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We learn aboutcategories in a varietyof ways. Sometimes
we are told the category label prior to viewing the object—
for example, when the excitedparent spots a deer crossing
the road and exclaims, “Look, there’s a deer.” Other times,
we view objects, make categorization responses, and re-
ceive feedback.For example, thechildmight spot some four-
leggedfurry objectand exclaim,“Look, there is a deer.” The
parent then verifies whether or not this observation is cor-
rect.

Although we learn about categories in a number of dif-
ferent ways, nearly all research on category learning uses
an approach in which a single stimulus is presented, the ob-
server is required to generate a response, and corrective
feedback is provided (hereafter called “feedback training”).
A few studies have examined a different approach, in
which the stimulus and the category label are presented si-
multaneouslyand no response is required (hereafter called
“observational training”; e.g., Estes, 1976, 1994; Izawa,
1967; Reber & Millward, 1968). Performance in these ob-

servational conditionsdiffered from performance in stan-
dard feedback training conditions in the following ways.
First, observational training led to superior performance
early in learning, but later in learning performance was
about the same or there was a slight advantage for feed-
back training (from Estes, 1994). Unfortunately, however,
it is impossible to determine the locus of the performance
difference in these studies since the feedback and observa-
tional conditionsdiffered in two importantways. First, dur-
ing standard feedback training a response is required,
whereas in observational training no response is required.
Second, during feedback training the identity of the cor-
rect category is revealedafter the response is made, whereas
in observational training the category label is presented
before the stimulus appears.

A major goal of the present study was to disentangle this
confound by combining factorially two levels of motor re-
sponse (response vs. no response) with two levels of train-
ing type (category label before stimulus vs. category label
after stimulus). Note that traditional feedback training is
equivalent to our response/after condition,whereas obser-
vational training is equivalent to our no response/before
condition.To our knowledge, no previous studies have in-
cluded response/before or no response/after conditions.

A variety of recent empirical and theoretical results
suggest that the effects of these experimentalmanipulations
might be different dependingon the specific category struc-
tures that are chosen. In this article, we focus on two differ-
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ent types of category structure (Ashby & Ell, 2001). Rule-
based category learning tasks are those in which the cat-
egory structures can be learned via some explicit reason-
ing process. Frequently, the rule that maximizes accuracy
(i.e., the optimal rule) is easy to describe verbally (Ashby,
Alfonso-Reese, Turken, & Waldron, 1998). In the most
common applications,only one stimulus dimension is rel-
evant, and the observer’s task is to discover this relevant
dimensionand then to map the different dimensionalvalues
to the relevant categories. Rule-based tasks have a long
history in cognitivepsychology, and not surprisingly they
have been popular with proponents of the so-called clas-
sical theory of categorization, which assumes category
learning is the process of discovering the set of necessary
and sufficient conditions that determine category member-
ship (e.g., Smith & Medin, 1981).

Information-integrationcategory learningtasksare those
in which accuracy is maximized only if information from
two or more stimulus components (or dimensions) is inte-
grated at some predecisional stage (Ashby & Gott, 1988).

Perceptual integration could take many forms—from
treating the stimulus as a Gestalt to computing a weighted
linear combination of the dimensional values. However, a
conjunctionrule (e.g., “Respond A if the stimulus is small
on dimensionx and small on dimensiony”) is a rule-based
task rather than an information-integration task because
separate decisions are first made about each dimension
(e.g., small or large) and then the outcome of these deci-
sions is combined (integration is not predecisional). In
many cases, the optimal rule in information-integration
tasks is difficult or impossible to describe verbally (Ashby
et al., 1998). Information-integration tasks have been fa-
voritesof exemplar theorists,who argue that categorization
requires accessing the memory representations of every
previously seen exemplar from each relevant category
(Estes, 1994; Medin & Schaffer, 1978; Nosofsky, 1986),
and of decision bound theorists, who argue that category
learning is a process of associating category labels with
regions of perceptual space (Ashby & Gott, 1988; Ashby
& Maddox, 1992, 1993). In typical applications,however,

Figure 1. Category structures used in Experiment 1: (a) unidimenisonal-orientation (Uni-
O), (b) unidimensional-length (Uni-L), (c) diagonal-negative (Diag-Neg), and (d) diagonal-
positive (Diag-Pos). Each dash denotes the length and orientation of a line from Category A.
Each dot denotes the length and orientation of a line from Category B. The solid line in each
panel denotes the optimal decision bound.
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exemplar theorists have used information-integration
tasks with few exemplars per category, whereas decision
bound theorists have used many exemplars per category.

The four category structures used in the present study
are described in Figure 1. Every stimulus was a single line
that varied across trials in lengthand orientation.Each sym-
bol in Figure 1 denotes the length and orientationof a sin-
gle stimulus. Category A exemplars are denotedby dashes
and Category B exemplars are denoted by dots. In each
condition, there were two distinct categories that did not
overlap, so perfect accuracy was always possible.

The category structures in the four conditionswere gen-
erated by successively rotating the categories shown in the
upper left panel of Figure 1 by increments of 45º. Thus, op-
timal accuracy, within-categoryscatter, and category coher-
ence are all identicalin the four conditions(Ashby, Queller,
& Berretty, 1999). Also shown in Figure 1 are the decision
bounds that maximize categorization accuracy. In two
conditions the optimal bound is unidimensional and in
two conditions it is diagonal. In the two diagonal condi-
tions, the most accurate unidimensional rule yields a re-
sponse accuracy of about 80%. In addition, because of the
continuous-valuedstimulus dimensions, it would be diffi-
cult or impossible to respond optimally in the diagonalcon-
ditions by using a unidimensional rule and memorizing
exceptions.

