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Sequentialsamplingmodels are currently the modelsmost
successful in accounting for data from simple two-choice
tasks. Among these, diffusion models have been the ones
most widely applied across a range of experimental proce-
dures, includingmemory (Ratcliff, 1978, 1988), lexical de-
cision (Ratcliff, Gomez, & McKoon, 2002), letter-matching
(Ratcliff, 1981), visual search (Strayer & Kramer, 1994),
decision making (Busemeyer & Townsend, 1993; Dieder-
ich, 1997; Roe, Busemeyer, & Townsend, 2001), simple
reaction time (Smith, 1995), signal detection (Ratcliff &
Rouder, 1998; Ratcliff, Thapar, & McKoon, 2001; Rat-
cliff, Van Zandt, & McKoon, 1999), and perceptual judg-
ments (Ratcliff, 2002; Ratcliff & Rouder, 2000; Thapar,
Ratcliff, & McKoon, 2002).

The experimentaldata to which the models are fit in two-
choice tasks are accuracy rates and reaction time distribu-
tions for both correct and error responses. The ability of
the models to deal with this range of data sets them apart
from other models for two-choice decisions.Because mul-
tiple dependent variables need to be fit simultaneouslyand

because the data can have contaminants, the fitting process
is not straightforward.For these reasons, the model is a good
testing ground for evaluating fitting methods.

In fitting any sequential sampling model to data, the
aim is to find parameter values for the model that allow it
to produce predicted values for reaction times and accu-
racy rates that are as close as possible to the empirical data.
But so far in this domain, little attention has been paid to
the methods for fitting.Sometimes models have been fit by
eye, by simply observing that they can capture the ordinal
trends in the experimental data. Sometimes a standard cri-
terion such as chi square (e.g., Smith & Vickers, 1988), in
which the difference between the observed and the pre-
dicted frequencies of reaction times in the reaction time
distributionis minimized, is used.Nonstandardcriteria have
also been used. For example, Ratcliff and Rouder (1998)
and Ratcliff et al. (1999) fitted an ex-Gaussian, summary,
reaction time distribution (Ratcliff, 1979; Ratcliff & Mur-
dock, 1976) to data and to predictions from Ratcliff’s dif-
fusion model. Then the sum of squares for the differences
between the parameters of the ex-Gaussian for predictions
and for data plus the sum of squares for the differences be-
tween accuracy rates for predictions and data were mini-
mized. Ratcliff and Rouder (2000) used a more direct
sum-of-squares method in which quantile reaction times
were used instead of parameters of the summary (ex-
Gaussian) distribution. The statistical properties for all
these fitting methods have not been examined.
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Three methods for fitting the diffusion model (Ratcliff,1978) to experimental data are examined. Sets
of simulated data were generated with known parameter values, and from fits of the model, we found
that the maximum likelihood method was better than the chi-square and weighted least squares meth-
ods by criteria of bias in the parameters relative to the parameter values used to generate the data and
standard deviations in the parameter estimates.The standard deviations in the parameter values can be
used as measuresof the variabilityin parameterestimates from fits to experimental data. We introduced
contaminant reaction times and variability into the other components of processing besides the deci-
sion process and found that the maximum likelihood and chi-square methods failed, sometimes dramat-
ically. But the weighted least squares method was robust to these two factors. We then present results
from modifications of the maximum likelihood and chi-square methods, in which these factors are ex-
plicitlymodeled, and show that the parametervalues of the diffusion model are recoveredwell. We argue
that explicit modeling is an important method for addressing contaminants and variability in nondeci-
sion processes and that it can be applied in any theoretical approach to modeling reaction time.
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In this article, we will examine three different methods
for fitting the diffusion model to two-choice reaction time
and accuracy data and will examine the properties of the
estimators for the parameters of the model. The issues that
arise have implications not only for fitting the diffusion
model, but also for fitting summary models of single re-
action time distributions(e.g., Heathcote,Brown, & Mew-
hort, 2002; Ratcliff, 1979; Van Zandt, 2000) and for fit-
ting models in other domains. Throughout the article, we
will discuss findings as they apply to the diffusion model
case and also will place them in a more general context.
Examples of the issues that have broad implications are
the following. First, how should contaminant reaction
times be handledempirically (can they be eliminated) and
theoretically (can they be explicitly modeled)? Second,
how robust is a method for estimating parameters either in
terms of possible failures of a model’s assumptions or in
terms of contaminateddata? Third, there are practical con-
siderations, including computation speed. Fourth, an op-
timal fitting method should provide the best possible esti-
mates of parameters. The estimates should be unbiased—
that is, they should converge on the true parameter values
as the number of observations increases (i.e., they should
be consistent). Fifth, the estimates should also have the
smallest possible standard deviations, so that any single
fit of a model to data produces estimates that are close to
the true values. In Appendix A, we present a more formal
discussion of the statistical factors involved in model fit-
ting and parameter estimation.

In the model-fitting enterprise, sometimes there is no
need for extremely accurate estimation of parameter val-
ues; finding a set of parameter values that produces pre-
dictions reasonably near the experimental data is enough
to show that the model is capable of fitting the data. But
there are many cases in which accurate estimation of pa-
rameter values is necessary. For example, any situation in
which individual differences are examined requires rea-
sonably accurate estimates of parameters. Also, if differ-
ences among the conditionsin an experiment are to be ex-
amined, knowing the standard deviations in parameter
estimates is important. It is toward these ends that this ar-
ticle will provide an evaluationof fitting methods in terms
of their robustness and flexibility in fitting data, as well as
in terms of their accuracy in recovering parameter values
from the different fitting methods. In order to explain the
fitting methods we evaluated and the results of the evalu-
ations, we first will need to present the diffusion model,
the model we used as a testing ground and the model for
which we needed good fitting methods.

THE DIFFUSION MODEL

Diffusion and random walk models form one of the
major classes of sequential sampling models in the reac-
tion time domain. The diffusion process is a continuous
variant of the random walk process. The models best apply
in situations in which subjects make two-choice decisions

that are based on a single, “one-shot” cognitive process,
decisions for which reaction times do not average much
over 1 sec. The basic assumption of the models is that a
stimulus test item provides information that is accumu-
lated over time toward one of two decision criteria, each
criterion representing one of the two response alternatives.
A response is initiatedwhen one of the decision criteria is
reached. The researchers who have developed random
walk and diffusion models take the approach that all the
aspects of experimental data need to be accounted for by
a model. This means that a model should deal with both
correct and error reaction times, with the shapes of the full
distributions of reaction times, and with the probabilities
of correct versus error responses. It shouldbe stressed that
dealing with all these aspects of data is much more of a
challenge than dealing with accuracy alone or with reac-
tion time alone.

Random walk models have been prominent since the
1960s (Laming, 1968; Link & Heath, 1975; Stone, 1960).
Diffusion models appeared in the late 1970s (Ratcliff,
1978, 1980, 1981). The random walk and diffusion mod-
els are close cousins and are not competitors to each other,
as they are with other sequential sampling models (e.g.,
accumulatormodelsand countermodels; see, e.g.,LaBerge,
1962; Smith & Van Zandt, 2000; Smith & Vickers, 1988;
Vickers, 1970, 1979;Vickers, Caudrey, & Willson, 1971).
So, although we will deal with only one diffusion model
in this article, most of the issues and qualitative results
apply to other diffusion and random walk models, and the
general approach applies to other sequential sampling
models.

The earliest random walk models assumed that the ac-
cumulation of information occurred at discrete points in
time, each piece of information being either fixed in size
(e.g., Laming, 1968) or variable in size (Link, 1975; Link
& Heath, 1975). The modelswere appliedmainly in choice
reaction time tasks and succeeded in accounting for accu-
racy and for mean reaction time for correct responses.
They were also sometimes successful with mean error re-
action times, but they rarely addressed the shapes of reac-
tion time distributions.

Ratcliff’s (1978) diffusion model is illustrated in Fig-
ure 1 in three panels, each showing different aspects of the
model. Information is accumulated from a starting point z
toward one or the other of the two response boundaries; a
response is made when the process hits the upper bound-
ary at a or the lower boundary at zero. The mean rate at
which information is accumulated toward a boundary is
called the drift rate. During the accumulation of informa-
tion, drift varies around its mean with a standard devia-
tion of s. Variability is large, and processes wander across
a wide range, sometimes reaching the wrong boundary by
mistake, which results in an error response. The top panel
of the figure shows two processes, one with a drift rate of
v1 (solid arrows) and the otherwith a drift rate of v2 (dashed
arrows). Variability in drift rate leads to distributions of
finishing times (reaction time distributions), one distrib-
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ution for correct response times (at the top boundary for
the processes shown in the figure) and another distribu-
tion for error responses (at the bottom boundary in the fig-
ure). The spread of the solid arrows shows the reaction
time distribution for the process with drift rate v1, and the
spread of the dashed arrows shows the reaction time dis-
tribution for the process with drift rate v2. The geometry
of the diffusion process naturally maps out the right-
skewed reaction time distributions typically observed in
empirical data. The panel also shows how smaller drift
rates (e.g., v2) lead to slower responses, with more chance
of reaching the wrong boundary, and so to larger error rates.

