is severely reduced when the time series under
scrutiny is contaminated by independent (i.e., additive)
white noise. To illustrate this point, Figure 6A plots the
log–log power spectrum for a 1/ f a, a � 1 process with in-
dependent white noise added to it. As can be seen by com-
paring the spectral shape to the straight line that has a
slope of �1, adding white noise affects mostly the high-
frequency components; the high-frequency end of the
spectrum is practically flat, whereas the low-frequency
end still shows the straight-line property characteristic of
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1/ f a noise. Figure 6B shows the power spectrum of an
AR(1) series also contaminated by a white noise source.
As we will see later, an AR(1) process plus white noise
can be represented as an ARMA(1,1) process, and hence
we simulated an AR(1) process plus noise by fitting the
parameters of an ARMA(1,1) process to the 1/ f a, a � 1
series, whose spectrum is shown in Figure 6A. From a
comparison of the left and right panels, it is clear that, on
the basis of the spectral slope method, it is very difficult
to distinguish 1/ f a noise from AR noise when a white
noise source is present. To demonstrate the generality of
this result, Figure 7 plots distributions of estimated spec-
tral slopes resulting from a Monte Carlo simulation. In
this simulation, 1,000 long-range time series were gen-
erated by adding standardized white noise to spectrally
synthesized 1/ f a, a � 1 noise (cf. Saupe, 1988). A sec-
ond group of 1,000 time series was generated by a short-
range ARMA(1,1) f1 � .896, q1 � �.691 process [i.e.,
AR(1) plus independent white noise]. The values for the
f1and q1 parameters were determined by first fitting an
ARMA(1,1) model to each of the 1/ f a time series and
then averaging the resulting 1,000 f1 and 1,000 q1 param-
eter values. A third group of 1,000 time series was gener-
ated by reducing the SRD produced by the ARMA(1,1)
model above—that is, the f1 and q1 were halved to give an
ARMA(1,1) model with f1 � .448 and q1 � �.345. Fi-
nally, a fourth group of 1,000 time series was generated
by a white noise process. Each time series contained
1,024 observations.

It can be seen from Figure 7 that the discriminatory
power between white noise versus 1/ f a noise plus an in-
dependent white noise source is excellent. However, it is
also evident that the spectral slope measure is spuriously
elevated by the short-range ARMA(1,1) process. More-
over, by increasing the ARMA(1,1) dependency param-
eters f1 and q1, it is possible to shift the slope distribu-

tion across the entire range, indicating that the spectrum
slope is highly sensitive to the parameters of this SRD
process. To anticipate, we will demonstrate in a later sec-
tion how the ARMA(1,1) time series used in this simu-
lation can in fact be reliably distinguished from the 1/ f a

time series.
This simulation serves to illustrate two main points.

First, when testing for LRD it is not appropriate to assume
an alternative hypothesis of white noise—that is, the state
of no serial correlations at all. It is therefore of primary
importance to test the LRD hypothesis against the alter-
native hypothesis of SRD. Throughout this article, we will
use as our short-range simple alternative hypothesis the
AR(1) plus added white noise process. That is,

(16)
where Wt is an independent white noise process and Yt is
an AR(1) process: Yt � f1Yt�1 � et. Note that Yt depends
on the sequence of innovations et but is independent of
Wt. Hence, the two sources of random variation, et and
Wt, cannot be simply reduced to a single source of ran-
dom activation. It has been shown (e.g., Pagano, 1974)
that Equation 16 is formally identical to an ARMA(1,1)
process (cf. Equation 8)—that is,

(17)
Henceforth, we refer to an ARMA(1,1) model rather than
to an AR(1) model plus independent white noise. We
would like to stress that the choice of the ARMA(1,1)
model as a simple alternative hypothesis is not an arbitrary
one. ARMA(1,1) is a low-order, parsimonious model and
has a psychologically plausible interpretation as an
AR(1) process contaminated by independent white noise.
The AR(1) model is arguably the most often used time se-
ries model, with well-defined properties (see, e.g., Priest-
ley, 1981), and it has a straight-forward interpretation—
that is, performance at time t is determined solely by a

X Xt t t t= + +- -f e q e1 1 1 1.

X Y Wt t t= + ,

Figure 6. Example log–log power spectra for two different processes in the presence of an independent
white noise source. (A) 1/f process. (B) AR(1) process plus independent white noise [i.e., ARMA(1,1), �1 �
.85, �1 � �.329]. The dashed line has a slope of �1.
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combination of weighted performance on time t�1 and
white noise (cf. Equation 4). Because of its conceptual
and mathematical simplicity and the ease with which
current models of information processing may incorpo-
rate variability over time in one or more of their param-
eters as AR processes, the AR(1) model constitutes a
theoretically appealing alternative to a 1/ f a process (cf.
Laming, 1968).

The second point that is illustrated by the simulation is
that the popular spectral slope measure is not satisfactory
when the aim is to rigorously test for the presence of LRD.
The main reasons for this critical assessment are that the
linearity of the spectral shape is assumed beforehand and
that the slope method is not robust against the impact of
SRD. In the presence of a white noise source, the spectral
slope method is unable to distinguish a 1/ f a process (i.e.,
a long-range process) from an AR(1) process (i.e., a short-
range process), since either of these processes could give
rise to a spectrum with a particular slope for the best-fit-
ting straight line.

Thus, the unsatisfactory performance of the spectral
slope method leads us to consider other LRD estimators
besides the standard spectral slope method. Over the last
15 years, many different LRD estimators have been intro-
duced and reformalized on the basis of results of various
simulation studies. These include the R/S statistic (Hurst,
1951; Mandelbrot & Van Ness, 1968); the adjusted R/S
statistic (Lo, 1991; but see Teverovsky, Taqqu, & Will-
inger, 1999); the spectral slope method using (1) differen-
tial weighting of frequencies (Robinson, 1995), (2) low
frequencies only (Geweke & Porter-Hudak, 1983), or (3) a

smoothing window that increases in size with increasing
frequency (Pilgram & Kaplan, 1998); the variance plot
measure (see Beran, 1994); wavelet LRD estimators (see,
e.g., Abry & Veitch, 1998); and the Allan variance (see,
e.g., Allan, 1996), among many others. A substantial num-
ber of papers have been published in which the bias and re-
liability of several of these LRD measures are examined
(e.g., Bassingthwaighte & Raymond, 1994; Geweke &
Porter-Hudak, 1983; Pilgram & Kaplan, 1998; Schepers,
van Beek, & Bassingthwaighte, 1992; Taqqu, Teverovsky,
& Willinger, 1995; see Baillie, 1996, and Beran, 1994, for
overviews). However, most of these studies consider only
the bias and efficiency with which a particular LRD mea-
sure estimates the intensity of pure long-range processes
and therefore assume beforehand the presence of such pro-
cesses. Thus, these studies generally do not address the
issue of hypothesis testing or take into consideration the
contaminating effects due to the presence of SRD. Al-
though the theoretical values for a white noise process are
known for all measures of LRD, it is rare for the estimated
LRD intensity value to be compared to the value of an al-
ternative hypothesis (by simulation or by experimenta-
tion). Even when this is done (e.g., via a t test; Chen et al.,
1997; Van Orden et al., 2003), the alternative hypothesis
that has to be rejected (after which it is concluded that the
process has LRD) is assumed to be that of white noise
rather than that of a short-range process, as was discussed
previously.

In addition to the fact that many LRD estimators do not
allow for rigorous inferential testing, many approaches
use (arguably arbitrary) cutoffs to selectively consider

Figure 7. Distributions of estimated spectral slopes for four different pro-
cesses. From left to right, the processes that generated the distributions are a
white noise process; a weakly dependent short-range ARMA(1,1), �1 � .448,
�1 � �.345 process; a strongly dependent short-range ARMA(1,1) �1 � .896,
�1 � �.691 process (where weak and strong refer to the size of the short-range
dependencies); and a long-range 1/f process plus standardized white noise.
Note that an AR(1) process contaminated by independent white noise can be
represented as an ARMA(1,1) process. Each distribution is based on 1,000 time
series, each 1,024 observations long.
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only a low-frequency subset of the data. Theoretically, this
focus on low-frequency components is well motivated,
since the LRD phenomenon is defined in terms of its be-
havior as frequency approaches zero (cf. Equations 14 and
15). However, the choice of where high-frequency com-
ponents end and low-frequency components begin is
often not straightforward. In addition, discarding most of
the data can lead to efficiency losses for the LRD esti-
mators in question (see Baillie, 1996, for similar com-
ments and a more detailed overview).

Given these shortcomings of most current measures of
LRD, we were concerned with finding a measure that was
relatively robust to the presence of SRD or, alternatively,
one that explicitly accounted for SRD in its estimation
routine. A method that meets the second of these re-
quirements, ARFIMA time series modeling, is one of the
most widely used, flexible, and principled parametric
methods for simultaneously estimating both short-range
and long-range processes. ARFIMA modeling has a
number of desirable features that set it apart from most
other LRD estimation methods, but to our knowledge it
has not yet been applied in cognitive psychology. We will
discuss the ARFIMA modeling framework and its ad-
vantages in the next section.

ARFIMA Modeling of LRD

In this section, we provide a general discussion of esti-
mating SRD and LRD using autoregressive fractionally in-
tegrated moving-average (ARFIMA) time series modeling.
For a more detailed treatment, the interested reader is re-
ferred to the Appendix and to other work (e.g., Baillie &
King, 1996; Beran, 1994; Granger, 1980; Hosking, 1981,
1984; Kasdin, 1995; Ninness, 1998). The ARFIMA( p,
d, q) model operates in discrete time and incorporates both
short-range processes (through the AR parameters p and
the MA parameters q) and a long-range process (through
the fractional differencing parameter d ). The ARFIMA( p,
d, q) model is a direct extension of the simpler short-range
ARMA and ARIMA models, and for ease of exposition we
will discuss these simpler models first.

As was mentioned earlier, the ARMA( p, q) process
consists of an AR component of order p and an MA com-
ponent of order q (see Equation 8). The ARMA( p, q)
model can be generalized to incorporate the effect of dif-
ferencing, and this results in an ARIMA( p, d, q) model,
of which the added parameter d is an integer that denotes
the level of differencing (Box & Jenkins, 1970). For in-
stance, recall that differencing a random walk series
(see, e.g., Feller, 1968) results in a white noise series.
Hence, the white noise series is given by ARIMA(0, 0, 0)
and the random walk series is given by ARIMA(0, 1, 0).
Because of its transparency and flexibility, the family of
ARIMA( p, d, q) models has been applied often in time
series analysis.

Although very well suited for modeling short-range
dependencies in time series, ARIMA models cannot give
parsimonious descriptions of any long-range dependen-
cies in time series (see Sowell, 1992b, for a discussion).