Both unidimensionalconditionsare rule-based tasks. In
both cases, there is a simple explicit rule that separates the
contrasting categories. For example, the vertical bound in
the upper right panel of Figure 1 corresponds to the fol-
lowing rule: “Respond A if the line is short and B if it is
long.” In contrast, the two diagonal conditions are exam-
ples of information-integrationtasks. In both of these con-
ditions, perfect accuracy requires integrating length and
orientation information, and there is no simple verbal de-
scription of the optimal decision bound.

In every condition of our experiments, each observer
completeda series of 10 blocks.The odd-numberedblocks
served as training and were used to instantiate one of the
four different training procedures that were constructed
from the factorial combination of the two levels of motor
response (response vs. no response) and the two levels of
training (observationalvs. feedback1). The even-numbered
blocks contained transfer trials, during which observers
made categorization responses, but no feedback was pro-
vided. Each observer received only one type of training
and only one level of motor response.

The stimuli and category structures shown in Figure 1
were used by Ashby, Queller, and Berretty (1999) in a study
of unsupervisedcategorization.In a series of experiments,
observers were told the number of categories (i.e., two) and
that perfect accuracy was possible, and they were given
extensive experience in the task (i.e., 800 trials), but they
were never given any feedback about the accuracy of their
responses. Thus, participants in the Ashby, Queller, and
Berretty study received no training of any kind, in contrast
to our participants, who all received some form of train-

ing (either observationalor feedback). Despite the lack of
training in the Ashby, Queller, and Berretty study, how-
ever, in both unidimensional conditions, all participants
learned to respond optimally. However, in the diagonalcon-
ditions, none of the participants responded optimally. In-
stead they all used some sort of unidimensionalrule, even
when explicitly encouraged to use both stimulus dimen-
sions. When trial-by-trial feedback was provided in a sep-
arate experiment, all participants responded optimally in
the diagonal conditions. These results provide clear evi-
dence that the nature of the feedback interacts with the
type of category structure.

A wide variety of evidence now indicates that the learn-
ing of rule-based and information-integration category
structures might be mediated by different neural circuits,
and this literature provides further reason to expect that the
experimental manipulations studied in this article might
have different effects on these two types of tasks (Ashby
et al., 1998; Ashby & Ell, 2002; Erickson & Kruschke,
1998;Smith, Patalano,& Jonides,1998;Waldron & Ashby,
2001). In particular, Ashby and his colleagues have pro-
posed that with rule-based structures, learning is mediated
by a circuit that includes the anterior cingulate, the pre-
frontal cortex, and the head of the caudate nucleus,
whereas in information-integration tasks, learning is me-
diated largely within the tail of the caudate nucleus (with
visual stimuli) (Ashby et al., 1998; Ashby & Ell, 2001;
Ashby, Isen, & Turken, 1999; Ashby & Waldron, 1999).

A review of all the evidence supporting this hypothesis
is beyond the scopeof this article. Instead,we mentiononly
a few of the more prominent supporting results. We begin
with a few results supporting the role of the anterior cin-
gulate, prefrontal cortex, and head of the caudate nucleus
in rule-based category learning.First, patientswith lesions
of the prefrontal cortex are well known to be impaired in
rule-based tasks (e.g., such as the Wisconsin Card Sorting
Test; e.g., Robinson, Heaton, Lehman, & Stilson, 1980),
but not in information-integration tasks (Knowlton, Man-
gels, & Squire, 1996). Second, an fMRI study of a rule-
based task showed activation in the right dorsal-lateral
prefrontal cortex, the anterior cingulate, and the head of
the right caudate nucleus (Rao et al., 1997). Third, many
studies implicate these structures as key components of
executive attention (e.g., Posner & Petersen, 1990) and
working memory (e.g., Goldman-Rakic, 1987, 1995),
both of which are likely to be critically important to the
explicit processes of rule formation and testing that are as-
sumed to mediate rule-based category learning. Fourth, a
recent neuroimaging study identified the (dorsal) anterior
cingulate as the site of hypothesis generation in a rule-
based category-learning task (Elliott & Dolan, 1998). Fi-
nally, lesion studies in rats implicate the dorsal caudate
nucleus in rule switching (Winocur & Eskes, 1998).