The variability in drift rate within a trial, represented by
the parameter s, is a scaling parameter; if it were doubled,
for example, all the other parameters could be changed to
produce predictions identical to those before the change.
The s is a fixed, not a free, parameter in fits of the model

to data. It would be possible to fix another of the param-
eters instead—for example, boundary separation. But
some empirical manipulations would be expected to affect
boundary separation (e.g., speed–accuracy instructions),
so that if such a parameter were fixed, the effects of the
manipulation would show up in the values of other pa-
rameters and interpretation would be difficult. The most
natural assumption (and the standard assumption) is to
hold within-trial variability in drift constant, assuming
that it is a constant value across the whole range of differ-
ent kinds of decisions in an experiment, from easy to most
difficult. We fixed s at 0.1, a value near those used in pre-
vious applications of the model (e.g., Ratcliff, 1978).

Variability in Parameters Across Trials
Besides variability in drift rate within each trial, there

are several sources of variability across trials. For one, the

Figure 1. An illustration of the diffusion model and parameters. The top panel shows start-
ing point variability and illustrates how accuracy and reaction time distribution shapes for
correct and error responses change as a function of two different drift rates (v1 and v2). The
bottom right panel illustrates variability in drift across trials (standard deviation h) and the
distribution of contaminants. The bottom left panel shows variability in Ter, the nondecision
component of reaction time.
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mean drift rate for a given stimulus varies across trials (be-
cause subjects do not encode a stimulus in exactly the
same way every time they encounter it). This variability is
assumed to be normally distributed with a standard devi-
ation of h, and it is illustrated in the bottom right panel of
Figure 1.

Another source of variability is variability across trials
in the starting point z (top panel of Figure 1). Variability
across trials comes from a subject’s inability to hold the
starting point of the accumulationof informationconstant
across trials. The distributionof starting point values is as-
sumed to be rectangular, with sz as its range. A rectangu-
lar distributionwas chosen so that the starting point would
be restricted to lie within the boundaries of the decision
process.1

Without variability in drift rate and starting point across
trials, simple random walk and diffusion models would
predict that reaction times will be the same for correct and
error responses when the two response boundaries are
equidistantfrom the starting point; this is contrary to data.
There has been a number of attempts to account for error
reaction times within random walk and accumulator
model frameworks (e.g., Laming, 1968; Link & Heath,
1975; Smith & Vickers, 1988), and some of these were
moderately successful. But the inability of most models
to deal with the full range of effects led to a deemphasis
of error reaction times in the literature: Error reaction
times have relatively rarely been reported, and there has
been relatively little effort to deal with them theoretically
until recently.

However, recent work has shown how variability in drift
rate and starting point can produce unequal correct and
error reaction times (Laming, 1968; Ratcliff, 1978, 1981;
Ratcliff et al., 1999; Smith & Vickers, 1988; Van Zandt &
Ratcliff, 1995). Ratcliff (1978) showed that variability in
drift across trials produces error reaction times that are
slower, and Laming (1968) showed that variability in
starting point across trials produces error reaction times
that are faster. Ratcliff et al. (1999) and Ratcliff and
Rouder (1998) showed that the combination of the two
types of variability can produce accurate fits to both pat-
terns. Most interestingly, the combination can produce a
crossover, so that errors are slower than correct responses
when accuracy is low and errors are faster than correct re-
sponses when accuracy is high. This crossover has been
observed a number of times experimentally (Ratcliff &
Rouder, 1998, 2000; Ratcliff et al., 1999; Smith & Vick-
ers, 1988).

The diffusion process is a model of the decisionprocess,
and not of the other processes involved in a task, processes
such as stimulus encoding, response output, memory ac-
cess, retrieval cue assembly, and so on. The times required
for these other processes are combined into one param-
eter, Ter (bottom right panel, Figure 1). From a theoretical
perspective, it has always been recognized there must be
variability in Ter (and it has been used in the simple reac-
tion time literature; cf. Smith, 1990). But it has never been

clear what the addition of the extra parameter would buy
for the sequential sampling models; it appeared that suc-
cess or failure of the models was not dependent on it.
However, we recently found sets of data for which the dif-
fusion model fits missed badly in some conditions and
discovered that this was due to large variability in the .1
quantile reaction times across conditions. Adding vari-
ability in Ter to the model corrected the fits (Ratcliff et al.,
2002).

For purposesof modeling,Ter is assumed to be uniformly
distributed (bottom left panel of Figure 1). The true dis-
tribution for Ter might be skewed or normal, but this dis-
tribution is convolved with the distribution from the deci-
sion process that has a larger standard deviation (by a
factor of at least 4). The distribution of the convolution is
determined almost completely by the distribution of the
decision process, and so the precise shape of the distribu-
tion of Ter has little effect on predicted reaction time dis-
tribution shape. The standard deviationof the distribution
of Ter determines the amount of variability in the .1 quan-
tile reaction times across trials that can be accommodated
by the model, and it also determines the size of the sepa-
ration between the .1 and the .3 quantile reaction times rel-
ative to the case with no variability in Ter.

Simulating the Diffusion Process
The first step in an examinationof fitting methods is to

produce data to be fit. A computer program was written
that, given input values for all the diffusion model param-
eters, generated simulated data from the model. That is,
the program generated individual data points, each one a
response choice with its associated reaction time. The aim
was that the fitting methods should recover the correct pa-
rameter values—in other words, the parameter values
from which the data were generated.

To produce simulated data from the diffusion process,
a random walk approximation was used. Feller (1968,
chap. 14) derived the diffusion process from the random
walk by using limits in the random walk: As step size be-
comes small, the number of steps becomes large, and the
probability of taking a step toward one boundary ap-
proaches .5. Specifically, if the random walk has a proba-
bility of q of taking a step down, a step size in time of h,
and a step size in space of d, the random walk approaches
the diffusion process when d®0, h®0, and q®1/2, so
that ( p 2 q)d/h®v and 4pqd2/h®s2, where v and s2 are
constants and p 5 1 2 q. If these limits are applied to the
expression for reaction time distributions (first-passage
times) and response probabilities, the diffusion process
expressions are obtained (see Feller, 1968, chap. 14; Rat-
cliff, 1978).

To scale the random walk approximationso that the dif-
fusion model parameters can be used, the step size and the
probability of taking a step up or down need to be scaled,
using the step size in time and the standard deviation in
drift (s). First, we define the parameter h to be the step size
in time (e.g., h might be 0.05 msec). Then, in one time
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step, the process can move a step size of d up or down. We
set d 5 sÏh and the probabilityof going distance d to the
lower boundary to be 0.5(1 2 vÏh/s). The simulation
starts from starting point z, and after each unit of time h,
it takes a step of size d until it terminates at 0 or a. With
these definitions, as h®0, then d®0; the mean displace-
ment during time h equals ( p 2 q)d/h, which approaches
drift rate v; the variance of the displacement approaches
4pqd2/h; and so the random walk approaches the diffusion
process.

To implement this random walk approximation to the
diffusionprocess in a computerprogram, it is more efficient
to use integer arithmetic, rescaling distance so that a step
is one unit up or down. This is accomplished by dividing
a, z, and v by d. To produce simulated data from the dif-
fusion process, we reduced the step size in the random
walk, in accordance with the limits stated above, until the
random walk approximated the diffusion process. Steps
with a size of 0.05 msec were used, and these produced
mean reaction times within 0.1 msec and response proba-
bilities within 0.1% of the values produced by explicit so-
lutions for the diffusion model (see Appendix A).

There are many other ways in which a diffusion process
could be simulated (Tuerlinckx, Maris, Ratcliff, &
De Boeck, 2001). The advantage of the random walk ap-
proximation is generality. There are cases in which the
drift rate is assumed to change over position in the
process, as in the Ornstein Uhlenbeck diffusion model
(Busemeyer & Townsend, 1992, 1993; Smith, 1995), or
over time during the process. For example, if a stimulus
displaywas masked before a response had been produced,
during processing, the drift rate could be assumed to fall
after masking (see Ratcliff & Rouder, 2000). In these
cases, exact solutionsare usually not available, but it is ex-
tremely easy to modify the program that simulates the dif-
fusion process with the random walk.

CONTAMINANT REACTION TIMES

In evaluating the three fitting methods, we addressed
the issue of contaminant reaction times. We defined con-
taminantsas responses that come from some process other
than the diffusion decision process. One class of contam-
inants is outliers—response times outside the usual range
of responses (either shorter or longer). Outliers are a seri-
ous problem in reaction time research. They can cause
major problems in data analysis, because they can distort
estimates of mean reaction time and standard deviation in
reaction time (see Ratcliff, 1979). Also, outliers signifi-
cantly reduce the power of an analysis of variance (see
Ratcliff, 1993; Ulrich & Miller, 1994). The other class of
contaminants is reaction times that overlap with the dis-
tribution of reaction times from the process being exam-
ined. These are also a problem for data analysis, although
not as serious as the problem caused by outliers. Contam-
inantsmight arise, for example, from a guess or from a mo-
mentary distraction that is followed by a fast response.