An ARIMA model would need an infinite number of pa-
rameters to accurately describe a long-range process
generating a time series of infinite length. However, in
recent years the ARIMA model has been generalized to
incorporate LRD using only a single parameter. This gen-
eralization requires that differencing parameter d be al-
lowed to take on real values rather than the standard inte-
ger values (see the Appendix for details). For an intuitive
grasp of what the effects of “fractional differencing” are,
consider that a white noise process—ARFIMA(0, 0, 0)—
has a slope of 0 in the log–log power spectrum, and the ran-
dom walk process—ARFIMA(0, 1, 0)—has a slope of �2.
Thus, when d is increased from 0 to 1, the spectral slope in-
creases from 0 to �2. It can be shown that d values be-
tween 0 and 1 (i.e., fractional values) result in spectral
slopes between 0 and �2. More specifically, d � a/2,
where a equals minus the spectral slope. We will restrict
ourselves here to 0 � d � 1/2, for which it can be shown
that the ARFIMA( p, d, q) process is stationary and has
LRD.

To summarize, the ARFIMA( p, d, q) model has an
ARMA( p, q) component to describe short-range pro-
cesses and a fractional differencing parameter d to quan-
tify the intensity of LRD. If d � 0, there is no LRD, and
ARFIMA( p, d, q) reduces to an ARMA( p, q) model. If
0 � d � 1/2, the series is stationary and shows LRD. For
d � 1/2, the series is nonstationary.

In order to test whether the estimated long-range pa-
rameter d is significantly greater than 0 for a given time
series, the ARFIMA parameters can be estimated using
time-domain exact maximum likelihood (EML; see, e.g.,
Beran, 1994, p. 105; Sowell, 1992a). EML estimation
was long believed to be too computationally expensive
for practical use, and faster approximate maximum like-
lihood estimation was used instead (see, e.g., Beran,
1994). However, efficient programming techniques (e.g.,
the ARFIMA package in the matrix programming lan-
guage Ox—Doornik, 2001; Doornik & Ooms, 2003) and
increased computing resources make EML estimation
perfectly feasible for the time series length used through-
out this article (i.e., 1,024 observations). The likelihood
function that is being maximized is based on the fit of
the model to the autocovariance function; for details, the
reader is referred to Doornik and Ooms (2003).

Maximum likelihood estimation (see, e.g., Azzalini,
1996; Fisher, 1950; Myung, 2002; Priestley, 1981; Stu-
art & Ord, 1991) has a number of desirable properties. In
general, maximum likelihood estimation is consistent
and asymptotically unbiased (see, e.g., Eliason, 1993).
For a consistent estimator, the estimated parameter value
approaches the true parameter value as the number of
observations increases: 

where n is the number of observations, q is the parameter
of interest, and d is arbitrarily small. For an unbiased esti-
mator, the expected value of the estimated parameter
value equals the true parameter value: E(q̂)� q. Dahlhaus
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(1989) has shown that EML estimation for ARFIMA
models is also asymptotically efficient. An efficient esti-
mator has the lowest possible variance among all estima-
tors. In addition, EML yields standard errors for the esti-
mated parameters, which allows for statistical inference.
These standard errors are based on the second deriva-
tives of the likelihood function around its maximum (i.e.,
the slope of the likelihood function is zero at its maxi-
mum, the second derivatives indicate how quickly the
slope of the likelihood function goes to zero as the max-
imum is approached, and large second derivatives corre-
spond to small standard errors). This implies that it is
possible to fit an ARFIMA( p, d, q) model to a time se-
ries using EML and then test whether the estimated LRD
parameter d is significantly greater than 0 (or any other
value of interest). Unfortunately, this straightforward
method of analysis is complicated by several factors.
First, misspecification of the short-range component
[e.g., fitting an ARFIMA(0, d, 0) to a time series that
was in fact generated by an ARMA(1,1) process] can re-
sult in incorrect estimates of the LRD parameter d. Sec-
ond, even if the short-range component is correctly spec-
ified, local maxima in the likelihood function can distort
the parameter estimates (see, e.g., Myung, 2002). For in-
stance, consider fitting an ARFIMA(1, d, 1) model to a
time series generated by an ARMA(1,1) process. When the
starting value for d is based on an exploratory method such
as the spectral slope, and the likelihood function has a local
maximum around this starting value for d, biased estimates
for d will result (i.e.,  d̂ � 0). With proper precautionary
measures—that is, using a number of different starting
values—the problem of local maxima can be greatly re-
duced. However, even when the fit of a correctly specified
ARFIMA( p, d, q) model to a given time series results in
d̂ significantly greater than 0 (calculated on the basis of the
second derivatives of the likelihood function around its
maximum at d̂ ) and d̂ � 0 is a global maximum rather than
a local maximum, LRD is not necessarily present: The
goodness-of-fit of the short-term ARMA( p, q) component
might be only marginally worse than that of the more com-
plex ARFIMA( p, d, q) model.

In order to resolve this crucial issue, we used our sim-
ple ARMA(1,1) alternative hypothesis of only SRD as a
point of reference for the more complex ARFIMA(1,
d, 1). That is, when parameter estimates derived from the
ARFIMA(1, d, 1) model indicated that the long-range pa-
rameter  d̂ differed significantly from 0, we used a model
selection procedure to quantify whether the higher de-
scriptive accuracy (i.e., the likelihood) of the ARFIMA(1,
d, 1) model over the ARMA(1,1) model warrants the in-
clusion of the extra-long-range parameter d. Thus, fol-
lowing our aims stated above, we used a competitive mod-
eling framework in which the experimental hypothesis of
the presence of LRD was actively tested against the sim-
ple alternative hypothesis of only SRD (for a similar ap-
proach, see Hosking, 1984).

The model selection tool used throughout this article
is Akaike’s information criterion (AIC; see, e.g., Akaike,

1974; Burnham & Anderson, 2002). The AIC is the most
generally recommended method for model selection pur-
poses in the context of time series analyses (see, e.g.,
Beran, 1994; Priestley, 1981). The AIC was derived as an
unbiased estimate of minus twice the expected log like-
lihood for each candidate model, and it rewards both de-
scriptive accuracy and parsimony (for a detailed discus-
sion on model selection, see Myung, Forster, & Browne,
2000, and Burnham & Anderson, 2002). The lower the
AIC score, the more preferable the candidate model. For
an ARFIMA( p, d, q) model, the AIC is given by

(18)

where L is the maximum likelihood and D equals 1 when
the long-range parameter d is a free parameter, and D
equals 0 otherwise. The number 1 added to p � D � q cor-
responds to a parameter that estimates the error variance—
hence, p � D � q � 1 is the total number of free param-
eters. Underspecified models (i.e., those with too few
parameters) will be punished by a lack of descriptive ac-
curacy (i.e., low maximum likelihoods), and overspecified
models will be punished for having too many parameters.
Thus, selecting the candidate model that has the lowest
AIC score provides a principled way to quantify the 
fundamental tradeoff between descriptive accuracy and
parsimony.

In this particular case, we compare two nested models:
the ARMA(1,1) model versus its one-parameter exten-
sion, the ARFIMA(1, d, 1) model. When two models are
nested and the simple model is correct, twice the differ-
ence in their maximized log likelihood values follows a
c2 distribution with the number of degrees of freedom
equal to the difference in the number of free parameters
(Wilks, 1938). The likelihood ratio test (LRT) can then
be used to reject the hypothesis that the simpler model is
correct when twice the observed difference in log likeli-
hood falls in the rejection region of the c2 distribution
(i.e., usually the most extreme 5%). The choice between
using the LRT and using the AIC is to a certain extent a
subjective matter. We prefer the AIC because it is a general
model selection method and is not based on the framework
of null-hypothesis testing (cf. Burnham & Anderson, 2002,
pp. 337–339). The AIC is one of the standard model se-
lection tools that can also be used for multiple models
that might or might not be nonnested. Furthermore, dif-
ferences in AIC values can be interpreted as strength of
evidence (Wagenmakers & Farrell, 2004) and, most im-
portantly, Monte Carlo simulations reported below show
that correct model recovery based on AIC is better than
that based on LRT.

In the case of nested models that differ in one param-
eter, as is the case here, the AIC chooses the more complex
ARFIMA(1, d, 1) model when minus two times the log
likelihood ratio exceeds 2 (i.e., the AIC penalty for having
one additional free parameter). In the null-hypothesis
framework of the LRT, this corresponds to a Type I error
rate of 15.7% [i.e., a probability of .157 of choosing the
ARFIMA(1, d, 1) when the simpler ARMA(1,1) model is

AIC L p D q= - + + + +2 2 1ln( ) ( ),
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in fact true]. Thus, in this case the AIC is less conservative
than the LRT. A Type I error rate of 5% according to the
LRT is achieved when two times the likelihood ratio is
about 3.84.

We now present a Monte Carlo simulation to demon-
strate that the ARFIMA approach to modeling LRD is
in practice able to distinguish between a short-range
ARMA(1,1) process and an ARFIMA(1, d, 1) process
based on the AIC. In this simulation, we used two groups
of time series that were also used in the simulations re-
ported in Figure 7. To recapitulate, the first group of
1,000 time series was generated by adding standardized
white noise to a 1/ f a, a � 1 process, and a second group
of 1,000 time series was generated by the short-range
ARMA(1,1) f1 � .896, q1 � �.691 process. The param-
eters from the ARMA(1,1) process were determined by
fitting the ARMA(1,1) process to the 1,000 1/ f a series
and averaging the obtained ARMA parameters. Each
time series contained 1,024 observations. On the basis
of the AIC, the Type I error rate [i.e., erroneously classi-
fying an ARMA(1,1) process as an ARFIMA(1, d, 1)
process] was 7.5%, and the Type II error rate [i.e., erro-
neously classifying an ARFIMA(1, d, 1) process as an
ARMA(1,1) process] was 26.2%. These error rates are
more than acceptable in both time series and psycholog-
ical research, and they provide a necessary demonstra-
tion of the adequacy of our procedure for detecting LRD.

The simulation results testify to the discriminatory
power of the ARFIMA approach, since it is well-known
that for series of finite length the ARMA(1,1) process
can be difficult to discriminate from a long-range pro-
cess (see, e.g., Beran, 1994, p. 145). The ARFIMA ap-
proach to modeling LRD has several other important ad-
vantages that set it apart from most other approaches.
The ARFIMA( p, d, q) model is a natural extension of
the popular class of ARIMA models (Box & Jenkins,
1970). ARFIMA models allow for the simultaneous es-
timation of both short-range processes and a long-range
process. When the short-range processes are correctly
specified, this greatly increases the robustness of the
long-range estimator d against spurious elevation by
short-range processes. Furthermore, parameter estima-
tion for ARFIMA models can be done using the asymp-
totically efficient EML estimator that makes it possible
to conduct inferential statistics. Finally, there are fast,
user-friendly ARFIMA computer programs and code
packages for popular computational statistics programs,
to facilitate running of simulations and data analysis (see,
e.g., Beran, 1994; Doornik & Ooms, 2003; Ooms &
Doornik, 1999).

In this section, we have outlined a method for testing
the simple alternative hypothesis of only SRD through the
use of ARFIMA time series modeling in combination
with AIC model selection. We will apply this method both
when analyzing the experimental data reported in the next
section and when assessing the adequacy of LRD models
discussed later.

WHAT CAN 1/f� NOISE TELL US ABOUT
COGNITIVE PROCESSING?