A prominent role for the tail of the caudate nucleus in
(visual) information-integration category learning is sup-
ported by several studies that have reported information-
integrationcategory learning deficits in patients with dis-
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eases of the basal ganglia (i.e., Parkinson’s or Huntington’s
disease; Filoteo, Maddox, & Davis, 2001a; Knowlton
et al., 1996; Maddox & Filoteo, 2001). In contrast, medial
temporal lobe amnesic patients are normal (Filoteo, Mad-
dox, & Davis, 2001b). Other evidence for a basal ganglia
contribution to category learning comes from a long series
of lesion studies in rats and monkeys that show that the
tail of the caudate nucleus2 is both necessary and suffi-
cient for normal visualdiscriminationlearning. In primates,
all of extrastriate visual cortex projects directly to the tail
of the caudate nucleus, and the cells in this area then pro-
ject, via the globus pallidus (the output portion of the
basal ganglia) and thalamus, to the prefrontal and premo-
tor cortices. These projections place the caudate in an
ideal position to link percepts and actions, and many re-
searchers have hypothesized that this is its primary role
(e.g., Rolls, 1994; J. Wickens, 1993). Many studies have
shown that lesions of the tail of the caudate nucleus impair
the ability of animals to learn visual discriminations that
require one response to one stimulus and a different re-
sponse to some other stimulus (e.g., McDonald & White,
1993, 1994; Packard, Hirsh, & White, 1989; Packard &
McGaugh, 1992). Since the visual cortex is intact in these
animals, it is unlikely that their difficulty is in perceiving
the stimuli. Rather, it appears that their difficulty is in
learning to associate an appropriate response with each
stimulus alternative. Technically, such studies are catego-
rization tasks with one exemplar per category. It is diffi-
cult to imagine how adding more exemplars to each cate-
gory could alleviate the deficits caused by caudate lesions,
and it is for this reason that the caudate lesion studies sup-
port the hypothesis that the caudate contributes to normal
category learning. The sufficiency of the caudate nucleus
for visual discriminationlearningwas shown in a series of
studies by Gaffan and colleagues that lesioned all path-
ways out of visual cortex except into the tail of the caudate
(e.g., projections into prefrontal cortex were lesioned by
Eacott & Gaffan, 1992, and Gaffan & Eacott, 1995; pro-
jections to the hippocampus and amygdala were lesioned
by Gaffan & Harrison, 1987). None of these lesions pre-
vented visual discrimination learning.

These results are important because the mechanisms
that mediate learning-relatedchanges in synaptic efficacy
within these two neural circuits are qualitativelydifferent,
and such differences suggest that providing the category
label before versus after the stimulus may have different
effects on rule-based and information-integration tasks.

The rule-based category learning system proposed above
is under conscious control and has full access to working
memory and executive attention.As a result, the timing of
the category label should not matter too much in rule-
based tasks. In contrast, an information-integration cate-
gory learning system that is mediated within the tail of the
caudate nucleus would not be accessible to conscious
awareness and is far removed from working memory. As
a result, it would depend more heavily on local learning
mechanisms.

Within the tail of the caudate nucleus, a reward-mediated
feedback signal is thought to be provided by dopamine re-
leased from the substantia nigra (e.g., J. Wickens, 1993).
Specifically, dopamine is released into the tail of the cau-
date (among other regions) from the substantianigra (pars
compacta) shortly after the animal receives an unexpected
reward (Hollerman & Schultz,1997;Schultz,1992), and the
presence of this dopamine is widely thought to strengthen
recently active synapses (which presumably are responsi-
ble for the animal obtaining the reward) (e.g., Arbuthnott,
Ingham, & Wickens, 2000; Calabresi, Pisani, Centonze,
& Bernardi, 1996). However, observing a category label
before seeing the stimulus is not inherently rewarding, and
even if it were, it is too removed in time from the catego-
rization response for such a procedural-learning mecha-
nism to operate efficiently. According to this argument,
learning in information-integration tasks should be more
difficult when the category label is provided before the
stimulus than when it occurs after the response.

EXPERIMENT 1

Method
Observers and Design. Eighty observers were solicited from the

University of Texas community and received course credit for par-
ticipation. Five observers participated in each of 16 experimental
conditions constructed from the factorial combination of two levels
of motor response (response vs. no response), two levels of training
type (observational vs. feedback), and four category structures. No
observer participated in more than one experimental condition. All
observers reported 20/20 vision or vision corrected to 20/20. Each
observer completed one session of approximately 60 min duration.

Stimuli and stimulus generation . The experiment used the so-
called randomization technique introduced by Ashby and Gott
(1988). The four pairs of category structures are displayed in Fig-
ure 1. Each point in the space represents the line length and line ori-
entation for a single stimulus. Category A stimuli are denoted by the
dashes and Category B stimuli are denoted by dots. The stimuli from
each category were generated by sampling randomly from a bivari-

Table 1
Category Distribution Parameters Used in Experiment 1

Category A Category B

Condition mx my sx
2 sy

2 covxy mx my sx
2 sy

2 covxy

Uni-O 300 165 9,000 75 0 300 85 9,000 75 0
Uni-L 260 125 75 9,000 0 340 125 75 9,000 0
Diag-Neg 243 68 4,538 4,538 24,463 357 182 4,538 4,538 24,463
Diag-Pos 243 182 4,538 4,538 4,463 357 68 4,538 4,538 4,463

Note—Uni-O, unidimensional-orientation; Uni-L, unidimensional-length; Diag-Neg,
diagonal-negative; Diag-Pos, diagonal-positive.
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ate normal distribution. Each category distribution is specified by a
mean and a variance on each dimension and by a covariance between
dimensions. For each of the four category structures it was always
the case that the covariance matrix for Category A was identical to
the covariance matrix for Category B. The categories differed only
in the location of the means. Under these conditions the optimal de-
cision bound will be linear. The optimal decision bound is displayed
for each of the four conditions in Figure 1. The exact parameter values
are displayed in Table 1. The category structures were taken from a
study by Ashby, Queller, and Berretty (1999).