Fast guesses, one kind of outlier, have in themselves
been a topic for modeling. The influential “fast guess”

model was developed to account for speed–accuracy
tradeoffs when these tradeoffs were accomplished by in-
creasing or decreasing the number of fast guesses (Oll-
man, 1966; Swensson, 1972; Yellott, 1971). Often, fast
error responses are called fast guesses. This is usually not
an accurate description. True fast guesses are guesses—
that is, their accuracy is chance (Swensson, 1972). So, in
a condition in which there are fast error responses, it is
necessary to determine whether all fast responses are at
chance. If many fast responses are accurate and there are
few fast errors, the fast errors are not fast guesses. It can-
not be stressed enough that fast errors are not fast guesses
unless all responses below some lower cutoff (e.g., the
fastest 10%, 5%, or 1% of the responses) are at chance re-
sponding. This is the signature that is needed to identify
fast guesses and that can be used to eliminate subjects or
devise where to place lower cutoffs.

The method we have adopted for dealing with contam-
inants in data analyses is, first, to eliminate fast and slow
outliers, using cutoffs. For fast outliers, we place an upper
cutoff at, say, 300 msec and a lower cutoff at zero and ex-
amine how many reaction times appear in that range for
each subject, examining the accuracy of these responses.
If a subject has a significant number of responses (e.g.,
over 5% or 10%) that are fast and at chance, the subject is
a candidate for elimination from the experiment (we oc-
casionally find such noncooperativesubjects). We then in-
crease the upper cutoff (to, say, 350 msec) to see whether
accuracybegins to rise abovechance.Repeating this process
with increasingly larger cutoff values allows us to deter-
mine a good choice of a cutoff for fast outliers.

The method just described for setting a cutoff for fast
outliers is workable in most situations.However, when an
experimental task biases one response over the other (e.g.,
Ratcliff, 1985; Ratcliff et al., 1999), then typically, one re-
sponse will be faster than the other, sometimes by as much
as 100–200 msec in mean reaction time. This means that
the shortest reaction times for responses for the biased re-
sponse will be up to 100 msec shorter than responses for
the nonbiased response. In this case, the use of cutoffs will
not allow fast guesses of the biased response to be distin-
guished from genuine responses from the decisionprocess.
Examination of the shape of reaction time distributions
might be one way of detecting fast outliers. If the leading
edge of the distribution has a long rise or reaction times
are less than 250 msec, the short reaction times should be
viewed with suspicion. Also, if only fast errors occurred
in a high-accuracy condition when the correct response
was biased against, these fast errors could come from fast
guesses of the biased response.

For slow outliers, we set an upper cutoff not by some
fixed proportion of responses, but rather by determining
a point above which few responses fall. The choice depends
on the research goal; the cutoff might be smaller for hy-
pothesis testing than for model fitting (see Ratcliff, 1993,
for a discussion of the power of tests).

For model fitting, cutoffs can eliminate extremely fast
and slow outliers. However, to eliminate all contaminants
is impossible. The solution we adopted to deal with these



ESTIMATING PARAMETERS OF THE DIFFUSION MODEL 443

remaining contaminants was to explicitly represent them
in the fitting method and estimate their proportion ( po).
For the diffusion model simulations,we assumed that con-
taminants were generated only by a delay inserted in the
usual decision process. Specifically, we assumed that on
some proportion of the trials, a random delay was intro-
duced into the response time. Thus, the observed response
times in each condition were a mixture of responses from
a regular diffusion process (with a probability of 1 2 po)
and contaminant responses (with a probability of po; see
Figure 1, bottom right panel).

Our assumptions about contaminants are reasonable if
subjects are cooperative and if they make errors only as a
result of lapses of attentionor other short interruptions. If
subjects produce contaminants in other ways (e.g., they
could guess in difficult conditions),different assumptions
couldbe incorporatedinto the fittingprogram. Dealingwith
contaminants theoretically in this way can easily be ex-
tended to fitting summary distributions for reaction time
distributions,as in Heathcote et al. (2002), Ratcliff (1979),
Ratcliff and Murdock (1976), and Van Zandt (2000).

For clarity, it is worth noting that issues of fitting cont-
aminant reaction times will not be addressed until the
methods for fitting the diffusion model have been intro-
duced and evaluated in detail. Issues concerning variabil-
ity in Ter will be addressed even later in the text.

FITTING THE DIFFUSION MODEL

To fit the diffusion model to a set of data, characteris-
tics of the data have to be compared with the model’s pre-
dictions for those characteristics.The three different fitting
methods we evaluated each compare different character-
istics, and each requires an expression for the model’s pre-
dictions. Collectively, the comparisons require the pre-
dicted probability densities for individual reaction times,
the predicted cumulativeprobabilitydistribution,and pre-
dicted values of accuracy for each of the experimental
conditions.The expressions for all of these are given in Ap-
pendix B.

Because the expressions do not have closed forms and
because some of the parameters’ values vary across trials
(starting point, drift rate, and Ter), the predictions must be
computednumericallyas described in detail in AppendixB.
Numerical computation allows the accuracy of the pre-
dictions to be adjusted by adjusting the number of terms
in infinite series for the reaction time distributions or in-
creasing the number of terms in numerical integration
over starting point and drift variability (although the more
accuracy desired, the longer the fits take). For the tests of
the fitting methods described below, predicted values of
reaction time and accuracy were computed to within
0.1 msec and .0001, respectively.

Maximum Likelihood Fitting Method
Given simulated data and expressions for predictions

about the data from the diffusion model, we can fit the
model to the data to see how well the maximum likelihood

method does in recoveringparameter values. For the max-
imum likelihood method, the predicted defective proba-
bility density [ f (ti)] for each simulated reaction time (ti)
for each correct and error response is computed. By a de-
fective density, we mean nothing more than one that does
not integrate to one (see Feller, 1968); it integrates to the
probability of the response. The product of these defec-
tive density values is the likelihood [L 5 P f (ti)] that is to
be maximized by adjustment of parameter values. Be-
cause the product of large numbers of values of densities
can exceed the numerical limits of the computers used to
compute likelihood, log of the likelihood is used (maxi-
mizing the likelihood is achieved with the same param-
eters as maximizing the log of the likelihood).Also, max-
imizing log likelihood is the same as minimizing minus
the log likelihood,and most routines are designed for min-
imization.

Ratcliff’s implementation of the maximum likelihood
method involves using the predicted defective cumulative
distribution function to obtain the defective cumulative
probability for each reaction time, F(ti), and the defective
cumulative probability for that reaction time plus an in-
crement, F(ti 1 dt), where dt is small (e.g., 0.5 msec).
Then, by using f (t) 5 [F(t 1 dt) 2 F(t)]/dt, the predicted
defective probability density at point t can be obtained.
Summing the logs of the predicted defective probability
densities for all the reaction times gives the log likelihood.
Again, minus the log likelihood is minimized.

To minimize minus the log likelihood,Ratcliff used the
SIMPLEX routine (Nelder & Mead, 1965; see also Ap-
pendix B). This routine takes starting values for each pa-
rameter, calculates the value of the function to be mini-
mized, then changes the value of one parameter at a time
(sometimes more than one) to reduce the value of the ob-
jective function. This process is repeated until either the
parameters do not change from one iteration to the next by
more than some small amount or the value to be mini-
mized does not change by more than some small amount.

Tuerlinckx’s implementation of the maximum likeli-
hood method uses the defective probability density of
each reaction time obtained directly from the predictions
of the model (rather than through the cumulative distrib-
ution function). Drift variance is integrated over explic-
itly, and so there is one less numerical integration for the
density function. (We were unable to integrate over drift
variance for the cumulativedistributionfunction,but only
for the density, and Ratcliff used his expression for the dis-
tribution function—used in the chi-square and weighted
least squares programs—to numerically produce the den-
sity for use in maximum likelihood partly so that it and
Tuerlinckx’s method could be checked against each other.)

To minimize minus the log likelihood,Tuerlinckx used
a constrained optimizationroutine (NPSOL; Gill, Murray,
Saunders, & Wright, 1998; implemented in the NAG li-
brary) that searches for the minimum of minus the log like-
lihood function by using finite difference approximations
to the first derivatives for the objective or target function.
Although the NPSOL computer algorithmallows the user
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to supply the theoretical partial derivatives (slopes of the
function as a function of each of the parameter values),
these were not used, because they are very complicated. In
general, in this application, the finite difference method is
faster than the SIMPLEX method, because it uses more
informationabout the objective function (derivatives).But
it is less robust and can lead to problems in numerical in-
stability that cause it to fail to converge on the minimum
of the function being minimized. Tuerlinckx’s method is
about five times faster than Ratcliff’s method.

Chi-Square Fitting Method
There are several ways of using a chi-square method for

fitting the diffusion model to data; the one we chose was
designed to maximize the speed of its computer implemen-
tation (and it is the method routinelyused by Smith, 1995;
Smith & Vickers, 1988).

The chi-square method we used works as follows. First,
the simulated reaction times are grouped into bins, sepa-
rately for correct and error responses. The number of bins
we chose was six, with the two extreme bins each con-
taining 10% of the observations and the others each con-
taining 20%. We compute the empirical reaction times
that divide the data into the six bins, and these are the .1,
.3, .5, .7, and .9 quantiles. Inserting the quantile reaction
times for the five quantiles for correct responses into the
cumulative probability function gives the expected cumu-
lative probabilityup to that quantile for correct responses.
Subtracting the cumulative probabilities for each succes-
sive quantile from the next higher quantile gives the pro-
portion of responses expected between each pair of quan-
tiles, and multiplyingby the total number of observations
(total number of correct responses) gives the expected fre-
quencies in each bin for correct responses. Doing the
same thing for the five quantiles for error responses gives
the expected frequencies in each of the bins for error re-
sponses. (If there were fewer than five errors in an exper-
imental condition, five quantiles could not be computed,
and the error reaction times for the condition were ex-
cluded from the chi-square computation.) The expected
frequencies (E ) are compared with the observed frequen-
cies (O). The chi-square statistic to be minimized is the
sum over the 12 bins, the 6 correct response bins and the
6 error response bins, of (O 2 E)2/E (with these sums for
each condition summed over conditions).This chi-square
statistic is the objective function to be minimized by pa-
rameter adjustment.