The remainder of this article focuses on what 1/ f a

noise can tell us about cognitive processing. We will ad-
dress this issue from both an empirical and a theoretical
point of view. We first review current empirical evidence
for the presence of 1/ f a noise in human cognition. As
our review demonstrates, the experimental paradigms
and manipulations associated with the occurrence of
1/ f a-like noise leave open some important questions and
are not as conclusive as might be gathered at first glance.
These open questions preclude any firm conclusions
about underlying mechanisms. Accordingly, we report
an experiment designed to investigate some of the more
important unresolved issues, at the same time demon-
strating ARFIMA-based inferential testing for LRD. To
anticipate the main results, the experiment provides
some evidence of the presence of LRD across a range of
simple cognitive tasks (i.e., simple RT, choice RT, and
temporal estimation). In addition, for several partici-
pants the intensity for LRD was most pronounced in tem-
poral estimation.

We then present a detailed theoretical analysis of pos-
sible explanations for LRD in human cognition and,
more specifically, in our experimental results. We pres-
ent several psychologically plausible models and show
how these can produce long-range dependencies. This
demonstration also gives an existence proof that 1/ f a

noise in human cognition is not uniquely associated with
any single process or model, and, hence, one should
exert considerable caution when using 1/ f a noise to infer
underlying theoretical constructs.

Experiments That Lead to 1/f a Noise
Although the study of serial dependence in psychology

has a relatively long history (see the introduction for ref-
erences), little attention has been paid to the possible
presence of LRD and 1/ f a noise, so that a unified litera-
ture on this aspect of cognition does not exist. Neverthe-
less, as we indicated earlier, exploration of 1/ f a noise has
recently been undertaken for various tasks and factors.

The most notable of these endeavors has been piloted
by Gilden and colleagues (Gilden, 1997, 2001; Gilden
et al., 1995; Gilden & Wilson, 1995a). For example,
Gilden (2001) presented experiments involving a range
of psychological tasks, including mental rotation, lexical
decision, rotation search, and translation search. For all
these tasks, Gilden observed slopes of the power spec-
trum between 0 and �1, giving some indication of the
presence of 1/ f a noise. In addition, the power spectra for
estimation of applied force, angular rotation, and spatial
intervals were found to have slopes very close to a � 1
(Gilden, 2001, Figure 14). Other researchers have also
found serial patterns indicative of 1/ f a noise. Van Orden
et al. (2003) found slopes between 0 and �1 in pronun-
ciation times and simple reaction times, whereas Chen
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et al. (1997) found slopes significantly smaller than 0 in
a tapping task.

The experiments conducted by Gilden (2001) and Van
Orden et al. (2003) are in many cases standard in cogni-
tive psychology. As was mentioned previously, Gilden
(2001) stressed that the amount of variance accounted for
by the structure of serial correlations can sometimes ex-
ceed the variance accounted for by the experimental ma-
nipulation by a factor of two to three. Thus, not only do the
above-mentioned results imply serial correlations of a per-
sistent nature (interesting from a theoretical perspective)
in situations central to cognitive psychology, but these se-
rial correlations can have a profound impact on task per-
formance, and therefore warrant serious attention.

Although the experiments mentioned above are cer-
tainly indicative of the important characteristics of 1/ f a

noise in human cognition, the research and conclusions
based on it are not as clear and consistent as one might
gather at first glance. One observation is that empirical in-
vestigations of 1/ f a noise in human cognition often do not
unambiguously show the presence of 1/ f a noise. Gilden
(2001), for example, reported 1/ f a noise in a number of
choice RT tasks. Although Gilden (2001) inferred the
presence of 1/ f a noise in virtually all of his experiments,
the majority of experiments reported by Gilden have
slopes in the log–log power spectrum that are decidedly
less steep than a � 1. Fitting the reported spectra by
hand revealed that for mental rotation (Gilden, 2001,
Figure 4), lexical decision, rotation search, translation
search (Gilden, 2001, Figure 5), color discrimination,
shape discrimination (Gilden, 2001, Figure 8), and dis-
crimination/visual identification judgments with respect
to luminance, orientation, the flash of a light, and the ab-
sence of a line segment in a square (Gilden, 2001, Fig-
ure 16), the slopes of the spectra varied from a � 0.12
to a � 0.5. The steeper slopes were obtained when only
a subset of the spectrum was fitted, and even with this
procedure the mean slope across these particular exper-
iments averages a � 0.3, in many cases clearly outside
the typical 1/ f a range of 0.5 � a � 1.5. It should be
noted that a model assuming white noise contamination
of a pure 1/ f a spectrum (i.e., the two-source model dis-
cussed above; Gilden, 1997, 2001) sometimes does yield
estimated slopes steeper than �0.5. However, this
method of data analysis is indirect, and in addition it is
spuriously effected by SRD (in much the same way as is
the standard spectral slope method).

Open questions also exist with respect to findings from
different research groups and the conclusions drawn from
these findings. It has been suggested by Gilden and col-
leagues that 1/ f a noise is related to the controlled aspects
of interval production (Gilden et al., 1995) or the formation
of representations (Gilden, 2001). In support, Gilden et al.
(1995) showed that 1/ f a-like noise was most evident in
tasks in which the participants were to repeatedly esti-
mate either spatial intervals or time intervals. In contrast,
1/ f a noise was reportedly absent in a simple RT task, in
which the participants had to respond as fast as possible

to the onset of a visual stimulus. Gilden et al. pointed out
that the magnitude of the response is not intentional in
the simple RT task (i.e., participants are not required to
produce a specific RT) and argued that the null result
(i.e., white noise) obtained in the simple RT task consti-
tuted evidence for the assumption that 1/ f a noise is selec-
tively “associated with the controlled aspects of interval
production” (Gilden et al., 1995, p. 1838). However, in a
recent study Van Orden et al. (2003) claimed to find 1/ f a

noise in a simple RT task and reported a slope of the best-
fitting line through the log–log power spectrum of �.68.
This result is seemingly in contrast to the result predicted
and obtained by Gilden et al. It should be noted that in
the simple RT experiment by Gilden et al., the partici-
pants had to respond manually, whereas the participants
in Van Orden et al.’s (2003) experiment had to respond
vocally (i.e., by triggering a voice-key). However, it is not
clear how this procedural difference could account for the
conflicting results. It is also noteworthy that Gilden et al.
reported an extremely short mean RT of 100 msec. Pre-
vious research has shown that human participants cannot
respond faster than 100 msec to the onset of a stimulus,
and hence 100 msec has been termed the “irreducible
minimum” on RT (see, e.g., Woodworth & Schlosberg,
1954).7 It is possible that a substantial proportion of sim-
ple RTs in the experiment from Gilden et al. are attribut-
able to anticipations (i.e., initiation of a response before
the onset of the stimulus), obscuring the interpretation of
the results. Alternatively, D. L. Gilden (personal commu-
nication, February, 1, 2004) believed the short mean RT
was in fact due to analyses that subtracted a constant esti-
mated motor RT from the data. In addition, note that since
the magnitude of the response is not intentional for either
simple RT tasks or choice RT tasks, Gilden’s (2001) claim
of 1/ f a noise in choice RT tasks is inconsistent with the
earlier claim (Gilden et al., 1995) that 1/ f a noise is selec-
tively associated with the controlled aspects of interval
production. We will return to this issue later.

In another experiment, Gilden (2001, Figure 11) used
a task-switching RT paradigm, using different speeded
classification tasks. The results showed that in the mixed
condition (i.e., that in which two tasks were switched at
random and a cue indicated the current task) the slope of
the best-fitting line in the log–log power spectrum was
close to zero, revealing no evidence of LRD. In the fixed
conditions, however (i.e., where only one task was to be
performed throughout the experiment), low-frequency
components had more power than high-frequency com-
ponents. Gilden (2001, p. 43) interpreted this pattern of
results by saying, “only when mental set can be consis-
tently maintained are there long-term memory effects
over the history of reaction time residuals,” relating 1/ f a

noise to continuity in mental set. Unfortunately, in the
task-switching paradigm used by Gilden (2001), consis-
tency in mental set is confounded with task difficulty
(i.e., the mixed condition has much higher RTs than the
fixed conditions). A more serious problem with the data
from Gilden (2001, Figure 11) is that the slopes of the
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best-fitting line, which we calculated from the figure by
hand, vary from a � .23 to a � .32, evidently outside the
typical 1/ f a range of 0.5 � a � 1.5 as for the choice
tasks. In addition, a visual inspection of the log–log
power spectrum leaves the distinct impression that the
spectrum levels off at the lower frequencies, which is
consistent with a short-range AR process rather than a
long-range process. Finally, Gilden and Wilson (1995b)
demonstrated that when trials involving the task of dart
throwing are interleaved with golf putting trials, perfor-
mance in the mixed/combined activity is “streaky” (i.e.,
positive intertrial correlations are observed), whereas
performance in the isolated components is not. The lat-
ter result is incompatible with the consistency-of-mental-
set account of serial dependence in human cognition.

Interpretation difficulties have also arisen regarding
the effects of interstimulus interval (ISI). In another set
of experiments (i.e., color and shape discrimination),
Gilden (2001) manipulated ISI using ISIs of 0.5, 1.0, 1.5,
2.0, 2.5, and 5.0 sec. The results showed that ISI did not
affect the intertrial correlations in a speeded object clas-
sification task, leading Gilden (2001) to conclude that
“. . . the imposition of delay times has little effect on
spectral shape or amplitude” (p. 41). In contrast, Gilden
and Wilson (1995a) reported several visual discrimina-
tion studies in which a lengthening of ISI reduced the
intertrial correlations: “These results indicate that delays
of even a few seconds can induce independence in the
outcomes between successive trials” (p. 40; for a similar
argument, see Gilden & Wilson, 1995b). The latter con-
clusion is consistent with one of the main points made by
Kelly et al. (2001), who argue that a short ISI is an im-
portant requirement in bringing about nonlinear dynam-
ics, presumably because a short ISI heightens task de-
mands, requiring participants to exert tighter control
over speed–accuracy tradeoffs (see Kelly et al., 2001, for
details). Most relevant for the present discussion, Kelly
et al. found that a manipulation of ISI caused differences
between the slopes in the log–log power spectra, the
shortest ISI being associated with the steepest slope. Al-
though the data of Kelly et al. are superficially inconsis-
tent with those of Gilden (2001), we should point out that
in addition to manipulating ISI, Kelly et al. (Experi-
ment 2) also varied whether the task was forced-paced or
self-paced. The slopes for the forced-paced short ISI,
forced-paced long ISI, and self-paced conditions were
a � .31, a � .26, and a � .16, respectively. Although
the size of the slope differed significantly between the
three conditions, the difference in a between the forced
choice conditions with a short ISI versus a long ISI was
not reliable. Furthermore, Kelly et al. point out that their
series may not qualify as 1/ f a noise because of the rela-
tively small slopes.