To begin, we generated the stimuli for the unidimensional-
orientation condition (Uni-O; Figure 1a) by randomly sampling
400 stimuli from Category A and 400 stimuli from Category B. The
order of these 800 stimuli was randomized separately for each observer
and then divided into 10 blocks of 80 trials each. The odd-numbered
blocks served as the training blocks and were used to instantiate the
four different training procedures that were constructed from the
factorial combination of two levels of motor response (response vs.
no response) and two levels of training type (observational vs. feed-
back). The even-numbered blocks served as the transfer blocks, dur-
ing which observers generated categorization responses but no feed-
back was provided. The stimuli for the unidimensional-length category
structures (Uni-L; Figure 1b) were generated by rotating the Uni-O
categories 90º counterclockwise. The stimuli for the diagonal-nega tive
category structures (Diag-Neg; Figure 1c) and diagonal-positive cat-
egory structures (Diag-Pos; Figure 1d) were generated by rotating
the Uni-O categories 135º counterclockwise and 45º counterclock-
wise, respectively, around a central point located at 300 pixels in
length and 45º in orientation, and by shifting each stimulus 40 units
away from the optimal decision bound along the relevant dimension,
thereby increasing the discriminability of the categories. The cate-
gories used in the unidimensional conditions were less discriminable
than those used in the diagonal conditions because a pilot study in-
dicated that equal discriminability led to ceiling effects for the uni-
dimensional conditions. Importantly, though, note that perfect per-
formance is possible in all four conditions.

The stimuli were computer generated and displayed on a 21-in.
monitor with 1,360 3 1,024 resolution. Each line was presented in
white on a black background. To minimize line jaggedness, Alfonso-
Reese’s (1997) anti-aliasing routine, developed for use with Brainard’s
(1997) Psychophysics Toolbox, was applied. Each stimulus was cre-
ated by converting the x value into a line length and the y value (after
applying the scaling factor p/500) into a line orientation. The scal-
ing factor p/500 was chosen in an attempt to equate the salience of
line length and line orientation.

Procedure. Each observer was run individually in a dimly lit test-
ing room. The observers were informed that there were two categories
denoted “A” and “B,” and that each category was equally likely. They
were instructed to learn about the two categories during the training
blocks so that they could accurately separate the stimuli into two cat-
egories during the transfer blocks. They were informed that perfect
performance was possible. The motor response and training type ma-
nipulations were instantiated during the training blocks. The proce-
dure for a typical training trial in each of the four training conditions
was as follows: (1) No response/before: category label (500 msec),
blank screen (500 msec), stimulus (500 msec); response/ before:
category label (500 msec), blank screen (500 msec), stimulus
(500 msec), response; response/after3 stimulus (500 msec), blank screen
(500 msec), response-category label (500 msec); no response/after:
stimulus (500 msec), blank screen (500 msec), category label
(500 msec), where the category label was a simple “A” or “B,” de-
pending on which category was presented.

In each condition the intertrial-interval was 500 msec. The pro-
cedure was identical for all transfer trials. During a typical transfer
trial the stimulus was presented for 1 sec followed by a blank screen.
The observer generated a categorization response by pressing either
the “Z” key, for A responses, or the “/” key, for B responses. The ob-

server’s response was followed by initiation of the next trial. An
observer-paced break followed each block of trials.

Results and Theoretical Analyses
Analyses were performed only on data from the transfer

blocks. In the first section (entitled ANOVA results) we
analyze the accuracy rates using analysis of variance
(ANOVA). In the second section (entitled Modeling re-
sults) we introduce the model-based analyses.

ANOVA results. We begin with a set of analyses to de-
termine whether performance differed between the two
unidimensional conditions (Uni-O and Uni-L) and be-
tween the two diagonal conditions (Diag-Neg and Diag-
Pos). The main effect of category structure was signifi-
cant for the unidimensional conditions [F(1,32) 5 7.873,
p , .01], yieldinghigher accuracy in the Uni-O condition
(95.5%) than in the Uni-L condition (90.4%), but not for
the diagonal conditions [F(1,32) 5 1.544, n.s.]. For the
unidimensional conditions there was also a significant
condition 3 block interaction [F(4,128) 5 2.827, p ,
.05], revealing different learning rates for the two condi-
tions. Post hoc analyses indicated that performance in the
Uni-O and Uni-L conditionsdiffered significantly during
the first two blocks of trials (Uni-O 5 95.4%, 96.8%, and
Uni-L 5 84.1%, 89.1%, For Blocks 1 and 2, respectively),
but did not differ across the last three blocks (Uni-O 5
94.98%, 95.5%, 94.8%, and Uni-L 5 90.8%, 93.4%,
94.4% for Blocks 3–5, respectively). Because our focus is
on asymptotic performance, we collapsed across the two
unidimensional and two diagonal conditions throughout
the remainder of the analyses.