For each condition, only five evaluationsof F(t) are re-
quired for correct responses, and five are required for error
responses (no matter how many observations in each con-
dition). As compared with Ratcliff’s maximum likelihood
method, the program runs 50 times faster with 250 obser-
vations per condition and 200 times faster with 1,000 ob-
servations per condition(because the distributionfunction
has to be computed twice for each density function).

Weighted Least Squares Fitting Method
In this method, the sum of the squared differences be-

tween observed and predicted accuracy values plus the

sum of the squared differences between observed and pre-
dicted quantile reaction times for correct and error re-
sponses is minimized. The expression for the minimized
function is the following: the sum over experimental con-
ditions (for correct and error reaction times separately) of
4( prth 2 prex)2 1 Siwt 3 prex 3 [Qth(i) 2 Qex(i)]2, where
pr is accuracy, Q(i) is the quantile reaction time in units of
seconds, th stands for predicted,ex stands for experimental,
and wt was 2 for the .1 and .3 quantiles, 1 for the .5 and .7
quantiles, and 0.5 for the .9 quantile. Just as with the chi-
square method, if there were fewer than five errors in a
condition, five quantiles could not be computed, and the
error reaction time for the condition was excluded from
the least squares computation.

The weights were chosen to roughly approximate the
relative amounts of variability in the quantiles, weighting
more heavily those quantile points for which variability
was smaller. For simple linear regression, an appropriate
weighting scheme is to divide each data point by its vari-
ance. This gives the smallest standard deviationsin the es-
timates of the parameters (for normally distributed resid-
uals). Whether our weights correspond to the relative
variabilities of the quantile reaction times can be deter-
mined in two ways: by computing the theoretical standard
deviations for the quantile points and by computing their
standard deviations empirically from experiments. Theo-
retically, the asymptotic variance of a quantile reaction
time at quantile q is q(1 2 q)/(Nf 2), where N is the num-
ber of observations and f is the probability density at the
quantile (Kendall & Stuart, 1977, Vol. 1, p. 252). We car-
ried out this computation for two sets of parameter values
(the first and sixth rows of Table 1, with drift rates of .3
and .1, respectively), computing the standard deviations
in the quantile reaction times. We then divided the .5 quan-
tile standard deviation by each of the others to give rela-
tive weights. For the five quantiles .1, .3, .5, .7, and .9, the
ratios were 2.4, 1.6, 1.0, 0.7, and 0.3 for the first set of pa-
rameter values and 2.3, 1.6, 1.0, 0.6, and 0.3 for the sixth
set of parameter values. Thus, the weights we chose are
approximately in the ratio of the standard deviations. The
problem with this theoretical computation is that the ex-
pression for the variance is accurate only asymptotically
and our data have too few observations (especially in ex-
treme error conditions) to be asymptotic. So, additional
work would be needed to compute expressions for the
nonasymptotic case.

Empirically, we calculated the standard deviations in
quantile reaction times across subjects for a letter identi-
fication experiment (Thapar et al., 2002; see also Ratcliff

Table 1
Parameter Values for Simulations

Parameter Set a Ter h sz v1 v2 v3 v4

A 0.08 0.300 0.08 0.02 0.40 0.25 0.10 0.00
B 0.08 0.300 0.16 0.02 0.40 0.25 0.10 0.00
C 0.16 0.300 0.08 0.02 0.30 0.20 0.10 0.00
D 0.16 0.300 0.16 0.02 0.30 0.20 0.10 0.00
E 0.16 0.300 0.08 0.10 0.30 0.20 0.10 0.00
F 0.16 0.300 0.16 0.10 0.30 0.20 0.10 0.00



ESTIMATING PARAMETERS OF THE DIFFUSION MODEL 445

& Rouder, 2000). Again, to represent the standard devia-
tions as weights, we divided the standard deviation for the
.5 quantile by each of the others. For three experimental
conditions that spanned the range of accuracy values in
the experiment (probability correct of .9 to .6), the ratios
were the following: 1.3, 1.2, 1.0, 0.7, 0.4; 1.4, 1.2, 1.0, 0.8,
0.4; and 1.3, 1.1, 1.0, 0.8, 0.6. The squares of these ratios
(relativevariances) are not far from our selectionof weights.
Thus, given both the theoretical and the empirical calcu-
lations, we conclude that the weights we used (2, 2, 1, 1,
and .5) were not unreasonable.

Another issue concerning the optimality of the least
squares method is that the data entering each term in the
sums of squares should be independentof each other (see,
e.g., Seber & Wild, 1989). If the data are not independent,
all possible covariances among the quantities should be
taken into account (Seber & Wild, 1989). In our case, it is
clear that quantile reaction times for correct and error re-
sponses and accuracy values all covary. If a single param-
eter of the model is changed, all the quantile reaction
times and accuracy values will change in a systematic
way. Some of the covariances are known. For example, the
asymptotic covariationbetween all the reaction time quan-
tiles for one response (correct or error) is given by Kendall
and Stuart (1977). But this is an asymptotic expression
and would not apply accurately to error reaction times (for
which there are few data points). Also, theoretical formu-
lations for the covariations between correct and error re-
action time quantiles and accuracy values are not avail-
able. It would be very difficult to find expressions for all
the covariances required to produce an optimal version of
the weighted least squares method. The weighted least
squares method we employedshould, therefore, be viewed
as the kind of ad hoc method that is often used in fitting.

To implement our weighted least squares method, the
predicted reaction time for each of the quantiles needs to
be computed. To compute these, the whole predicted cu-
mulative reaction time distributionhas to be obtained.We
used 400 reaction times to obtain cumulative frequencies
and then linear interpolationbetween pairs of values to de-
termine the quantile reaction times. The SIMPLEX rou-
tine was used to minimize the weighted least square, and
the implementations ran at about the same speed as Rat-
cliff’s maximumlikelihoodprogram—that is, much slower
than the chi-square method.

In the weighted least squares method, accuracy is rep-
resented explicitly in the sum of squares, but it is not rep-
resented explicitly in the maximum likelihood and chi-
square methods. In those methods, accuracy is represented
by the predicted relative frequencies in the reaction time
distributionsfor correct and error responses. For example,
for 250 observations per condition and an accuracy value
of .9, the total observed frequency for errors would be 25,
and the total frequency for correct responses would be
225. In the fitting process, if the model predicted an ac-
curacy of .8, it would overpredict errors (frequency of 50)
and underpredict correct responses (frequency of 200).

Then the fitting program would attempt to adjust these
frequencies, subject to the other experimental conditions
and other constraints.

PARAMETER VALUES

The parameter values were chosen to be representative
of real experiments in which subjects are required to de-
cide between two alternatives—for example, word or non-
word in lexical decision or bright or dark in brightnessdis-
crimination. We simulated data for an experiment with
four conditions, the conditions representing four levels of
difficultyof a single independentvariable, as, for example,
in a lexical decision or recognition memory experiment
with four levels of word frequency or in a two-choice sig-
nal detection experiment with four levels of brightness of
the stimulus. We assumed that the levels of the variable
are randomly assigned to trials in each experiment, so that
subjects cannot anticipate which condition is to occur on
any trial (see Ratcliff, 1978,Experiment1). This means that
subjects cannot adjust processing as a function of condi-
tion and, therefore, none of the parameters of the model
except the parameter representing stimulus difficulty can
change across levels of the manipulated variable.

The simulated data were generated from 12 different
sets of parameter values, with the values chosen to span
the ranges of values that are typical in fits of the diffusion
model to real data. For the 6 sets shown in Table 1, the start-
ing point z was symmetric between the two boundaries.
The drift rates are all positive because the same results
wouldbe obtainedwith negativedrift rates, since the bound-
aries are symmetric. (We also performed the same analy-
ses with asymmetric boundaries; the results are qualita-
tively the same as those for the symmetric boundary case,
and tables displaying the results can be found on Ratcliff’s
or the Psychonomic Society’s Web pages).

Ter, the parameter for the nondecision components of
processing, was always set at 0.3 sec. This parameter
largely determines the location of the leading edge of the
reaction time distribution. When boundary separation is
small, the leading edge is a little closer to Ter, and when
boundary separation is large, the leadingedge is a little fur-
ther away from Ter. None of the other parameter estimates
or standard deviations in parameter estimates are changed
by changing the value of Ter, because a change in Ter shifts
all the reaction times by the same fixed amount.

Drift rate (v) represents the quality of evidence driving
the decision process—that is, the difficulty level of a stim-
ulus. For the four levels of the independent variable, we
selected four drift values that span the range from high ac-
curacy (about 95% correct) to low accuracy (about 50%
correct). The values for the four drift rates are different for
different values of boundary separation because when
boundary separation (a) is small, there is more chance that
a process will hit the wrong boundary by mistake, and so a
highervalue of drift rate was used to produce the same high
accuracy values as when boundary separation was larger.
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We selected two values for variability in drift across tri-
als (h, which is the standard deviation in a normal distri-
bution) and two values for variability in starting point
across trials (sz, which is the range in a uniform distribu-
tion), one relatively large and one relatively small, as com-
pared with typical values obtained in fits to real data.