In sum, the current literature has not yet adequately
addressed several important questions regarding the ex-
perimental tasks and conditions that could lead to the oc-
currence of 1/ f a noise. This state of affairs precludes
strong conclusions about the psychological processes in-

volved in 1/ f a-like noise. Accordingly, we wished to in-
vestigate further the conditions under which LRD is ob-
served. One important and salient factor we wished to
address was the effect of type of task on the presence and
intensity of LRD. Although tasks such as those involving
spatial interval or temporal interval estimation seem to
unambiguously show 1/ f a noise, it is apparent from the
review above that the status of 1/ f a noise in the simple
RT task is unclear. Choice tasks such as the lexical deci-
sion task also seem to provide ambiguous information,
in that they generally give as (i.e., the negative of the
spectral slopes) greater than 0 but distinctly less than 1.
Therefore, in an attempt to determine the task situations
that give rise to LRD, we wished to compare simple,
choice, and estimate tasks in a similar experimental for-
mat. In particular, to ensure that any differences were not
due to differences in stimuli or methodology (which has
restricted comparisons between studies in the literature
to date), we used exactly the same stimuli and response
format in all the tasks and varied only the instructions
given to the participants.

Another factor we wished to address was the effect of
long or short response–stimulus interval (RSI), which
was crossed with task instructions for an examination of
its effect on serial correlations. In addition to addressing
the inconsistency in results between Gilden (2001) and
Gilden and Wilson (1995a), we were interested in this
variable because it offers clues as to the processes un-
derlying any LRD. In particular, if the intensity of LRD
depends on the temporal contiguity of responses, then
LRD should be greater under a shorter RSI.

METHOD

Participants
Six students of Northwestern University participated for a small

monetary reward ($8/h).

Materials, Design, and Procedure
The stimuli were the digits 1, 2, 3, 4, 6, 7, 8, and 9, one of which

was presented at the center of a computer screen until a response
was registered. A practice phase of 24 stimuli preceded the experi-
mental phase, which contained 1,024 stimuli, each stimulus occur-
ring equally often, the sequence of digits being randomized for each
task and for each participant. The experiment featured two within-
subjects manipulations: type of task and mean RSI.

The three types of task used were simple RT, choice RT, and tem-
poral estimation. In the simple RT task, the participants were in-
structed to press the “?” key with the right index finger as soon as
they detected the stimulus. To prevent anticipatory responding (see,
e.g., Snodgrass, Luce, & Galanter, 1967), we used a variable RSI
(see below for details) and presented feedback (“TOO FAST”) for
2 sec following very fast responses (i.e., �100 msec), in addition
to verbally instructing the participants to avoid anticipations. In the
choice RT task, the participants were instructed to press the “?” key
with the right index finger in response to an even number and to
press the “z” key with the left index finger in response to an odd
number, “as fast as possible without making errors.” The third task
was estimation of 1-sec time intervals; the participants were in-
structed to press the “?” key with the right index finger to indicate
when they thought 1 sec had passed since stimulus onset. As in
Gilden (2001), no specific instructions were given with respect to
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counting (i.e., counting was not discouraged). In all cases, the par-
ticipants were instructed to keep their fingers on the response key
(or, in the case of choice RT, on both response keys) throughout the
experiment, to minimize noise due to motor processes. Also, in all
cases no feedback was given during the experimental phase for re-
sponses that exceeded 100 msec.

The second within-subjects manipulation concerned RSI. Each
task (i.e., simple RT, choice RT, and temporal estimation) was per-
formed both with a relatively short RSI and with a longer RSI. The
set of short RSIs was randomly drawn from a uniform distribution
that extended from 550 to 950 msec, with a mean of 750 msec. The
set of long RSIs was obtained by adding a constant 600 msec to the
set of short RSIs; hence, the long RSIs varied between 1,150 and
1,550 msec, with a mean of 1,350 msec. The order of the RSIs was
randomized for each task and for each participant.

We would like to stress that the only difference between the tasks
was in the instruction provided to the participant. The single ex-
ception to this rule concerned the practice phase of the temporal es-
timation task, during which the participants received feedback on
their responses (i.e., their estimated time in milliseconds). The de-
sign yielded a total of 3 (task) 	 2 (RSI) sessions for the entire ex-
periment, and the order of the tasks was determined using a counter-
balanced (Latin square) design. None of the participants performed
more than one session a day, and all of them finished the experiment
within 1 week.

RESULTS AND DISCUSSION

The results are presented in Table 1 and in Figures 8,
9, and 10. Because the effect of outliers is to reduce the
estimated intensity of LRD (e.g., see Beran, 1994, p. 127
for an illustration), prior to analysis we removed outliers
in every time series. For all tasks, anticipatory outliers
were defined as RT 
 100 msec (the “irreducible mini-
mum”; see Woodworth & Schlosberg, 1954). The defin-
ition of slow outliers was task-dependent—that is, RT �
750 msec in the simple RT task, RT � 1,000 msec in the
choice RT task, and RT � 4,000 msec in the temporal
estimation task. The outlier removal procedure resulted
in the elimination of 2.0%, 1.1%, and 0.1% of the data
in the simple RT task, the choice RT task, and the tem-
poral estimation task, respectively. Analyses without
outlier removal yielded results qualitatively and quanti-
tatively similar to those of analyses with outlier removal.
Error responses in the choice RT were not discarded,

since this could potentially disrupt the pattern of se-
quential correlations.

Figure 8 shows the average ACFs based on the time
series for the six conditions. From a visual comparison
between the left-hand column (short RSI) and the right-
hand column (long RSI), it appears that the pattern of se-
rial dependence is not much affected by the different
RSIs used in this experiment (cf. Gilden, 2001). Further-
more, the ACFs for the simple RT task and the choice RT
task look quite similar: For both tasks, the lag 1 autocor-
relation equals about .2 and decays relatively slowly to
low values that are generally still positive up to lag 30. In
contrast, the ACFs for the temporal estimation task (Fig-
ure 8, bottom panel) have very high lag 1 autocorrela-
tions (i.e., � .5) and the autocorrelation is about .2 at
lag 30. In addition, the visual similarity between the
ACFs for the temporal estimation task and the ACF for
1/ f noise presented in Figure 3E is striking.

The log–log power spectra for the six conditions, av-
eraged across participants, are presented in Figure 9. The
results echo those from the ACFs, giving little indication
of an effect of RSI (except, perhaps, in the temporal es-
timation task) and showing similar spectra (slopes �
�.3) for the simple RT task and the choice RT task but
different spectra for the temporal estimation task (aver-
age slope � �.65). These observations were confirmed
by a 2 	 3 analysis of variance with RSI and type of task
as factors and the size of the slope of the best-fitting line
as the dependent variable. There was no effect of RSI
[F(1,5) � 1] and no interaction between RSI and task
[F(2,10) � 1]. There was an effect of task [F(2,10) �
26.03, MSe � .02, p � .001], which t tests confirmed
was attributable to the difference between the estimate
task and the simple RT task [t (11) � 6.47, p � .001] and
to the difference between the estimate task and the
choice task [t (11) � 6.46, p � .001]. There was no dif-
ference in slope between the simple RT task and the
choice RT task [t (11) � 1].

The analyses presented above give a general impression
of the average size and decay of the serial dependence in
each of the six conditions. However, the average pattern of
serial correlations might not be representative of the pat-
tern for the individual participants, and it has indeed been
argued that individual differences in temporal estimation
are so great that averaged results are not very representa-
tive of any particular participant (Woodrow, 1930, p. 490;
Estes, 2002, expressed similar sentiments). The remaining
analyses therefore focus on the results from individual
subjects.

We used competitive ARFIMA modeling to evaluate
statistically the evidence that LRD was or was not present
for each individual time series. As was outlined earlier,
ARFIMA( p, d, q) time series modeling allows for the si-
multaneous maximum likelihood estimation of both
short-range AR and MA [i.e., ARMA( p, q)] parameters
and a long-range parameter d that denotes the level of
fractional integration (see the Appendix for details). The
d parameter quantifies the intensity of LRD, and d � (0,
1/2) for stationary LRD processes. The ARMA and

Table 1
Estimated Values for the Long-Range Parameter d for the

Individual Time Series From Each Experimental Condition,
Provided That the AIC Prefers an ARFIMA(1, d, 1) Model

Over an ARMA(1,1) Model

Participant SS SL CS CL ES EL

P1 .13* .14** �.17 – .14 .20*

P2 – – – .14* – .45***

P3 .23*** – – .12** – .36***

P4 .21*** – – .23*** – .45***

P5 – .04 .11* – .40*** .33***

P6 – .17*** .24** .29*** – –

Note—SS, simple response time (RT), short response–stimulus inter-
val (RSI); SL, simple RT, long RSI; CS, choice RT, short RSI; CL,
choice RT, long RSI; ES, temporal estimation, short RSI; EL, temporal
estimation, long RSI; P, participant. *p � .05. **p � .01. ***p �
.001. Dashes indicate that the AIC preferred the ARMA(1,1) model
over the ARFIMA(1, d, 1) model.
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ARFIMA modeling in this section was performed using
the Ox ARFIMA package (Doornik, 2001; Doornik &
Ooms, 2003; Ooms & Doornik, 1999) and was checked
using the fracdiff package for R.8

As in the simulations reported above, the ARMA(1,1)
model is our simple alternative hypothesis of SRD: Re-
call that it can be conceptualized as an AR(1) process
plus independent white noise. Following the modeling
procedure described in the previous section, we used the
AIC (Akaike, 1974) to compare this alternative hypothe-
sis against the hypothesis of the data’s being generated by
a long-range ARFIMA(1, d, 1) model. As a brief re-
minder, the AIC quantifies the tradeoff between descrip-
tive accuracy and parsimony and can thus be used to de-

termine whether inclusion of the LRD parameter in the
ARFIMA model leads to an increase in log likelihood
that is greater than the punishment for adding the extra
parameter. Consequently, we fitted both the ARMA(1,1)
model and an ARFIMA(1, d, 1) model to each individual
time series and chose the model that had the lowest AIC.

Table 1 represents the results of the individual analyses
in two ways. First, in cases in which the ARMA gave a
lower AIC than did the ARFIMA, the cell is left blank.
Second, in cases in which the ARFIMA gave a better fit,
the table gives the estimated d value, along with test results
(based on the standard error for the parameter estimate) of
whether this value differed significantly from zero. Table 1
shows that according to the AIC, the ARFIMA(1, d, 1) is

1.0

.8

.6

.4

.2

0

1.0

.8

.6

.4

.2

0

1.0

.8

.6

.4

.2

0

1.0

.8

.6

.4

.2

0

1.0

.8

.6

.4

.2

0

1.0

.8

.6

.4

.2

0

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30 0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

SS

CS

ES EL

CL

SL

Lag Lag

Lag Lag

Lag Lag

A
ut

oc
or

re
la

tio
n

A
ut

oc
or

re
la

tio
n

A
ut

oc
or

re
la

tio
n

A
ut

oc
or

re
la

tio
n

A
ut

oc
or

re
la

tio
n

A
ut

oc
or

re
la

tio
n

Figure 8. Average autocorrelation functions for the six experimental conditions. SS, sim-
ple response time (RT), short response–stimulus interval (RSI); SL, simple RT, long RSI;
CS, choice RT, short RSI; CL, choice RT, long RSI; ES, temporal estimation, short RSI; EL,
temporal estimation, long RSI.
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to be preferred over the short-range ARMA(1,1) model in
20 of 36 time series. However, in three of the 20 cases in
which the ARFIMA(1, d, 1) model was preferred over the
ARMA(1,1) model, the resulting d value was not signifi-
cantly different from zero. Thus, for 17 of 36 series we ob-
tained evidence for LRD. To give an idea of the raw con-
tinuous values underlying Table 1, Figure 10 plots the
difference in the value of the AIC between the ARFIMA(1,
d, 1) and the ARMA(1,1) models, positive differences fa-
voring selection of the ARFIMA(1, d, 1) model. We do not

recommend drawing strong conclusions from AIC differ-
ences lower than 2 and consider such values to provide
only weak support for the ARFIMA(1, d, 1) model (cf.
Burnham & Anderson, 2002).