The accuracy during the last transfer block in each of the
eight experimental conditions is shown in Figure 2. A 2
(motor response;no/yes)3 2 (training types;observational/
feedback) 3 2 (category structures; unidimensional/
diagonal) ANOVA revealed a main effect of training type
[F(1,72)5 8.595,p, .01]and categorystructure[F(1,72) 5
27.908, p , .001], suggesting that performance was supe-
rior with feedback training (accuracy: before 5 85.5%;
after 5 92.0%), and in the unidimensionalconditions(ac-
curacy: Uni 5 94.6%; Diag 5 82.9%). The main effect of
motor response was not significant [F(1,72) 5 1.81, p .
.10]. The ANOVA also revealed an interaction between
training type and category structure [F(1,72) 5 7.785,
p , .01]. As predicted by the neuropsychologicalhypoth-
esis discussed above, feedback training provided a signif-
icant increase in performance in the diagonal conditions,
but not in the unidimensional conditions. This same inter-
action occurred for both the no response and response data
separately, although it was only marginally significant in
the response conditions [no response: F(1,36) 5 5.067,
p , .05; response: F(1,36) 5 3.172, p , .10]. The re-
sponse 3 training type [F(1,72) 5 0.65, p . .10], re-
sponse 3 category structure [F(1,72) 5 0.34,p . .10], and
the three-way interaction[F(1,72) 5 0.01,p . .10] were all
nonsignificant.

The ANOVA results can be summarized as follows. First,
performance was superior with rule-based category struc-
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tures. Second, performance was better with feedback
training than with observational training. Third, accuracy
did not depend on whether observers made a motor re-
sponseduring training.Finally, training type interactedwith
the nature of the categorization task. Specifically, feed-
back trainingwas no better than observational trainingwith
the unidimensional categories, but it led to a substantial
performance improvement with the diagonal categories.

Modeling results. To get a more detailed descriptionof
how observers categorized the stimuli, a number of differ-
ent decision bound models (Ashby, 1992a; Maddox &
Ashby, 1993) were fit to each observer’s responses. Deci-
sion bound models are derived from general recognition
theory (GRT; Ashby & Townsend, 1986), which is a mul-
tivariate generalization of signal detection theory (e.g.,
Green & Swets, 1966). The fundamental assumption of
GRT is that there is trial-by-trial variability in the percep-
tual information obtained from every stimulus, no matter
what the viewing conditions (Ashby & Lee, 1993). On
each trial, however, it is assumed that the percept can be
represented as a point in a multidimensional psychologi-
cal space. Decision bound theory assumes each observer
partitions the perceptual space into response regions by
constructinga decision bound. On each trial, the observer
determines which region the percept is in and then emits
the associated response. Despite this deterministic deci-
sion rule, decision bound models predict probabilistic re-
sponding because of trial-by-trial perceptual and criterial
noise.

Two different types of decision bound models were fit
to each observer’s responses (see Ashby, 1992a; Maddox
& Ashby, 1993, for a more formal treatment of these mod-
els). One type assumed observers used an explicit rule-
based strategy and one type assumed an information-
integration strategy. With feedback training, of course, we
predict observers will use a rule-based strategy in the uni-
dimensional conditions and an information-integration

strategy in the diagonal conditions. If observational train-
ing disrupts information-integrationcategory learning, then
we might expect an increase in rule-based responding
under these conditions.

Rule-based models. Two models assumed observers
used an explicit rule-based strategy. The unidimensional
model assumes the observer sets a criterion on a single
perceptual dimension and then makes an explicit decision
about the level of the stimulus on that dimension (Ashby
& Gott, 1988;Shaw, 1982). For example, in the present ex-
periments, the observer might use the following rule:

Respond A if the line is short and B if it is long.

A different version of this model assumes the observer at-
tends selectively to orientation, rather than length. The
unidimensional models have two free parameters: a deci-
sion criterion on the relevant perceptual dimensionand the
variance of internal (perceptual and criterial) noise (i.e.,
s2). In the unidimensional conditions, a special case of
the unidimensionalmodel assumes observers use the uni-
dimensional decision bound that maximizes accuracy
(i.e., the vertical and horizontal bounds shown in Fig-
ure 1). This special case has only one free parameter (i.e.,
noise variance).

The conjunction model assumes observers use a con-
junction rule in which separate decisions are made about
the levels on the two dimensionsand then a response is se-
lected based on the outcome of these two decisions.For ex-
ample, in the Diag-Neg condition, an observer might use
the following explicit rule:

Respond A if the line is short and its orientation is small,
otherwise respond B.

This rule partitions the perceptual space into four regions,
one of which is assigned to Category A and three of which
are assigned to Category B. As mentioned in the intro-
duction, such a strategy is rule based because it is easy to
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describe verbally and it does not require perceptual inte-
gration of length and orientation.

Although a number of distinct conjunctionrules can be
constructed,only two of these were reasonable for each of
the diagonal conditions. Specifically, for the Diag-Neg
condition, the following two rules are plausible:

Respond A if length and orientation are both small,
otherwise respond B,

and

Respond B if length and orientation are both large,
otherwise respond A.

For the Diag-Pos condition, the following two rules make
sense:

Respond A if the line is short and its orientation is large,
otherwise respond B,

and

Respond B if the line is long and its orientation is small,
otherwise respond A.

Conjunctionmodels have three parameters (a criterion on
each dimension, and s2).

Information-integration models. The general linear
classifier (GLC) assumes that the decision boundbetween
each pair of categories is linear. This produces an
information-integration decision strategy because it re-
quires linear integration of perceived length and orienta-
tion. The GLC has three parameters (slope and intercept
of the linear bound and s2). In the diagonal conditions, a
special case of the GLC assumes observers use the linear
bound that maximizes accuracy (i.e., the diagonal bounds
shown in Figure 1). This model has only one free parameter
(noise variance).