We used two values of a, a 5 0.08 and a 5 0.16, both
with symmetric boundaries and asymmetric boundaries.
These values roughly bracket the values of boundary sep-
aration typically obtained in fits to real data.

Overall, the selected parameter values cover the range
of valueswe haveobtainedwhen fitting the diffusionmodel
to experimental data (Ratcliff, 2002; Ratcliff et al., 2002;
Ratcliff & Rouder, 1998, 2000; Ratcliff et al., 2001; Rat-
cliff et al., 1999; Thapar et al., 2002).

EVALUATING FITTING METHODS

Our evaluationof the fitting methods will start by using
models and simulated data with no contaminants or vari-
ability in Ter. Then we will introduce contaminantsand re-
port their effects on the fitting methods. We will then in-
troduce corrections for contaminants in the fitting methods
and will discuss their performance. Finally, we will intro-
duce variability in Ter and will evaluate performance of
the models without and then with this explicitly modeled.
This also follows our chronological study of these issues.

We evaluated the methods by comparing the parameter
values each method recovered from simulated data with
the parameter values that were used to generate the data.
We examined each method’s ability to recover the correct
parameter values, whether the recovered values were bi-
ased away from the correct values in some consistent way,
and the size of the standard deviations in the parameter val-
ues across fits to multiple simulated data sets. The stan-
dard deviations in the estimated parameter values are im-
portant for determining how much power is available for
testing hypotheses about differences in parameter values
across experimental conditions or subject populations.
Also, the relative sizes of the standard deviations in the es-
timated parameter values from the different methods pro-
vide estimates of the relative efficiencies of the methods.

The diffusion model was used to produce the simulated
empirical data as follows: Given a value for each of the
diffusion model’s parameters, the model produces re-
sponses, each with its response time. For each set of pa-
rameter values for the model, 100 sets of simulated data
were generated, each data set with either 250 or 1,000 ob-
servations for each of the four experimental conditions.

All of the three methods of fitting the model to data in-
volve computing some statistic—that is, some objective
function—to represent how well the model fits the data. A
minimization routine (see Appendix B) begins with some
starting values of the parameters of the model and then ad-
justs them to maximize or minimize (depending on the
method) the objective functionuntil the best fit is obtained
between predicted accuracy values and reaction times and

simulated accuracy valuesand reaction times. This process
of finding the parameter values that give the best fit of
predictions to data was repeated for each of the 100 sets
of simulateddata, giving 100 sets of best-fitting parameter
values, from which we calculated the mean and standard
deviation of the 100 estimates for each parameter. This
whole process was repeated for each of the three fitting
methods, and then it was all repeated again with the 100
sets of data generated from a different set of parameters.
Altogether, 12 different sets of parameter values (6 with
symmetric boundaries and 6 with asymmetric boundaries
which are not reported) were used to span the range of pa-
rameter values typical of fits of the diffusion model to data
in past studies (Ratcliff, 2002; Ratcliff & Rouder, 1998,
2000; Ratcliff et al., 2001; Ratcliff et al., 1999; Thapar
et al., 2002; other unpublished studies).

For all the 100 sets of data for all 12 sets of parameter
values, Ratcliff examined the maximum likelihood, chi-
square, and the weighted least squares methods, and Tuer-
linckx examined the maximum likelihoodmethod. Ratcliff
examined the chi-square method with corrections for con-
taminants and variability in Ter, and Tuerlinckx examined
the maximum likelihood method with these corrections.

The mean values of the best-fittingparameters and their
standard deviations allow the three fitting methods to be
compared on the basis of how well they allow recovery of
the parameter values used to generate the simulated data,
how variable the parameter estimates are across sets of
data, and whether they produce systematic biases away
from the true parameter values. For each set of simula-
tions, we will discuss the overall behavior of the methods
in terms of the results from the simulations. But only in
the more important cases will we present tables of the
mean values of the parameter estimates and the standard
deviations in the estimates for the 100 sets of simulated
data that were generated for each set of parameter values.

The conclusions of the fitting exercises are complex;
each fitting method has advantagesand disadvantages.To
anticipate, we will list here several main conclusions, but
with the caveat that any one set of simulations may have
differences from the main results. (1) When the simulated
data containedcontaminants,as real data oftendo, we found
that the maximum likelihood method was extremely sen-
sitive to the contaminants.Although we developedproce-
dures to correct for some classes of contaminants, the
presence of even a few contaminants that could not be cor-
rected for was sufficient to produce poor fits and poor pa-
rameter recovery. However, in the absence of contami-
nants, the maximum likelihoodmethod produced unbiased
parameter estimates and had the smallest standard devia-
tions in the estimates of any of the methods. (2) The chi-
square method was much more robust than the maximum
likelihood method. The presence of a few contaminants
for which we did not correct had little effect on the results
of fitting: parameters were estimated with only small bi-
ases away from the values used to generate the data, and
the parameters had standard deviations in their estimated
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values that were only somewhat larger than those obtained
for the maximum likelihood method. In addition, imple-
mentations of the chi-square method are much faster than
implementationsof either the maximumlikelihoodmethod
or the weighted least squares method. (3) The weighted
least squares method produced mean parameter estimates
about as biased as those for the chi-square method, but the
standard deviations were larger. However, the weighted
least squares method was the most robust in the face of

contaminants. It was capable of producing reasonable fits
even in situations in which the other methods failed dra-
matically, although the recovered parameters were not the
same as those used to generate the diffusion process por-
tion of the data. The weighted least squares method is
most useful as a guide to whether the diffusion model is
capable of fitting a data set.

QUANTILE PROBABILITY FUNCTIONS

Fits of the diffusion model to data are complicated to dis-
play, because the data include two dependent variables—
accuracy rates and correct and error reaction times—as
well as distributions of reaction time. Traditionally,accu-
racy, mean reaction time, and reaction time distributions
are all presented separately as a function of the conditions
of an experiment. Here, we show a method of presenting
all the dependent variables on the same plot so that their
joint behavior can be better examined.

In earlier research, latency probability functions have
been used to display the joint behavior of mean reaction
time and accuracy. They are constructed by plottingmean
reaction time on the y-axis and probabilitiesof correct and
error responses on the x-axis (Audley & Pike, 1965). Re-
sponses with probabilitiesgreater than .5 are typicallycor-
rect responses, and so, data from correct responses typically
fall to the right of the .5 point on the x-axis. Responses
with probabilities less than .5 are typically errors and, so,
typically fall to the left. Latency probabilityfunctions cap-
ture the joint behaviorof reaction time and response prob-
ability, how fast the two change across experimental con-
ditions, and how fast they change relative to each other.
However, latency probability functions do not display in-
formation about reaction time distributions.

Ratcliff (2001) generalized latency probability func-
tions to quantile probability functions, the method of pre-
senting data that we use in this article. A quantile probabil-
ity functionplotsquantilesof the reaction time distribution
on the y-axis against probabilities of correct and error re-
sponses on the x-axis. In Figure 2, five quantiles are plot-
ted, the .9, .7, .5, .3, and .1 quantiles, as labeled in the ver-
tical rectangle, for four experimental conditions. For a
given experimental conditionwith a probabilityof correct
responses of, say, .8 (to the right of the vertical rectangle),
the five quantile points form a vertical line above .8 on the
x-axis. The spread among the points shows the shape of
the distribution. The lower quantile points map the initial
portion of the reaction time distribution, and the higher
quantilesmap the tail of the distribution.Because reaction
time distributions are usually right skewed, the higher
quantilepoints are spread apart more than the lower quan-
tile points. Lines are drawn to connect the quantiles of the
experimental conditions, one line to connect the first
quantiles of all the experimental conditions, another line
to connect the second quantiles, and so on. If, as is usually
the case, responses with a probability of greater than .5
are correct responses and responses with a probability of

Figure 2. An illustration of quantile probability plots. The top
panel shows quantile probability functions, the middle panel il-
lustrates how the quantiles change as drift rate changes, and the
bottom panel illustrates the effect of changing boundary separa-
tion.
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less than .5 are error responses, the mirror image points on
the x-axis around the probability of .5 point allow com-
parisons of the shapes of correct and error response time
distributions. In the example presented in Figure 2, in the
lowest accuracy condition, both correct and error re-
sponses have a probabilityof .5, and so their quantiles fall
on top of each other. Also, comparing the quantile points
across different probabilityvalues shows how distribution
shape changes as a function of experimental condition.
For example, if the whole distribution (all quantiles) be-
comes slower and slower as the difficulty of the experi-
mental conditions increases (and probability of a correct
response decreases), this is easily seen as parallel changes
in all the quantiles. But if instead, the distribution be-
comes more skewed as the difficulty increases, the first
quantiles for all the conditions will change little across
conditions, and the last (longest) quantiles will change
most, as is the case in the top panel of Figure 2.