In both Table 1 and Figure 10, it can be seen that the
LRD hypothesis received at least partial support in each
of the three tasks (simple RT, choice RT, and temporal
estimation). For the simple RT and choice RT tasks, the
estimated intensity of LRD is on average much lower
than that for the temporal estimation task. Note, how-

Figure 9. Average log–log power spectra for the six experimental conditions. The dashed line in
each plot has a slope of �1, the solid line is the unweighted least squares best-fitting straight line
through the spectrum, and the numbers indicate the slope of the best-fitting straight line. SS, sim-
ple response time (RT), short response–stimulus interval (RSI); SL, simple RT, long RSI; CS, choice
RT, short RSI; CL, choice RT, long RSI; ES, temporal estimation, short RSI; EL, temporal esti-
mation, long RSI.
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ever, that although d̂ is relatively low, significant d̂ val-
ues are observed for about half the series, and this pat-
tern of results is qualitatively similar for the simple RT
task and the choice RT task. The finding that persistent
serial dependence can be observed in a simple RT task in
which the magnitude of the response is not intentional is
at odds with the theoretical position of Gilden et al.
(1995). Our results prompted D. Gilden (personal com-
munication, February 1, 2004) to perform a reanalysis of
the simple RT data from Gilden et al., and this analysis
showed his simple RT spectrum to be in good agreement
with the simple RT spectrum obtained in the present
study. Thus, both the simple RT data from Gilden et al.
and that from the above experiment show some evidence
of LRD. These results are consistent with Van Orden
et al. (2003); note however, that these serial correlations
were smaller than those found in the Van Order et al.
(2003) study. It should be noted that when serial corre-
lations are small in absolute size, the more complex
model [i.e., the long-range ARFIMA(1, d, 1) model] will
generally have difficulty providing a fit to the data that
is substantially better than the one provided by the sim-
pler short-range ARMA(1,1) model. In addition, the
Monte Carlo simulations reported earlier showed asym-
metric Type I and Type II error rates—that is, ARMA
models were mistakenly identified as ARFIMA models
in only 7.5% of the simulated series (i.e., a Type I error
rate of .075), whereas ARFIMA models were mistakenly

identified as ARMA models in 26.2% of the simulated se-
ries (i.e., a Type II error rate of .262). Thus, the ARFIMA/
AIC method has a conservative bias that favors selection of
the ARMA(1,1) model over the ARFIMA(1, d, 1) model.
On the basis of these considerations, one might argue that
the number of time series classified as ARFIMA series in
the simple RT task and the choice RT task (for which the
absolute size of the serial correlations was not very high)
is actually an underestimate of the true number of
ARFIMA series.

Support for the LRD hypothesis is particularly strong
in the long RSI condition of the temporal estimation
task, in which the long-range ARFIMA(1, d, 1) model
outperformed the short-range ARMA(1,1) model for 5
of 6 participants, and the estimated LRD intensity (i.e.,
d̂ ) was relatively high. The results of the temporal esti-
mation task are consistent with Gilden (2001), who also
found the strongest support for 1/ f a noise in estimation
tasks. A comparison of the short versus the long RSI
condition in the temporal estimation task suggests that
the persistence of serial dependencies does not neces-
sarily depend on response events being closely spaced in
time.

To summarize, ARFIMA analyses of the experimental
data revealed that LRD is present in all three tasks used, al-
though the intensity of the dependence was higher for the
estimation task than for the simple RT and choice RT
tasks.9 The results show that reducing RSI does not in-

Figure 10. The difference in AIC between the short-range ARMA(1,1)
model and the long-range ARFIMA(1, d, 1) model. Positive differences
correspond to a preference for the long-range model. Note that if the
ARFIMA long-range parameter d does not contribute to the fit at all,
the difference in AIC equals �2. See text for details. Each symbol is as-
sociated with a single participant. SS, simple response time (RT), short
response–stimulus interval (RSI); SL, simple RT, long RSI; CS, choice
RT, short RSI; CL, choice RT, long RSI; ES, temporal estimation, short
RSI; EL, temporal estimation, long RSI.
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crease the intensity of the LRD; In fact, in the temporal es-
timation task (and arguably in the choice and simple RT
tasks) we obtained evidence to the contrary. Thus, the per-
sistence of serial dependence is not based purely on tem-
poral contiguity. Also, persistent dependence was found in
the simple RT task, in contrast to previous claims (i.e.,
Gilden et al., 1995), but qualitatively consistent with oth-
ers (Van Orden et al., 2003). In light of the general support
for the LRD hypothesis obtained in the experiment, in the
next section we discuss how the persistent serial depen-
dencies can be generated and explained by simple princi-
ples in psychological models.

Mechanisms for 1/f� Noise
One of our main goals for this article was to study how

psychological models can account for LRD in human
cognition. We believe such a modeling effort to be cru-
cial to an understanding of the necessary and sufficient
conditions for LRD, and even more so because the con-
tribution of the current literature on 1/ f a noise in human
cognition is arguably more empirical than theoretical.

It should be noted that many models have been pro-
posed to account for LRD or 1/ f a noise, especially in the
fields of physics and engineering (see, e.g., Handel &
Chung, 1993; Marinari, Parisi, Ruelle, & Windey, 1983).
However, the models for LRD developed so far are often

not directly applicable to cognitive psychology and have
often been developed in terms specific to the domain of
application (e.g., magnetic noise and noise in semicon-
ductors, photodetectors, and lasers; for more examples,
see Handel & Chung, 1993). The ARFIMA modeling ap-
proach outlined earlier is very useful as a statistical tool
but is too descriptive to serve as an explanation of under-
lying psychological processes. Our aim was to present
some examples of psychological mechanisms that can
generate LRD and to explain how psychological process
models can be adjusted to incorporate these mechanisms.

In the process of exploring possible models for LRD, we
found that the data for cases in which LRD was deemed to
be present (i.e., those in which the ARMA hypothesis gave
an insufficient account in comparison with the ARFIMA
hypothesis) can be generated by a number of different
mechanisms. Thus, even when we accept that a time series
may show LRD, its presence alone does not necessarily
provide strong constraints for theory development and
modeling. To illustrate this important point, we will dis-
cuss several general mechanisms that can produce 1/ f a

noise. Here, we focus on three mechanisms in particular.
First, we will show how the summed output of multiple
short-range processes with different time scales can yield
1/ f a noise within a specific range of frequencies. Second,
we will demonstrate that LRD in psychological time series
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may arise when participants switch between different
strategies during the experiment, particularly in the tem-
poral estimation task. Third, we incorporate the principle
of regime switching in a generic sequential sampling
model that provides an explanation for LRD in the choice
RT task. For all three models, Monte Carlo simulations and
ARFIMA analyses support the claim that these models
generate convincing LRD, at least for time series 1,024 ob-
servations long (which might very well represent an upper
limit for the size of an uninterrupted series of observations
from human subjects performing typical cognitive tasks).
Before outlining the mechanisms and models for LRD in
psychological time series in detail, we review two previ-
ously suggested models of attentional fluctuation that do
not generate 1/ f a noise.

Previous Accounts of Serial Dependence in
Human Cognition: Fluctuations in Attention

Several researchers have suggested that serial depen-
dence in human cognition is caused by fluctuations in at-
tentional resources (e.g., Busey & Townsend, 2001; Gilden
& Wilson, 1995a, 1995b; Laming, 1968; Philpott, 1934).
Laming (1968, pp. 117–119) was one of the first to report
autocorrelations in RTs (see also Foley & Humphries,
1962). In order to account for data from five experiments
showing quickly decaying autocorrelations that remained
significantly different from zero up to about lag 6 and that
were unrelated to the experimental variables, Laming
(1968) proposed that the level of attention paid to the ex-
periment on trial i, Ai , is given by Ai � A � xi , where A
is a constant. The deviation from the constant level of at-
tention A, xi , was assumed to follow a first-order AR
scheme (cf. Equation 4): xi � f1 xi�1 � ei, where f1 � (0,1)
and e is a purely random process. When it is further as-
sumed that the level of attention is inversely related to the
observed RT, the ACF is predicted to decay exponentially.
Thus, Laming’s (1968) model generates SRD, in agree-
ment with his data (see also Botvinick, Braver, Barch,
Carter, & Cohen, 2001, pp. 640–643). Of course, this
model will not generate the persistent sequential correla-
tions observed in the experiment reported here.

Another model of attentional fluctuation was proposed
by Gilden and Wilson to account for streaky performance
(i.e., sequential correlations in binary-valued variables
such as accuracy) in signal detection tasks (Gilden &
Wilson, 1995a) and tasks such as golf putting and dart
throwing (Gilden & Wilson, 1995b). According to their
attention wave theory, accuracy, or hit rate, varies as

where k is the trial number, L is the period, and q is the
phase of the sine wave. This simple model of attentional
waxing and waning can explain streaky performance in
signal detection tasks, since relatively many hits occur
when attention is at a peak and relatively many misses
occur when attention is in a trough (similar ideas can be
found, e.g., in Philpott, 1934). In addition, Gilden and
Wilson (1995a, 1995b) argued that alternative models of

streaky performance based on fatigue and learning are
inadequate. Unfortunately, the simple attentional wave
model does not generate 1/ f a noise, since a sine wave
merely corresponds to a spike in the spectrum and does
not generate the linear spectral slope that characterizes
LRD (this was acknowledged by Gilden, 2001, p. 52).
We will later present what can be thought of as a simple
model of attentional fluctuation that is able to generate
nonstationarity in both hit rate and 1/ f a-like noise in
temporal estimation tasks (in particular, this model as-
sumes that participants switch between different atten-
tional states). 

The preceding examples illustrate that a general ver-
bal explanation of LRD in terms of a waxing and wan-
ing of attention, although intuitively appealing, is too su-
perficial: The critical question is not whether attention
fluctuations cause serial dependence, but rather the spe-
cific manner in which attention must fluctuate to cause
the ACF to decay as a power function (the defining char-
acteristic of LRD). In the following, we will discuss sev-
eral quantitative, psychologically plausible models that
demonstrate what specific kinds of fluctuations are suf-
ficient to produce LRD.