Model fits. Each of these models was fit separately to
the data from each of the five transfer blocks for every ob-
server. The model parameters were estimated using max-

imum likelihood(Ashby, 1992b; T. D. Wickens, 1982) and
the goodness-of-fit statistic was

AIC 5 2r 2 2lnL,

where r is the number of free parameters and L is the like-
lihood of the model given the data (Akaike, 1974; Takane
& Shibayama, 1992). The AIC statistic penalizes a model
for extra free parameters such that the smaller the AIC,
the closer a model is to the “true model,” regardless of the
number of free parameters. Thus, to find the best model
among a given set of competitors, one simply computes an
AIC value for each model and chooses the model associ-
ated with the smallest AIC value.

For each of 400 data sets (four training conditions 3
four category structures 3 five observers 3 five blocks),
we determined which of the two model types provided the
best account of the data (i.e., rule-based or information in-
tegration). The results of these fits were similar for the
Diag-Neg and Diag-Pos conditions,so these were collapsed
across conditions.In addition,because the results were also
similar in the two unidimensional conditions, the model-
ing results were collapsed across the Uni-O and Uni-L
conditions. The percentages of data sets for which each
model type provided the best account by motor response,
training type, category structure, and block are presented
in Table 2.

Table 2 indicates the following: First, as expected, with
traditional feedback training, observers were most likely
to use a rule-based strategy in the unidimensional condi-
tions and an information-integration strategy in the diag-
onal conditions [F(1,16) 5 38.21, p , .001], especially
during the later blocks. The tendency for feedback train-
ing to cause an eventual shift to information-integration
strategies in the diagonal conditions is especially evident
when a response was required. During the first two trans-
fer blocks, most observers used a rule-based strategy, but
by Block4 the numbers reverse, showing thatmost observers
used an information-integrationstrategy. Second, with ob-

Table 2
Percentage of Observers in Experiment 1 (by Category

Structure and Block) Whose Data Were Best Fit by a Rule-Based Model
or by an Information-Integration (Inf-Int) Model

Observational Training Feedback Training

Block 1 2 3 4 5 Ave. 1 2 3 4 5 Ave.

Response
Uni

Rule-based 80 40 80 80 70 70 70 90 100 70 80 82
Inf-int 20 60 20 20 30 30 30 10 0 30 20 18

Diag
Rule-based 30 60 50 80 60 56 70 70 50 30 30 50
Inf-int 70 40 50 20 40 44 30 30 50 70 70 50

No Response
Uni

Rule-based 70 80 70 80 90 78 70 60 90 90 60 74
Inf-Int 30 20 30 20 10 22 30 40 10 10 40 26

Diag
Rule-based 40 50 40 40 40 42 30 30 20 30 10 24
Inf-int 60 50 60 60 60 58 70 70 80 70 90 76
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servational training, most observers again used a rule-
based strategy in the unidimensionalconditions[F(1,16) 5
17.36,p , .001], and in fact training type had no effect on
this preference [F(1,16) 5 0.42, p . .1]. Third, and per-
haps most importantly, observers were more likely to use
a rule-based strategy4 in the diagonal conditions when
they had observational training (49%) than when they had
feedback training (37%) [F(1,16) 5 3.47, p 5 .08].

EXPERIMENT 2

One possibility, which is important to consider, is that
observational training was as effective as feedback training
with the unidimensional category structures because these
tasks were so easy for observers to learn. According to this
idea, the observational training data displays a ceiling ef-
fect wherein performance is so good that there is little
room for improvementwith feedback training. One way to
test this hypothesis is to examine performance in the early
transfer blocks. These data are shown in Figure 3, col-
lapsed over rule type (i.e., Uni-O and Uni-L for the unidi-
mensional rules and Diag-Pos and Diag-Neg for the diag-
onal rules) and motor response (yes and no).

Note that there is a trend for observational training to be
less effective than feedback training with the unidimen-
sional rules in the early transfer blocks, although only the
Block 1 difference is significant ( p , .05). As observers
gain practice, this difference disappears. In contrast, with
the diagonal categories, performance is initially identical
with observational and feedback training, but with more
experience, observers given feedback training continually
improve, whereas there is no evidence of additional learn-
ing in the group given observational training. Although
the Figure 3 results indicate a clear dissociation between
the learning of the unidimensional and diagonal rules,
theyalso raise several importantquestions.First, is the early
advantage of feedback training on unidimensional rule
learning real? And second, is there a ceiling effect with
unidimensional rule learning? In particular, if the unidi-

mensional tasks had been more difficult, perhaps the feed-
back training group would have maintained its initial ad-
vantage over the observational group. Experiment 2 was
designed to answer these questions. Essentially, we repli-
cated the design of the unidimensional rule conditions of
Experiment 1, but increased the difficulty.

Method
Observers and Design. Twenty observers were solicited from the

University of Texas community; they received course credit for par-
ticipation. Five observers participated in each of four experimental
conditions constructed from the factorial combination of two levels
of training (observational vs. feedback), and two rule-based cate-
gory structures (Uni-O vs. Uni-L). Observers generated a motor re-
sponse in all conditions. All observers reported 20/20 vision or vision
corrected to 20/20. Each observer completed one session of ap-
proximately 60 min duration.