The parameters of the diffusion model each have a sys-
tematic effect on the quantileprobabilityfunction.Varying
drift rate varies left to right position on the quantile prob-
ability function. Changes in drift rate can produce only a
small change in the lowest quantile and a large change in
the highest quantile (Figure 2, middle panel). This corre-
sponds to the distribution’s skewing a lot and shifting its
leading edge a little. Increasing boundary separation re-
sults in the distribution’s both shifting and skewing. The
lowest quantile increases, and the highest quantile in-
creases more (Figure 2, bottom panel).

If starting point variability across trials (sz) increases,
the quantiles to the left of a probabilityof .5 (typically, er-
rors) decrease, and they decrease most on the extreme left
side of the plot. This can lead to errors that are faster than
correct responses in the most accurate conditions. If vari-
ability in drift rate across trials (h) is increased, the plot
becomes more asymmetric. With h 5 0, sz 5 0 and z 5
a/2, the quantile probability function is symmetric. As h
is increased, the peak is lowered a little, and it moves to the
left as error responses slow relative to correct responses.

When the points plottedon the quantileprobability func-
tion are from an experiment in which subjects cannot
change response criteria or strategies between experimen-
tal conditions, as in the experiments simulated here for
tests of the fitting methods, then for the diffusion model,
the shapes of the lines that connect the quantiles in the
quantile probability plot are completely determined by
just three parameters: a, h, and sz. This means that, in fit-
ting the model, only drift rate can vary as a function of
condition.The quantileprobabilityfunctionis what is called
a parametric plot, with drift rate the parameter of the plot.
Thus, besides providing a useful summary of the joint be-
havior of reaction time distribution shape and accuracy,
the quantile probability function provides a stringent vi-
sual demonstration of how well the diffusion model fits
the data. (For examples of patterns of data the diffusion
model cannot fit, illustrated using quantile probability
functions, see Ratcliff, 2002.)

Variability in Simulated Data
Quantile probability functions provide a vehicle with

which to illustrate variability in the simulated data we
used to test the three fitting methods. Variability in the data
provides a backdrop for understandingwhy the variability
in estimated parameters that we will present later is as
large or as small as it is.

Figure 3 shows quantile probability functions for data
simulated with the set of parameters shown in the first line
of Table 1. Only the quantile probability functions for 40
sets of data, not the full 100 sets, are shown, in order to re-
duce clutter. The “smears” on the figure are the 40 over-
lapping lines at each of five quantiles. The figure shows
how much variability there is in the quantile points and
that there is more variabilitywhen the quantilesare derived
from only 250 observations per condition (top panel) as
compared with 1,000 observations per condition (bottom
panel). (The quantile reaction times scale as a function of
the square root of N, so the spread in the bottom panel is
half that in the top panel. The figures provide a visualiza-
tion of the size of the spread for these sample sizes and
these values of accuracy.)

With 250 observations per condition, the .9 quantile
varies around its mean by as much as 300 msec (for errors
at the extreme left of the figure, which come from condi-
tions with high accuracy), and it varies by as much as
100 msec for correct responses from conditions with in-
termediate accuracy (in the middle of the figure). The .1
quantile varies little across the 40 sets of data, except for
errors in the conditions with high accuracy. With 1,000
observationsper condition, the location of the quantiles is
much tighter,but even so, the .9 quantile for error responses
in the high-accuracy conditions varies by as much as
100 msec.

It is possible to understandwhich parametershavegreater
or lesser variability associated with them from these fig-
ures. Ter and a are determined to a large degree by the po-
sition of the .1 quantile.The figures show that the .1 quan-
tile is quite well located without much variability. On the
other hand, h and sz are largely determined by error reac-
tion times, and these have a large amount of variability as-
sociated with them. For example, with 250 observations
per condition (e.g., Figure 3, top panel), simulated data
generated from parameters that should produce slow er-
rors can easily, by chance, produce errors as fast as correct
responses. This would produce a fitted value of variabil-
ity in drift across trials (h) of zero. This means that with
250 observations per condition and h 5 0.08, it is easily
possible (e.g., 5% or 10% of the time) to obtain a set of
data that produces a fitted value of h near zero. Therefore,
we expect variability in h to be large when fitting simu-
lated data.

Figure 3 shows the variability that simulated data have
associated with them. If the diffusion model is correct—
that is, if real data are generated from a diffusion process—
the same variabilitywill be associated with real data. This
is why we provide the standard deviations in the parameter
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values we obtain from fitting simulated data. These stan-
dard deviationsgive some reasonable idea of what we can
expect from parameter estimates based on real data.

PARAMETER ESTIMATES FROM THE
MAXIMUM LIKELIHOOD METHOD

For all three methods of fitting, we will report and dis-
cuss results for fitting the simulated data that were gener-
ated from the six sets of parameter values for which the
starting point is equidistant from the boundaries (Table 1).
We will report the means of the parameter estimates
across the 100 data sets and the standard deviations in the
estimates. In the series of fits described first, results will
be shown and discussed for the data sets with 250 obser-

vations per condition. It turns out that the standard devia-
tions for 1,000 observations per condition are almost ex-
actly twice as small as those for 250 observations per con-
dition (i.e., the standard deviations change as the square
root of the numberof observations).Therefore, we will later
discuss the results with 1,000 observations per condition
only briefly. The next sections will present simulated data
and fitting methods with no contaminants and with no
variability in Ter .

Means and Standard Deviations
of Parameter Estimates

Recall that Ratcliff and Tuerlinckx obtained probability
densities for reaction time distributions in different ways
and used different fitting algorithms (which provides a
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Figure 3. Quantile probability functions for 40 sets of simulated data for 250
observations per condition (top panel) and 1,000 observations per condition
(bottom panel). These illustrate the variability in simulated data for the five dif-
ferent quantiles and how the variability changes, going from high-accuracy
correct responses (right-hand side of the figure) to errors on the left-hand side
of the figure.
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check on the accuracy of the methods). The means of their
parameter estimates agreed within 1% of each other, ex-
cept for the variabilityparameters (h and sz), which agreed
within 5%. CorrelationsbetweenRatcliff’s and Tuerlinckx’s
means were computed for each parameter for each of the

six sets of parameter values. Averaging across the six sets
of correlations for each parameter value, the correlations
were about .9, except that, for Ter , the correlation was .72
and for sz, the correlation was .58. The low values of the
correlations for the variability parameters were due

Table 2
Means and Standard Deviations of Parameter Values Recovered

From the Maximum Likelihood Fitting Method (N = 250 per Condition)

Value Parameter Set a Ter h sz v1 v2 v3 v4

M A 0.0793 0.3010 0.0859 0.0206 0.4180 0.2612 0.1061 20.0021
B 0.0788 0.3009 0.1596 0.0178 0.4057 0.2543 0.0958 0.0032
C 0.1598 0.3039 0.0794 0.0220 0.3064 0.2024 0.1018 20.0007
D 0.1590 0.2998 0.0762 0.1095 0.2963 0.1985 0.1002 20.0019
E 0.1618 0.3055 0.1696 0.0319 0.3146 0.2092 0.1039 20.0007
F 0.1602 0.3000 0.1605 0.1068 0.3027 0.2008 0.0986 0.0025

SD A 0.0023 0.0029 0.0519 0.0144 0.0402 0.0292 0.0220 0.0195
B 0.0029 0.0029 0.0496 0.0159 0.0442 0.0295 0.0218 0.0238
C 0.0058 0.0080 0.0225 0.0255 0.0269 0.0194 0.0143 0.0104
D 0.0076 0.0045 0.0291 0.0372 0.0294 0.0229 0.0176 0.0139
E 0.0078 0.0097 0.0297 0.0313 0.0375 0.0299 0.0204 0.0143
F 0.0077 0.0060 0.0295 0.0327 0.0325 0.0273 0.0227 0.0153

Figure 4. Histograms of the parameter values recovered from fits of the diffusion
model, using the maximum likelihood method to simulated data (using parameters in
Table 1).
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mainly to the set of parameters for which h and sz were both
large. Although the correlations for Ter were low, the stan-
dard deviations in Ter were small (3–10 msec), so the low
correlationsdo not indicate large differences between Rat-
cliff’s and Tuerlinckx’s estimates of Ter. Ratcliff’s values
will be reported in the tables that immediately follow, and
Tuerlinckx’s values will be reported for the investigations
of contaminants and variability in Ter that will be pre-
sented later.

Table 2 contains the means and standard deviations of
the parameter estimates that were recovered from the 100
sets of data simulated for each set of parameters in Table 1,
for the data sets with 250 observations per condition.
Overall, the means of the parameter estimates are un-
biased—that is, they are close to the true values of the pa-
rameters with which the simulated data were generated.
The standard deviations in the estimates are small, aver-
aging about 4% of the mean for a, 3–10 msec for Ter,
about 10% of the mean for drift rates (v), but anywhere
from 20% to 70% of the mean for standard deviation in
drift across trials (h). When sz was small (0.02), its stan-
dard deviation was about the same size as the mean, but
when it was larger, it was about 30% of the mean. The rel-
ative sizes of these differences among standard deviations
are consistent across all three fitting methods. Below, we
will describe the results for each of the parameters in turn.