Multiscaled Models: Superposition of Short-
Range Processes

Perhaps the most straightforward way to produce 1/ f a-
like noise is to sum short-range processes that have dif-
ferent characteristic time scales (see, e.g., Jensen, 1998,
p. 9; Van der Ziel, 1950; note that this is a linear model
for 1/ f a noise). An intuitively appealing example is given
by Richard Voss (in Gardner, 1978): Consider keeping
track of the total number of spots on the up faces of three
dice. For example, if the up faces of the first, second, and
third die show two, five, and three spots, respectively, then
the value of the dependent variable equals 10. The first die
is thrown anew for every observation, the second die is
thrown anew only every now and then, and the third die is
thrown anew very rarely. Thus, every die has a different
time scale, and it can be shown that the sum of such pro-
cesses leads to 1/ f a-like noise across a range of frequen-
cies, the range being dependent on the number of processes
and the parameter of each process (see, e.g., Kasdin, 1995).

To illustrate this process, we now present a simple ver-
sion of the multiscaled randomness model (Hausdorff &
Peng, 1996), developed to provide a general explanation
for 1/ f a-like noise in biological systems. Hausdorff and
Peng argued that in many biological time series overall
behavior is influenced by systems operating on widely
different time scales. For instance, heart rate fluctuations
are regulated beat by beat via the autonomic nervous sys-
tem, but also show much longer (e.g., circadian) rhythms
via hormonal systems (Hausdorff & Peng, 1996). Ward
(2002) has presented a similar case for multiscaled ran-
domness in cognitive psychology, identifying component
processes as fast fluctuating preconscious processes,
slowly fluctuating conscious processes, and unconscious
processes that operate on an intermediate time scale.

hit rate k L   sin(2 / + ),μ p q
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Pressing (1999b) argued that processes with different time
scales are quite common in theories of human cognition.
For instance, in memory research one often distinguishes
processes associated with fast-acting iconic memory,
short-term memory, and slow long-term memory. In re-
search on attention, the presence of automatic, conscious,
and sustained attention is often assumed. All of these hy-
pothesized processes typically differ with respect to their
time course of decay.

Consider three different systems, S1, S2, and S3, that
jointly determine the observed behavioral time series X(t):
X(t) � S1(t ) � S2(t ) � S3(t ). In analogy to the die-rolling
example discussed above, assume that all three series are
switching series—that is, at each unit of time the proba-
bility that the system value will change is pswitch �
1�e (�1/t ), where t is the time constant of that system. Fig-
ure 11 shows the component time series (N � 1,024) of
the three systems, with t1 � 1, t2 � 10, and t3 � 100.
Each of the component series in Figure 11 has an expo-
nentially decaying ACF and hence produces SRD. In
fact, a process with relaxation rate t generates the same
serial dependence as a normalized AR(1) process:

The series X(t), obtained by summing the three series
from Figure 11, is shown in Figure 12A. Figure 12B
shows the average power spectrum based on 1,000 real-

izations of the multiscaled model, and the average ACF
is plotted in Figure 12C. Both the slowly decaying ACF
and the linearity of the spectrum suggest that the summed
series X(t) is long-range dependent for the range of fre-
quencies considered here. On the basis of AIC model se-
lection, the long-range ARFIMA(1, d, 1) model is pre-
ferred over the short-range ARMA(1,1) model in 96.7%
of the series generated by the multiscaled model.

Methods very similar to the one mentioned here have
been suggested to generate 1/ f a noise. Granger (1980; see
also Beran, 1994) showed that aggregation of k AR(1)
processes by random sampling of the AR parameter fk
from a beta distribution can lead to 1/ f a noise. This ex-
planation of LRD is popular in the fields of economics
and finance (see, e.g., Baillie, 1996). A multiscaled model
for LRD in synchronous tapping has also been suggested
by Pressing (1999b), in which the outputs from several
MA processes operating on the same error process are
summed. That is, the current value of an observation is de-
termined partly by MA processes of widely differing win-
dow size (Pressing, 1999b). A recent model for the regu-
lation of heart rate through homeostasis (Ivanov, Nunes
Amaral, Goldberger, & Stanley, 1998) is also based on the
principle that 1/ f a noise originates from a combination of
processes that operate on different time scales.

The fact that a mixture of exponentials (i.e., short-range
processes) can approximate a power function (i.e., a long-
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Figure 12. The multiscaled randomness model with N � 1,024. (A) An example multi-
scaled time series obtained by summing the time series from Figure 11. (B) The average mul-
tiscaled log–log power spectrum based on 1,000 realizations. The dashed line has a slope of
�1. (C) The average multiscaled autocorrelation function. 
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range process) is well recognized in psychology. Notable
recent work on this issue has focused on the possibility that
the power law of practice is in fact an exponential law of
practice generating a power function through averaging
over participants (Brown & Heathcote, 2003; Heathcote,
Brown, & Mewhort, 2000; see also Wixted & Ebbesen,
1997, for a discussion of similar issues with respect to the
power law of forgetting). The functions of interest in this
paper are just autocorrelation functions rather than stan-
dard psychological functions of learning or practice.

The main advantage of explaining LRD using multi-
scaled models is that the approach is conceptually straight-
forward and very general. The main disadvantage is that as
series length increases, more and more short-range pro-
cesses with long time scales need to be added to keep the
spectrum from flattening, a procedure that is not very par-
simonious. For example, extending the length of a time se-
ries generated by a multiscaled model with fixed compo-
nent processes results in fewer detections of 1/ f a noise,
whereas the reverse pattern would be expected in the case
of legitimate LRD. Nevertheless, it can be argued that there
is a limit on the length of an undisrupted series that can be
gained from an individual, such that only three or four pro-
cesses will ever be needed to account sufficiently for any
time series from cognitive activity in humans.

Shifts in Strategy
Thus far, we have tacitly assumed that the time series

under scrutiny for LRD has a constant mean and vari-
ance (i.e., second-order or weak stationarity; see Priest-
ley, 1981). The assumption of stationarity is of crucial
importance for the measures of LRD discussed in this ar-
ticle, since a violation of stationarity undermines the use
of the ACF and the power spectrum. Global or local
trends in a time series, such as those due to effects of
practice or fatigue, spuriously elevate the ACF (see, e.g.,
Huitema & McKean, 1998) and can result in a nonsta-
tionary series, with SRD misdiagnosed as long-range de-
pendent (see, e.g., Lobato & Savin, 1998; for details on
nonstationarity and its effects on estimating LRD, see,
e.g., Beran, 1994, pp. 141–142; Bhattacharya, Gupta, &
Waymire, 1983; Dang & Molnar, 1999; Gao, 2001; Gi-
raitis, Kokoszka, & Leipus, 2001; Heyde & Dai, 1996;
Künsch, 1986). There is a thin line between nonstation-
arity and LRD, and it is especially difficult to distinguish
the two when the series is relatively short and the non-
stationarity takes the form of random drifts over random
periods of time (Beran, 1994, p. 142).

Because of the similarities between 1/ f noise and non-
stationarity, it has been suggested that 1/ f-like fluc-
tuations in a time series might in fact originate from
nonstationarity—that is, shifts in the mean or the vari-
ance of the observed process. In the literature on eco-
nomics and finance, such a state of affairs is known as
regime switching (see, e.g., Kim & Nelson, 1999). For
mathematical details on why regime-switching models
can mimic LRD, see Diebold and Inoue (2000), Gourier-
oux and Jasiak (2001), and A. Smith (2002).

Regime-switching models can offer a psychological
explanation for the persistent correlations observed in
the temporal estimation task if it is assumed that partic-
ipants change the strategy they use to complete the task
during the course of the experiment. Recall that in the
temporal estimation task, the participants had to estimate
1,024 consecutive time intervals of 1 sec, without any
breaks. This task is certainly very tedious and may there-
fore invite the use of different strategies. For instance,
Strategy A might be to count (i.e., internally pronounce
a number or a word such as “Mississippi”); Strategy B,
to visualize a ticking clock; Strategy C, to use the free
left hand to tap a rhythm; Strategy D, to construct a se-
quence of arbitrary phonemes that are judged to take
about a second to pronounce internally; and so on. The
strategy shift model assumes that every strategy is em-
ployed for only a limited period of time (i.e., based on
number of trials), given by sampling from a uniform dis-
tribution of usage times from 1 to 100; thus, although
limited, these periods are quite long on average. Each
strategy also has its own temporal criterion a, sampled
uniformly from the interval [250, 350], which deter-
mines when enough temporal information has accumu-
lated to give a response. This means that the strategy
shift model produces local plateaus in performance. It is
further assumed that the speed v with which the system
approaches the temporal criterion is variable (e.g., using
the same Strategy A, participants internally pronounce
the same number at different speeds on different trials)
and that this variability follows an AR(1) process vt �
v1 �f1(vt�1�v1)�e(t) with f1 � .5, v1 � 2 (i.e., the base-
line speed), and e(t) white noise with mean 0 and stan-
dard deviation 0.1. The RT on trial t is then simply given
by at /vt. Figure 13A shows how the temporal threshold
shifts across the course of the time series (N � 1,024),
and Figure 13B shows the speed at which the temporal
threshold is approached. The resulting time series X(t) is
plotted in Figure 14A. As can be seen from Figures 14B
(i.e., the average power spectrum for 1,000 realizations
of the strategy shift model) and 14C (i.e., the average
ACF), the strategy shift model generates persistent pos-
itive serial correlations. Both the approximately linear
log–log power spectrum and the power-function ACF
suggest that these serial correlations show LRD. This is
confirmed using the more constrained AIC model selec-
tion, in which the long-range ARFIMA(1, d, 1) model is
preferred over the short-range ARMA(1,1) model in
98.4% of the series generated by the strategy shift model.

The basis of the strategy shift model is similar to that
of the multiscaled randomness models above, in which
several independent processes with different temporal
characteristics contribute to the time series. Nonetheless,
the strategy shift model of serial dependence in tempo-
ral estimation has a number of advantages over the other
models presented here. First, it is consistent with recent
observations that data from many temporal estimation
tasks appear to be nonstationary (Madison, 2001) in that
mean performance changes substantially over the course
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of the experiment. Second, the model provides an expla-
nation of why the serial correlations are much more pro-
nounced in the temporal estimation tasks than in the sim-
ple or choice RT tasks (see also Pressing & Jolley-Rogers,
1997). The estimation task allows participants to actively
switch between different strategies, and this leads to per-
sistent serial correlations or LRD. In contrast, the nature
of the task is more reactive in the simple and choice RT
experiments, meaning that much less of the variance in the
task will be due to strategy employment or strategy shifts.
A final advantage of the strategy shift model is that it may
also be conceptualized as a model for attentional fluctu-
ation, and thus retains theoretical links with earlier ex-
planations of 1/ f a noise (Gilden & Wilson, 1995a) and
short-range sequential correlations in psychological tasks
(see, e.g., Laming, 1968). In this view, attention does not
fluctuate in a continuous manner, but rather shifts from
one plateau to the other (cf. Van der Maas, Dolan, &
Molenaar, 2002, for a similar interpretation in terms of
speed–accuracy phase transitions).