Stimuli and stimulus generation. The stimulus dimensions were
the same as those from Experiment 1. The two category structures
were identical to the Uni-O and Uni-L category structures from Ex-
periment 1 except that the Category A and Category B means were
each displaced ten units toward the optimal category boundary, thus
lowering category discriminability. In fact, the stimuli used in Ex-
periment 2 were generated by moving every stimulus from the uni-
dimensional conditions of Experiment 1, ten units toward the opti-
mal decision bound. Thus, the parameter values shown in Table 1
were identical to those used in Experiment 2, except that in Experi-
ment 2 mean orientations for the two categories in the Uni-O condi-
tions were 95 and 155, respectively, and mean lengths in the Uni-L
conditions were 270 and 330, respectively. All other aspects of the
stimuli were identical to those from Experiment 1.

Procedure. The procedures were identical to those for the re-
sponse/before and response/after conditions from Experiment 1.

Results and Theoretical Analyses
An ANOVA revealeda main effect of rule type [F(1,16) 5

10.23, p , .01]. In each of the five transfer blocks, accu-
racy was higher for the unidimensionalrule on orientation
than for the rule on length (average accuracy was 94.3%
on orientation and 80.3% on length). There was also a
main effect of block [F(4,64) 5 2.78, p , .05], indicating
that performance did significantly improve from the first

Figure 3. Average accuracy in Experiment 1 during each of the five transfer blocks.
Uni, unidimensional category structure; Diag, diagonal category structure; Obs, ob-
servational training; Feed, feedback training.
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transfer block to the last, and therefore that learning did
occur. Most importantly, there was no effect of training
type ( p . .50). This is easily seen in Figure 4, which
shows the percentage of correct responses in each of the
five transfer blocks (averaged across rule type). Note that,
as expected, accuracy is lower than in Experiment 1. Most
importantly, in contrast to Experiment 1, the feedback
training group gradually increases its accuracy across the
transfer blocks. Despite this fact, accuracy is essentially
the same in the observation and feedback groups, and this
equivalence persists from the first transfer block through
the last, unlike what occurred in Experiment 1.

Table 3 shows the results of the modeling analyses (av-
eraged across rule type). Note that there were no signifi-
cant differences between decision strategies used by ob-
servers in the observational and feedback conditions
[F(1,8) 5 1.22, p . .20]. In particular, the majority of ob-
servers used a rule-based strategy in both conditions.5

The Experiment 2 results strongly argue that the differ-
ences observed in Experiment 1 between unidimensional
and diagonal rule learning were not due to a ceiling effect
in the unidimensionalconditions.Even when difficulty is
increased, there is no difference between observational
and feedback training when observers are learning unidi-
mensionalcategorizationrules. Second, the lack of any dif-
ference in Experiment 2 between observational and feed-
back training during the early transfer blocks suggests that
the trend for such a difference that we observed in Exper-
iment 1 may not be real.

GENERAL DISCUSSION

The most important result reported in this article is the
interaction that we found between category structure and
typeof categorizationtraining.With our rule-basedcategory
structures, it made very little difference whether observers
received observationalor feedback training. In particular,
when accuracy was maximized via some explicit rule that
is easy to verbalize, observational training was nearly as
effective as traditional feedback training. However, with
category structures that required information integration
for optimal responding, traditional feedback training was
more effective than observational training. More specifi-
cally, with observational training people were less accu-
rate and were more likely to use suboptimal rule-based
strategies than with feedback training.

These results are generally consistent with the hypoth-
esis that learning in these two types of categorizationtasks
is mediated by separate systems. According to the version
of this hypothesis described in the introduction, learning
in rule-based tasks is dominatedby an explicit system that
is mediated by frontal cortical structures (and the head of
the caudate nucleus). This system is assumed to have ac-
cess to working memory and executive attention. Learn-
ing occurs througha process of hypothesisgeneration and
testing, and there is no close relationship with motor out-
put systems. For these reasons, whether or not a response
is required should have little effect on rule-based learn-
ing; nor should the position of the category label. In fact,

Figure 4. Average accuracy in Experiment 2 during each of the five transfer
blocks. Uni, unidimensional category structure; Obs, observational training; Feed,
feedback training.

Table 3
Percentage of Observers in Experiment 2 Whose Data

Were Best Fit by a Rule-Based Model (i.e., the Unidimensional, Conjunctive,
or Optimal) or by an Information-Integration Model (i.e., the GLC)

Observational Training Feedback Training

Block 1 2 3 4 5 Ave. 1 2 3 4 5 Ave.

Rule-based 70 40 80 80 60 66 60 50 70 40 60 56
Information-integration 30 60 20 20 40 34 40 50 30 60 40 44
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Ashby, Queller, and Berretty (1999) showed that with
these same stimuli and category structures, people learn to
respond optimally in the rule-based conditionseven when
no category label is ever shown.

In contrast, according to the hypothesis reviewed earlier
in this article, optimal responding in the information-
integration conditions requires the participation of an im-
plicit system, in which learning is mediated largely within
the tail of the caudate nucleus. This system is assumed to
use a form of procedural learning that is more closely tied
to motor systems and that dependson a dopamine-mediated
reward signal for learning. The idea is that an unexpected
reward causes dopamine to be released from the substan-
tia nigra into the tail of the caudate nucleus, and that the
presence of this dopamine strengthens recently active
synapses (e.g., Schultz, 1992; J. Wickens, 1993). This is a
reward-mediated version of Hebbian stimulus–response
association learning. Of course, it is not clear what sorts
of internal events occur following stimulus presentation
during observational training (e.g., caused by confirming
or failing to confirm expectations), but it seems clear that
this system should learn best when feedback follows a
motor response. A slightly stronger prediction is that learn-
ing should continue to deteriorate the more severely these
conditions are violated. In the present experiment, the
conditions least conducive to this form of implicit learn-
ing occur when the label comes before the stimulus and no
response is required.