To show how the parameters vary across the random
samples (the 100 data sets), Figure 4 presents nine his-
tograms that display the parameter values. For two of the
sets of parameter values used to generate the simulated
data, a was 0.08. The first histogram(top left) shows all the
estimates of a from the data generated with both sets. The
next histogram, just below, shows the estimates of a for
the data generated from the four sets of parameter values
with a 5 0.16. Before grouping the two sets of data for
which a 5 0.08 and the four for which a 5 0.16, we made
sure that there were no systematic differences among
them. We also employed groupings for the histograms for
the other parameter values, always first checking that there
was no variation as a function of other parameter values.

For the boundary separation parameter a, all the means
of estimates shown in Table 2 are within 4% of the target
value (either 0.08 or 0.16), which is within less than one
standard deviation. When 0.08 was the target value, the
distributionwas skewed only a little to the right. When 0.16
was the target value, the distributionwas symmetric, roughly
normal. Thus, the fitting method is recovering parameter
values near the true values, with neither large deviations
nor a bias toward one or the other side of the target value.

The means of the estimates for Ter are also near the true
value (300 msec). The histogram for the valuesof Ter (Fig-
ure 4, bottom leftmost panel) is symmetric around the true
value, although there are a few straggling values in the
tail. The standard deviation in the estimates is reasonably
small, always less than about 10 msec. The standard devi-
ation is smaller, about 3 msec, when boundary separation
(a) is small and somewhat larger, 5–10 msec, when bound-

ary separation is larger. This is because, when a is small,
the .1 quantile has a smaller value, closer to the 300-msec
value of Ter, and is less variable. Hence, Ter is better lo-
cated and so has a smaller standard deviation. This same
explanationholds for large sz as opposed to small sz: With
a large sz, more processes have a value of the .1 quantile
near Ter than with a smaller sz.

The means of the estimates for drift rates are typically
within 6% of the true values, with no systematic bias away
from the true values, and they do not vary systematically
with other parameters of the model (we show histograms
for drift rates 0.3 and 0.1 only, because they are represen-
tative of all four drift rates). The standard deviations in the
estimates of drift rates are about 10% of the mean for high
drift rates and about 20% of the mean for low drift rates
(disregarding the drift value of zero). The standard devia-
tion in drift rates is larger for the lower value of boundary
separation a than for the higher value of boundary sepa-
ration. This is because the quantile probability function is
flatter for the smaller value of a and, so, drift rates are con-
strained mainly by their position on the x-axis (accuracy)
and less by their position on the y-axis (reaction times),
because the latter do not vary much across experimental
conditions. The standard deviation in drift rates is also
larger for larger boundary separation when the variability
across trials (h) is larger. This is again because the quan-
tile probability functions are flatter when h is large.

The two variability parameters (h and sz) are consider-
ably less accurately estimated than the other parameters
(this is true for most models that use variability param-
eters; cf. Ratcliff, 1979). Although there do not appear to
be any systematic biases in h away from the true values
(0.16 and 0.08), large standard deviations mean that, if
there were any systematic bias, it would be hidden in the
variability. The standard deviation in the estimate of h
varies from about 0.03 to about 0.05, 20%–60% the size
of the mean. The reason for large variability in h is that its
estimate is based on error reaction times, which them-
selves have such large variability (see Figure 3) because
there are often few of them (see Ratcliff et al., 1999).
Thus, for some simulated data sets, the best-fitting value
of h is near zero, and for other simulated data sets, the
best-fitting value is over twice as large as the true value
used to generate the simulated data. This is shown clearly
in the histograms in Figure 4. For h 5 0.08, there are a
number of estimates near zero. These come from simu-
lated data for which boundary separation a is 0.08. For
h 5 0.16, the distribution of estimates is narrower and
more symmetric. The standard deviation varies with
boundary separation a. When a is 0.08, the standard devi-
ation is larger, around 0.05, and when a is 0.16, the stan-
dard deviationis smaller, around 0.03. Thus, the larger the
value of a, the better the estimate of h.

The quality of the estimates of the parameter sz depends
on the true value of the parameter. When the value that
was used to generate the data is small, 0.02, two standard
deviation intervals include zero and a value twice as large
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as the true value (see the histogram in Figure 4). This ex-
treme variability in estimates comes about because the
size of sz is determined by error response times in condi-
tions with high accuracy, in which there are relatively few
error responses. When the true value of sz is 0.10, the es-
timates are near the true values, because the effect of sz on
error reaction times is larger and, so, is less likely to be
masked by random variation in the data. The distribution
of estimated values for sz 5 0.10 is symmetric (see the his-
togram in Figure 4), but there are still two values near
zero.

In sum, the parameters a, Ter, and drift rates are quitewell
estimated, within 10% of the mean parameter value. For
each of these parameters, the mean of the estimates from
the 100 data sets falls close to the true mean, there is no
consistent bias toward values larger or smaller than the
true mean, and the standard deviationamong the estimates
is small relative to the size of the estimated value. But the

variabilityparameters, h and sz, are much more poorly es-
timated, within 20%–70% of the mean parameter value. If
it is necessary to obtain good estimates of these param-
eters, sample size must be increased by running experi-
ments with many sessions per subject.

Correlations Among Parameter Values
A potentially major problem in recovering parameters

for a model is that the value of the estimate for one pa-
rameter may be significantly correlated with the value of
another. In attempting to find the best-fitting parameter
values, given the variability in the data, a fitting method
may trade the value of one parameter off against the value
of another. Using results from the 100 fits to the simulated
data, we can investigate how serious this problem is.

This issue is especially critical when testing for differ-
ences among parameter values across experimental con-
ditions.A larger value of a parameter in one conditionthan

Figure 5. An illustration of the covariation between parameter estimates for
linear regression. The top panel shows values of slope and intercept from sim-
ulated data (falling in an elliptical shape), and the bottom panel shows how
moving one data point up (by random variation) would decrease the slope and
increase the intercept of the best-fitting straight line.
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in another could be due to random variation, or it could be
due to a genuine difference in the values for the two con-
ditions. If other parameters of the model covary with the
parameter at issue in a way that is expected from the
model and the difference is just barely significant, it is less
likely that the observed difference is real than if the other
parameters do not covary in this way.

Before taking up the issue of covariation for the diffu-
sion model, we will illustrate covariation between param-
eters with an example, linear regression (straight line fit-
ting), for which there are only two parameters. Fitting the
equation for a straight line, y 5 mx 1 c, to data provides
estimates of slope m and intercept c. We generated 100
sets of data for a straight line, with 20 points on the line
per data set. The 100 sets of data were generated with a
slope of 1 and an intercept of zero, and to add variability
to the function, each point had a value added to it from a
normal distributionwith a mean of zero and a standard de-
viation of 1: y 5 mx 1 c 1 N(0,1). For each data set, a
straight line was fitted to it by the least squares method
(the standard method for linear regression), giving an es-
timate of slope and intercept for each data set. The slopes
and intercepts are plotted in Figure 5 (top panel).

In linear regression, if the correlationbetween the slope
and the intercept is computed, it usually has a large nega-
tive value. The correlation is large if the slope is positive
and the range of y values is more than four times greater
than the standard deviationin the variability in y. Figure 5,
top panel, illustrates this negative correlation.Plotting the
slopes versus the intercepts produces a roughly elliptical
shape with a negative slope. For the 100 random samples
in Figure 5, the correlation between the slopes and the in-
tercepts is 2.848.

The explanationfor the negative correlation is straight-
forward. If a data point near either end of the line is moved
far from the line, as illustrated in the bottom panel of Fig-
ure 5, the slope is raised, and the intercept is lowered (or
vice versa). This gives a negativecorrelation.It is much less
likely that the slope and the intercept are both raised in
some random set of data (giving a positive correlation),
because this would require a change in all the data points
in the same direction.

When parameter estimates are evaluated, confidence
intervals are often shown for a single parameter without
reference to the behavior of other parameters. However,

confidence regions can be drawn for the joint behaviors of
parameters. For linear regression, the confidence region
for the slope and the intercept forms an ellipse with a neg-
ative slope for the major axis (e.g., Draper & Smith, 1966,
p. 65). In Figure 5, this would be an ellipse around the
points in the top panel. Joint confidence intervals can be
important, as the following examples show: If the slope
for linear regression is higher and the intercept is lower
than the hypothesized population values, this can be the
result of random variation in the data, but if both the in-
tercept and the slope are higher, the values could be dif-
ferent from the populationvalues. For example, in the top
panel of Figure 5, imagine a point at slope 5 1.07 and in-
tercept 5 0.6. This point would lie inside the individual
confidence intervals for both the slope and the intercept
(i.e., 1.07 lies within the vertical scatter of points, and 0.6
lies within the horizontal scatter of points). But the point
would lie outside the joint confidence region (the ellipse
that would contain 95% of the points in the top panel of
Figure 5). So an understanding of the joint confidence re-
gionsprovides additionaluseful information in testing hy-
potheses about differences among parameter values.

For linear regression, joint confidence regionscan be de-
termined analytically, and hypotheses can be tested about
the joint behavior of the slope and the intercept. But for
the diffusion model, such analytical results are almost im-
possible to produce. However, simulation methods can
provide information that can be used more informally to
determine whether joint behavior of parameter values is
something that needs to be examined for a particular set of
fits for a particular data set. This will not allow hypothe-
ses to be tested but will provide enough information to de-
termine whether the issue of correlated estimates needs to
be considered in drawing conclusions about differences
among parameter values across conditions or whether it
can be ignored.