Fluctuations in Speed–Accuracy Criteria: A
Sequential Sampling Approach

The observation of positive autocorrelations in often-
modeled tasks such as choice RT raises the question of
how psychological information processing models can
be adjusted to account for these data. We will limit our
discussion to the class of sequential sampling models,
since these models have arguably been most successful
in describing behavior in choice RT tasks in detail (see,
e.g., Laming, 1968; Ratcliff, 1978; Ratcliff & Rouder,
1998; Ratcliff & Smith, 2004; Ratcliff, Van Zandt, &
McKoon, 1999; Townsend & Ashby, 1983; Van Zandt,
Colonius, & Proctor, 2000). The most straightforward

and simple solution to account for serial dependence is
to “add on” an attentional effect to the outcome of the
decisional process (e.g., as suggested by Laming, 1968).
A more principled and interesting approach is to try to
incorporate the serial dependence in the model of infor-
mation processing itself.

A first attempt to account for serial dependence using
a sequential sampling model was undertaken by Laming
(1979a, 1979b, 1979c). Laming asserted that partici-
pants in an RT task have to decide when to begin sampling
information from the display. Because of uncertainty as-
sociated with the time of stimulus onset, participants may
sometimes start the sampling process early and sometimes
late. Laming assumed that participants estimate the time
of stimulus onset on the basis of a limited number of
stored RSIs from previous presentations. The informa-
tion in the store of RSIs varies slowly over trials, and this
mechanism produces an exponentially decaying ACF
that provided a good fit to the small and transient auto-
correlations observed in several experiments (Laming,
1979a). In order to study how a simple sequential sampling
model might generate autocorrelations that resemble those
observed in our experiment, we used a random walk model
that can be considered a generic sequential sampling
model. Note that the random walk of the generic sequen-
tial sampling model describes how stimulus information is
accumulated within a single trial to give an RT value for
that trial, and it should not be confused with the random
walk across trials described in the introduction (i.e.,
Equation 3).

Figure 15 shows a random walk process that provides
a description of the decision process on a single trial. At
every discrete unit of time, information is sampled from
the stimulus and taken as evidence for either Choice A or

Figure 13. Fluctuations in parameters for the strategy shift model. (A) Example fluctuation of the
temporal threshold criterion. (B) Example fluctuation of the speed to the temporal threshold. See
text for details.
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Choice B. The sampling process is terminated when one
choice alternative has accumulated some criterion amount
of evidence more than the other alternative has (the crite-
ria are represented as boundaries on the random walk),
and the response that corresponds to the former choice
alternative is made. The random walk model for choice
RT has a number of parameters that might be assumed to
vary over trials. For instance, one might hypothesize that
either the probability of correctly evaluating the sampled
stimulus information (i.e., p) or the starting point of the
process (i.e., z) varies across trials (cf. Ratcliff & Rouder,
1998). By further assuming that the fluctuations in such
parameters are not random but follow, say, an AR(1), 0 �
f1 � 1 process, the random walk model can produce pos-
itive serial dependence.

In the present implementation, we focused on the pa-
rameter a that corresponds to the distance between the
boundaries. Boundary separation is often used to model
the speed–accuracy tradeoff, in which wide boundaries
lead to more accurate responses and longer decision laten-
cies than do narrow boundaries (see, e.g., Ratcliff, 1978;
Ratcliff & Rouder, 1998). Thus, the distance between the
response boundaries reflects how careful or conservative
the system is determined to be. Many factors (e.g., the dif-
ference between the perceived and desired levels of accu-
racy or speed, practice, fatigue, and expected task diffi-

culty) might change the level of conservatism during the
course of an experiment. We studied the serial correlations
generated by the random walk model when the boundary
separation a occasionally shifts (as in the regime-switching
model discussed previously), and the drift toward the cor-
rect boundary (i.e., the probability of taking a step toward
the correct boundary in the discrete random walk model)
follows a simple AR(1), 0 � f1 � 1 process.

Figure 16A shows the result of a realization (N �
1,024) of the random walk model where z (i.e., the start-
ing point) is always halfway between the two boundaries
and the boundaries have a probability of .01 of switching
to a new separation on each trial. When a switch oc-
curred, the new value of the boundary separation was
sampled from a uniform distribution of 20–40. Also, p
(i.e., the probability of taking a unit step to the top bound-
ary) varied as an AR(1) process (as in the regime-
switching model)—that is, pt � p1 � f1( pt�1 �p1) �
e(t), with f1 � .5, p1 � .65 (i.e., the baseline p), and e (t)
white noise with mean 0 and standard deviation .05. To
ensure that p did not take on any unreasonable values, it
was constrained to lie between .5 and .8; if p drifted out-
side these values, it was set to the limit which it had ex-
ceeded. From Figure 16C, it can be seen that the average
ACF of the random walk model drops to less than .2 at
the first lag and then decays slowly as the number of in-

Figure 14. The strategy shift model with N � 1,024. (A) An example strategy shift time se-
ries based on fluctuations shown in Figure 13. (B) The average strategy shift log–log power
spectrum based on 1,000 realizations. The dashed line has a slope of �1. (C) The average
strategy shift autocorrelation function.
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tervening trials increases. The absolute value of the ACF
at lag 1 is not very large, and this reflects the fact that the
dependence caused by the fluctuations in boundary sep-
aration a and drift probability p are diluted by the white
noise from the stochastic accumulation process. A spec-
tral analysis (Figure 16B) shows that the incline for the
lower frequencies is steeper than that for the higher fre-
quencies. On the basis of a visual inspection, the ob-
served spectra for the choice task also appear to have a
steeper incline at the lower frequencies than at the higher
frequencies (cf. Gilden, 2001, for empirical spectra that
are curvilinear with 1/ f noise for the low frequencies only).
However, the main interest here is on the behavior of the
sequential sampling model with respect to the lower fre-
quencies: An increase of spectral power at these lower
frequencies may indicate that a long-range ARFIMA
model is more appropriate than a short-range ARMA
model. Indeed, on the basis of AIC model selection, the
long-range ARFIMA(1, d, 1) model is preferred over the
short-range ARMA(1,1) model in 64.8% of the series
generated by the generic sequential sampling model.
Thus, by incorporating the principle of regime switching
in boundary separation, the generic sequential sampling
model yields structure at the lower frequencies that re-
sembles LRD. It is also noteworthy that the average esti-
mated intensity of the LRD (i.e., mean d̂ � .195) is simi-
lar to that empirically observed in the choice RT task.10

Other Explanations of 1/f� Noise
1/ f a-like noise may be present in many different sys-

tems, but it can also be generated by many different mech-
anisms, a mere subset of which was outlined above. It ap-
pears that the presence of LRD per se cannot be used to
uniquely identify a specific underlying psychological pro-
cess or structure. This problem might possibly be over-
come in the future, when competing models are developed
to such a degree that their adequacy in explaining se-

quential correlations can be qualitatively or quantitatively
assessed. Here, we would like to mention two other con-
ceptual approaches that can be used as explanatory frame-
works for LRD.

The first type of model for LRD assumes that systems
“self-organize” to reach a critical state in which small
perturbations can sometimes have dramatic conse-
quences. These models go under the generic label of self-
organized criticality (SOC; see, e.g., Davidsen & Schuster,
2000; see Jensen, 1998, for an excellent introduction) or
slow-driving interaction dominated thresholded systems
(SDIDTS; Jensen, 1998). The notion of SOC was first in-
troduced to explain 1/ f a noise (Bak, Tang, & Wiesenfeld,
1987; but see Jensen, Christensen, & Fogedby, 1989, and
Jensen, 1998). Among the phenomena modeled using
SOC are earthquakes, evolution, and sandpile dynamics.

Despite the fact that SOC can generate 1/ f a noise
under certain conditions, Jensen (1998, p. 13) noted,
“Although 1/ f-like spectra might be indicative of critical
behavior, they do not guarantee it. There are plenty of
ways to produce 1/ f spectra without any underlying crit-
ical state . . .” To our knowledge, the SOC approach has
not been applied to 1/ f noise in human cognition (but see
Usher, Stemmler & Olami, 1995, for a population of 1/ f
fluctuating neurons showing SOC on a global scale).

The second type of conceptual framework we mention
here is based on the idea that human cognition has become
adapted to the statistical structure of the environment.
From this point of view, a finding of structured 1/ f a noise
in human cognition is not surprising, given the supposed
ubiquity of 1/ f a noise in the physical domain. Anderson
and Schooler (1991) showed that both the availability of a
memory trace (i.e., performance in a memory task) and the
probability of needing that trace (i.e., the statistical struc-
ture of the environment) exhibit power law relations with
respect to frequency, recency, and the pattern of prior ex-
posures. If the time course of forgetting indeed follows a
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Figure 15. The generic sequential sampling model for a two-choice response
time task. See text for details.
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power function (see, e.g., Wixted & Ebbesen, 1997), we
might speculate that previous performance in estimation
tasks can influence later performance in a power law
fashion—for instance through feedback based on stored
memory traces that contain information on previous
performance—thus giving rise to an ACF following a
power function (G. D. A. Brown, personal communica-
tion, July 19, 2001). Similar ideas regarding scale invari-
ance in human cognition have recently been put forward
by G. D. A. Brown et al. (2002).

GENERAL DISCUSSION

The study of LRD has attracted a lot of attention, most
predominantly in fields such as economics, physics, and
statistics. Recently, LRD, or 1/ f a noise, has also been re-
ported across a range of cognitive tasks (see, e.g., Gilden,
2001; Van Orden et al., 2003), and it has been claimed that
1/ f a noise provides a new perspective on human cogni-
tion. The three major aims of this article were (1) to clar-
ify the defining characteristics of processes that are long-
range dependent, (2) to promote the use of SRD as the
simple alternative hypothesis in statistical testing for LRD
using ARFIMA time series modeling and AIC model se-
lection, and (3) to use psychological models and concepts
to explore how LRD might originate in a psychological
time series.

With respect to the first objective, we felt that a clarifi-
cation of long-range processes (or 1/ f a noise) was needed
in terms of their defining characteristics. Most of the ex-
tant literature outside the field of psychology is mathe-
matically dense, published in journals such as Physical
Review and Physica, and hence not easily accessible to the
cognitive psychologist. In contrast, most papers published
on long-range processes in human cognition tend to pres-
ent only the most basic result (i.e., a plot of the log–log
power spectrum), perhaps under the assumption that the
interested reader can consult Physical Review for more
information. In this article, we have attempted to strike
a middle ground between these two extremes, presenting
the characteristics of long-range processes without shy-
ing away from the most informative details, and refer-
ring to other work for rigorous mathematical proofs. The
most important result from the extended LRD literature
we presented is that the ACF for SRD processes falls off
exponentially, whereas the ACF for LRD processes falls
off as a power function. In addition, we argued that LRD
is not necessarily indicative of nonlinearity or chaos (cf.
Kaplan, 1999).

The second objective of this article was methodologi-
cal. We demonstrated by simulation that the most popu-
lar measure for LRD used in psychology (i.e., the as-
sessment of the size of the slope of the best-f itting
straight line through the log–log power spectrum) is in

Figure 16. The generic sequential sampling model with N � 1,024. (A) An example se-
quential sampling time series. (B) The average sequential sampling log–log power spectrum
based on 1,000 realizations. The dashed line has a slope of �1. (C) The average sequential
sampling autocorrelation function.
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no way conclusive, since it is unduly affected by pro-
cesses that are short-range dependent. Because spurious
elevation in the presence of SRD is a general weakness
of most LRD measures, we proposed that in order to es-
tablish the presence of 1/ f a noise or LRD in human cog-
nition it is necessary to test against the hypothesis of
SRD, provided, for instance, by a first-order AR model
plus additive white noise [i.e., an ARMA(1,1) process].