Our results indicate that whether or not a response was
required had little effect on accuracy or on the type of
learning that occurred in the diagonal conditions.This, at
first, might seem surprising, but of course we have no way
of knowing what observers in the no response conditions
were doing—we only know that they did not fully depress
the response keys. In particular, they could have been mak-
ing a subvocalor submanualresponse.Theycouldhavebeen
imagining a response, or perhaps they were consciously
associating the label with the response position. Since we
can’t rule out any of these possibilities, it is difficult to
draw strong conclusions from our failure to find differ-
ences between the response and no response data.

On the other hand, our results indicate a substantial dif-
ference between the decision strategies used in the diago-
nal conditions depending on whether observers received
observational or feedback training. In both the response
and no response conditions, observers were less accurate
and were more likely to use a rule-based strategy with ob-
servational training. In the no response conditions, this dif-
ference in decision strategy persisted throughoutall trans-
fer blocks, but it was equally dramatic in the later blocks
of the response conditions.In particular,during the last two
transfer blocks of the response conditions,70% of the ob-
servers receivingobservational training were using a rule-
based strategy, whereas only 30% of the observers receiv-
ing feedback training were using a rule-based strategy.

According to the COVIS theory of category learning
(Ashby et al., 1998), explicit and implicit systems compete
during category learning. Initially, however, the explicit

system dominates.So, COVIS predicts that in the absence
of significant learning in the implicit system, people will
persist in using explicit, rule-based strategies. This pre-
diction is supported by our results, and also by the results
of Ashby, Queller, and Berretty (1999), who used these
same categories in a study of unsupervisedcategorization.
In particular, in the absence of feedback, Ashby, Queller,
and Berretty found that all observers in the diagonal con-
ditions used rule-based strategies.

An important alternative hypothesis that must be con-
sidered is that a single system mediates learning in the uni-
dimensional and diagonal conditions, and that our results
occurred only because the unidimensional categories are
easier to learn and therefore more resistant to the interfer-
ence caused by observational training. Although this hy-
pothesis has intuitive appeal, it has several serious weak-
nesses. First, because the unidimensional and diagonal
categories are simple rotations of each other, an ideal ob-
server would perform identically in these conditions (even
in the presence of perceptual and criterial noise). Second,
Experiment 2 was designed specifically to test this hypoth-
esis. In this study, to increase difficulty, the unidimensional
categories were moved closer together. As a consequence,
asymptotic accuracy in the unidimensional/feedback con-
ditionsof Experiment 2 was about equal to the asymptotic
accuracy of the diagonal/feedback conditions of Experi-
ment 1. Despite controlling for difficulty in this manner,
only unidimensional category learning was unaffected by
type of training (i.e., observational vs. feedback).

Third, note that a critical assumption of the difficulty
hypothesis is that rule-based category learning is more
susceptible to interference than information-integration
category learning.However, this assumption is not always
true. For example, Waldron and Ashby (2001) showed that
unidimensional category learning is disrupted more by a
simultaneous task that activates frontal cortex (a numeri-
cal Stroop task) than is learningof information-integration
structures. If difficulty is the most important factor, then
simultaneously performing a second task should interfere
more stronglywith learning the more difficult information-
integration structures. Since Waldron and Ashby found the
oppositepattern of results, it seems likely that factors other
than difficulty are at work. As another example, Ashby,
Noble, Filoteo,Waldron, and Ell (2001) found that the same
group of Parkinson’s disease patients were much more
impairedat rule-basedcategory learning thanat information-
integration category learning. If a single system mediates
learning in these two types of categorization tasks, and if
Parkinson’s disease damages this system, then we would
expect the more serious deficits to occur in the more dif-
ficult information-integration tasks.
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NOTES

1. Note that in the no response conditions, the term feedback training
is a bit of a misnomer. Nevertheless, in most applications, providing a
category label after the stimulus is presented does provide feedback to
the observer. So we prefer to call the two types of training “observational”
and “feedback.”

2. In the rat, the caudate and putamen merge into a single entity, so for
the rat studies, it is more proper to refer to the dorsal striatum.

3. Observers were allowed to generate a categorization response dur-
ing the 500-msec blank interval. A variant on this conditionwas also run
in which the procedure was as follows: stimulus (500 msec), blank screen
(500 msec), category label (500 msec), respond. The results were simi-
lar across these two variants.

4. In most of the cases in which a rule-based model provided the best
fit to data from a diagonal condition, the conjunction model fit better
than the unidimensional model.

5. If we repeat this analysis separately for the two rule types, we find
no differences between observational and feedback training on decision
strategy for the unidimensional rule on orientation [F(1,8) 5 0.29, p .
.50], but we do find significance for the rule on length [F(1,8) 5 7.54,
p , .05]. In this case, rule-based responding was more common with
observational training (60%) than with feedback training (32%).

(Manuscript received March 26, 2001;
revision accepted for publication March 7, 2002.)
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