We advocated the use of ARFIMA( p, d, q) time series
modeling as a principled method that allows for inferen-
tial testing of LRD. In an ARFIMA( p, d, q) time series
model, the contribution to the observed serial dependen-
cies of both short-range processes (through p AR pa-
rameters and q MA parameters) and a long-range pro-
cess (through fractional parameter d ) are estimated
simultaneously. Furthermore, by using maximum likeli-
hood estimation of the parameters, it is possible to use
the AIC (Akaike, 1974) as a tool for selecting the most
appropriate model. That is, the AIC can be used to quan-
tify whether inclusion of the extra-long-range param-
eter d to a short-range ARMA(1,1) model is warranted
on the basis of the amount of increase in descriptive ac-
curacy. We demonstrated by simulation that this proce-
dure is capable of discriminating between noisy long-
range and short-range processes that are very difficult to
distinguish by eyeballing the power spectra.

The final objective of this article was to elaborate on
the conceptual implications of 1/ f a noise in human cog-
nition. Empirically, we found many current results on
1/ f a noise in the psychological literature to be contra-
dictory, and hence we designed an experiment to inves-
tigate two of the most important controversies: the effect
of type of task and the effect of mean RSI. The size of the
serial dependence was similar for the simple RT and
choice RT tasks but was considerably larger for the tem-
poral estimation task. We attribute an earlier reported
null result of no serial dependence for the simple RT task
(Gilden et al., 1995) to a potential large number of an-
ticipatory responses in that study. Decreasing RSI did
not lead to an increase in serial dependence; for the tem-
poral estimation task, decreasing RSI even led to a de-
crease in serial dependence. From this, we conclude that
for the RSIs used here, the serial dependence is not based
on temporal contiguity per se. ARFIMA analyses of the
experimental data showed support for the presence of
LRD in simple RT, choice RT, and temporal estimation.
The estimated intensity of LRD was highest for the tem-
poral estimation task.

Theoretically, we demonstrated that given time series
of limited length, as are those collected in cognitive psy-
chology, LRD can be generated by a number of different
mechanisms. One of the most popular explanations for
the phenomenon of LRD in economics and finance is the
linear superposition or the aggregation of short-range
processes (see, e.g., Granger, 1980). Using ARFIMA
analyses and plots of the average ACF and power spec-
trum, we demonstrated that the summed impact of three
short-range processes with different time scales can gen-

erate 1/ f a-like noise in a series of 1,024 observations.
The constituent short-range processes are not directly ob-
served and, hence, are often left unspecified, but we can
speculate that in psychological time series they would cor-
respond to attentional fluctuations, changes in motivation,
and the combined effects of fatigue and practice (cf. Ward,
2002).

A second possible explanation for LRD in psychology
is that the participants use different strategies throughout
the experiment. For the temporal estimation task, we im-
plemented this idea using a regime-switching model and
showed that the average ACF and power spectrum, as
well as ARFIMA analyses, all indicated that this model
produces LRD. The notion that participants use different
strategies during the course of an experiment gains cred-
ibility when the task either is very tedious or can be per-
formed in many different ways. The temporal estimation
task, particularly in the long RSI condition, meets both
requirements. The regime-switching model for the tem-
poral estimation task illustrates that LRD might come
about through inconsistency of mental set, rather than
through consistency of mental set, as suggested by Gilden
(2001).

In order to model the small but persistent serial corre-
lations observed in the choice RT task, we used a generic
sequential sampling model and incorporated dependen-
cies in the model’s parameters across trials that resemble
a regime-switching mechanism. More specifically, we as-
sumed that the level of conservatism (i.e., the position on
the speed–accuracy tradeoff function) fluctuates over
time. When conservativeness, as quantified by the
boundary separation, occasionally jumps to a new level,
the generic sequential sampling model can generate LRD.
In addition, the noise in the accumulation process of the
sequential sampling model causes the intensity of the
LRD to be lower than that of the regime-switching model
for the temporal estimation task, in consistency with the
empirical results.

In sum, it is certainly the case that the novel research
programs used in the study of long-range processes in
human cognition have recently generated a lot of interest.
In this article, ARFIMA time series modeling and AIC
model selection are shown to provide evidence of the pres-
ence of LRD across a range of cognitive tasks (i.e., sim-
ple RT, choice RT, and temporal estimation). We have out-
lined two very general mechanisms for producing LRD
(i.e., multiscaled randomness and regime switching) and
implemented the notion of regime switching in a generic
sequential sampling model to account for persistent cor-
relations in a choice RT task. Thus, this work provides a
methodology to diagnose and quantify the presence of
LRD in psychological time series and, in addition, our re-
sults point to quite general explanations of the presence
of LRD across a range of psychological tasks. We believe
the use of a robust estimation method and the construction
of quantitative psychologically interpretable models can
greatly enhance our knowledge of how current perfor-
mance depends on performance in the past.
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NOTES

1. The Internet source http://www.nslij-genetics.org/wli/1fnoise/
gives an ordered summary of the literature and provides many more ex-
amples that attest to the ubiquity of 1/ f noise.

2. Analyses are often carried out on residual RTs that can be obtained
by subtracting the mean RT for each condition from the corresponding
observations—that is, on the error variance that remains after the treat-
ment effects have been removed from the data.

3. Another, less popular definition of a long-range process is that the
variance of its sample mean decreases at a rate slower than n�1 (Beran,
1994).

4. It is of interest that a description in the frequency domain and one
in the ACF are related through the Wiener–Khinchin theorem. From this
celebrated theorem, it follows that the normalized power spectral den-
sity function, S( f ), is the Fourier transform of the autocorrelation func-
tion, C(k): 

This means that Figures 2 and 3 (ACFs, time domain) contains the same
information as Figures 4 and 5 (power spectra, frequency domain), and
one can be obtained from the other through transformation.

5. Equation 14 implies that C(k) and mck�a are asymptotically equal
(see, e.g., Apostol, 1966, p. 396), a relation that can be symbolically in-
dicated by writing C(k) ~ mck�a as nÆ�.

6. This was pointed out to us by Jerry Busemeyer.
7. This result finds practical application in the regulations of the In-

ternational Association of Athletics Federations (IAAF), which state
that a runner is to be disqualified if he or she leaves the starting posi-
tion before 100 msec have elapsed after the starting signal.

8. The ARFIMA package, written in the matrix programming lan-
guage Ox (Doornik, 2001), is available at http://www.nuff.ox.ac.uk/
Users/Doornik/, and the R fracdiff package, maintained by Friedrich
Leisch, can be obtained from http://cran.r-project.org.

9. Quadratic detrending of the series flattens the lowest frequencies,
and this is inconsistent with the ARFIMA(1, d, 1) model. Hence, such
preprocessing made it more difficult to distinguish between the com-
peting models. The issues of nonstationarity, 1/ f noise, and detrending
is in need of further study.

10. Although not shown, the accuracy rates and RT distributions for the
sequential sampling model reflected those found in the choice RT experi-
ment.
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APPENDIX
Fractional Differencing and the ARFIMA Model

The ARFIMA( p, d, q) model consists of an ARMA(p, q) component for the quantification of short-range
processes and a fractional differencing parameter d for the quantification of a long-range process. Here, we
first describe the process of fractional differencing in the absence of any short-range processes [i.e.,
ARFIMA(0, d, 0) or fractionally differenced white noise] and then briefly consider the more complete model.

Recall that differencing a random walk series, say, Xt , results in a white noise series, et. This can be for-
mulated as

(A1)

where � is the differencing operator and B is the backward shift operator defined as BXt � Xt�1 (see Equa-
tion 3). Thus, 

and so on. In the case in which d can take on integer values only, incorporating � in the ARMA( p, q) model
yields the traditional Box and Jenkins (1970) ARIMA( p, d, q) time series models. For instance, ARIMA(0,
0, 0) is a white noise process and ARIMA(0, 1, 0) is a random walk process. The ARIMA approach can be
extended by allowing a series to be differenced d times, where d can take on real values. Using binomial se-
ries expansion (see, e.g., Apostol, 1966, p. 441), the fractional differencing operator �d is given by

with binomial coefficients

where G (
) is the gamma function (Beran, 1994). Thus, applying fractional differencing to a time series Xt is
described as

(A2)

(Hosking, 1984). If �dXt is a white noise process (i.e., �dXt � et or Xt � ��det, where et is a purely random
process), then Xt is an ARFIMA(0, d, 0) process and is called fractionally differenced white noise. Xt is sta-
tionary provided that �1/2 � d � 1/2. If d � 0, Xt is long-range dependent with an ACF whose asymptotic
behavior is given by

(A3)

and for the spectral density,

(A4)

For processes with finite variance, d � (0,1/2) is related to self-similarity parameter H (Hurst, 1951; Man-
delbrot & Van Ness, 1968) as d � H�1/2 (Taqqu & Teverovsky, 1998). Also, if the spectrum is given by 1/ f a,
d � 1/2a—that is, in the log–log power spectrum d is half the (positive) value of the spectral slope. The
ARFIMA(0, d, 0) process that is long-range dependent and stationary for d � (0,1/2) can be extended to in-
corporate short-range processes [i.e., ARMA( p, q) processes]. The complete ARFIMA( p, d, q) process may
be described as a time series Xt , satisfying

(A5)

where m is the series mean (Hosking, 1984). An alternative and more concise formula is to define the
ARFIMA( p, d, q) model as

(A6)

where F (B) � 1�f1B� . . . �fpBp and Q(B) � 1�q1B� . . . �qq Bq specify the AR and MA polynomials, re-
spectively (see, e.g., Beran, 1994), and et is a purely random process with E(et ) � 0 and variance se

2. For sta-
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APPENDIX (Continued)

tionarity of the ARMA part of the model, it is further required that the roots of F (z) � 0 and Q(z) � 0 lie out-
side the unit circle (see, e.g., Priestley, 1981, pp. 132–135). As was noted by Beran (1994), the ARFIMA( p,
d, q) process might be conceptualized as fractionally differenced white noise [i.e., ARFIMA(0, d, 0)] passed
through an ARMA( p, q) filter. The ACF and spectral density of the ARFIMA( p, d, q) process are asymptot-
ically equal to the ACF and spectral density of the ARFIMA(0, d, 0) process, since the behavior at high lags
(low frequencies) is determined exclusively by the long-range parameter d. Further details on the ARFIMA(p,
d, q) process and the exact Gaussian maximum likelihood procedure used here to estimate its parameters can
be found elsewhere (e.g., Baillie, 1996; Beran, 1994; Doornik & Ooms, 2003; Hosking, 1981, 1984; Ooms &
Doornik, 1999; Sowell, 1992a, 1992b).

(Manuscript received July 12, 2002;
revision accepted for publication July 1, 2003.)
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