For the diffusion model, Table 3 contains correlations
between each pair of parameters for the maximum likeli-
hood fits shown in Table 3. For each of the 100 data sets
for each of the 6 sets of parameter values,we computedcor-
relations between each pair of estimated parameters, and
Table 3 shows the means of these correlations. Figure 6
shows scatterplots for the 100 parameter estimates for the
fits generated from 1 of the 6 sets of parameter values (the
3rd set in Table 1). For the 100 data sets, each scatterplot

Table 3
Correlations Among Parameter Values for Maximum Likelihood Fits

(N = 250 per Condition)

a Ter h sz v1 v2 v3 v4

a 1.0000 .3980 .8263 .6238 .7842 .6819 .5000 2.0227
Ter .3980 1.0000 .4257 .7904 .5295 .4751 .2890 .0355
h .8263 .4257 1.0000 .5330 .7837 .7129 .5270 .0115
sz .6238 .7904 .5330 1.0000 .6019 .5233 .3312 .0165
v1 .7842 .5295 .7837 .6019 1.0000 .6534 .4620 2.0432
v2 .6819 .4751 .7129 .5233 .6534 1.0000 .4378 2.0300
v3 .5000 .2890 .5270 .3312 .4620 .4378 1.0000 .0171
v4 2.0227 .0355 .0115 .0165 2.0432 .0300 .0171 1.0000
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shows the estimated value of one parameter plottedagainst
the estimated value of another parameter.

Many of the correlations in Table 3 are positive. This
comes about because of the effects of extra slow error re-
action times. The occurrence by chance of a few, extra slow
error reaction times moves the estimates of many of the
parameters of the model away from their true values, all in
the same direction (the variability parameters h and sz are
moved more as a percentageof their means than are a, Ter,
and drift rates), and how they change together is what the
correlations show.

To show the effect of slow error response times, we pro-
vide a concrete example to illustrate the effect: We took
the third set of parameter values from Table 1 and pro-
duced predicted values of response probabilities and

quantile reaction times from the diffusion model. We then
increased the fifth quantile reaction time for errors in the
condition with drift 5 0.1 by 100 msec. We fit the model
to the data with and without this increase. When the orig-
inal data were fitted using the chi-square method detailed
next, the parameters were recovered to within 0.1% of
their true values. When the functions with the single in-
creased quantile reaction time were fitted, the estimated
values changed by small amounts. The value of a was in-
creased from 0.16 to 0.162, Ter from 0.3 to 0.302, h from
0.08 to 0.086, sz from 0.02 to 0.030, and the three drift
rates that differed from zero increased from 0.300, 0.200,
and 0.100 to 0.307, 0.205, and 0.103, respectively. Fig-
ure 7 shows the quantile probability functions for the data
with one data pointmoved up and the fitted quantileprob-

Figure 6. Scatterplots among the parameters of the diffusion model for fits to simulated data, using the maximum likelihood
method (using parameters from line 3 in Table 1).
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ability function for the latter. The result is that the fitted
quantile probability function is moved up a little, more in
the higher quantiles than in the lower quantiles.This is re-
flected in an increase in the estimated values for all the
model’s parameters, as was described above. Making
changes in more of the quantileswould magnify the small
effect of the change in only the fifth quantile reaction time
for errors with drift 5 0.1.

This increase in all the parameter values is exactly the
pattern we see in the correlations and scatterplots in Fig-
ure 6 and Table 3. The most common and largest random
variation in data is in error reaction times, as is illustrated
in Figure 3, especially in the longest quantiles. As the ex-
ample above shows, this variation is sufficient to produce
the positivecorrelationsobserved in the parameter values.

The general conclusion for the diffusion model is that
random differences among samples of data produce dif-
ferences in all the parameters’ estimates in the same direc-

tion. This means that if the sizes of differences among
parameter values are important, correlations must be con-
sidered. For example, if there is a significant difference
between two values of boundary separation a and if h and
drift rates also vary in the same direction as a, the differ-
ences in a could be due to random variation in the data.
The positivecorrelations among estimated parameter val-
ues come from variability in error reaction times, and so
they are also obtained with the chi-square and weighted
least squares methods of fitting.

Parameter Estimates for the
Maximum Likelihood Method
When Boundaries Are Asymmetric

For the case with asymmetric boundary separation (all
the parameters were the same as in Table 1, except z 5
.375a, and drift rates were 2.3, 2.1, .1, and .3), the stan-
dard errors in the recovered parameters were smaller than
those for the symmetric case. One of the main reasons for
the better estimates is that with the starting point being
asymmetric, reaction times for the response with the
closer boundary are shorter, which makes both Ter and a
better estimated. The correlation matrix for asymmetric
boundaries shows the same pattern as that in Table 3, but
the correlations are 25% smaller because of better param-
eter estimation. These same differences between the sym-
metric and the asymmetric cases are found in most of the
fits presented later in this article, so we will discuss the
asymmetric case only if the results are different from the
symmetric case.

PARAMETER ESTIMATES FROM THE
CHI-SQUARE FITTING METHOD

An important advantage of the chi-square method is
that the time needed to produce a fit is 25 times shorter per
experimental condition than that for the maximum likeli-
hood method with 250 observationsper conditionand 100
times shorter with 1,000 observations per condition. For
example, when the chi-square method is used, a fit to one
set of data takes about 25 sec on a 500-MHz Compaq
XP1000 with a 21264 Alpha processor and about 14 sec

Figure 7. An illustration of what happens to the fit of the dif-
fusion model if one error quantile is increased (cf. the change in
one data point in Figure 4).

Table 4
Means and Standard Deviations of Parameter Values Recovered

From the Chi-Square Method (N = 250 per Condition)

Value Parameter Set a Ter h sz v1 v2 v3 v4

M A 0.0810 0.3010 0.1135 0.0279 0.4346 0.2710 0.1114 20.0026
B 0.0808 0.3002 0.1883 0.0249 0.4156 0.2649 0.1009 0.0028
C 0.1653 0.3067 0.0995 0.0388 0.3296 0.2148 0.1092 20.0009
D 0.1588 0.2936 0.0748 0.0951 0.2915 0.1925 0.0977 20.0016
E 0.1657 0.3048 0.1786 0.0422 0.3328 0.2130 0.1067 0.0001
F 0.1603 0.2886 0.1550 0.0918 0.2981 0.1912 0.0944 0.0023

SD A 0.0039 0.0039 0.0701 0.0155 0.0606 0.0379 0.0281 0.0215
B 0.0039 0.0042 0.0648 0.0174 0.0625 0.0370 0.0251 0.0258
C 0.0095 0.0136 0.0359 0.0374 0.0499 0.0382 0.0215 0.0116
D 0.0090 0.0162 0.0401 0.0280 0.0424 0.0309 0.0217 0.0133
E 0.0103 0.0121 0.0399 0.0340 0.0485 0.0369 0.0241 0.0164
F 0.0111 0.0175 0.0453 0.0375 0.0464 0.0412 0.0258 0.0160
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with PC runningLinux, using an Intel compiler on a 1.33-
GHz Athlon processor. For fitting many sets of data (many
individual subjects or many simulated data sets), the chi-
square method runs for minutes or hours, whereas the
maximum likelihood method runs for days.

Table 4 shows the mean parameter estimates and the
standard deviations in the parameter estimates with 250
observations per condition. In order to provide a rough
guide for comparison of the three different fitting meth-
ods, we will discuss the sizes of the standard deviations in
terms of approximate averages. When we want to com-
pare two methods, we compute the ratios in the standard
deviations of their parameter estimates and then compute
the median across the ratios for each of the parameters.
This gives a rough summary of the performance of each
method. For example, the standard deviations in the pa-
rameter values given by one method might be anywhere
from 1 to 2 times larger than those for another method,
with a median of about 1.5 times larger. Summary state-
ments like these are only approximate, because the differ-
ences in the standard deviations between fitting methods
can be different for different parameters.

The first result of note is that the median standard de-
viationis 33% larger, on average, for the chi-squaremethod
than for the maximum likelihoodmethod. This means that
parameters recovered with the chi-square method are
likely to be farther away from their true values than those
recovered with the maximum likelihood method. Second,
there are biases in some of the parameter estimates: in par-
ticular, h and the drift rates have estimated values that are
larger than their true values by 5%–10%; sz has estimated
values higher than the true value when sz is 0.02, but when
it is 0.10, it is estimated to be a little lower than the true
value. However, the means of the estimates for Ter and a
are near their true values, with no systematic direction for
differences from the true values.

We do not present histograms of the estimated param-
eter values, because they are qualitatively similar to those
shown in Figure 4 for maximum likelihood. In general,
they show the same biases for the same parameters. The
only major differences are a few more cases in which h is

estimated to be zero and some cases in which h is esti-
mated to be larger for the chi-square method than for the
maximum likelihood method. The correlation matrix for
the chi- square fits shows almost the same patterns as
those in Table 3, but with slightly higher correlation val-
ues. This is because the maximum likelihood and the chi-
square methods produce variation in parameter values in
the same way in response to random variations in the sim-
ulated data. So, all the conclusions that were presented for
the maximum likelihood covariations among parameter
values apply equally to correlations among parameter val-
ues derived from the chi-square method.

When boundary positionsare not symmetric, just as for
the maximum likelihood estimates, the standard errors in
the estimates are smaller than when the boundaries are
symmetric. Also, there is slightly less bias than in the
symmetrical case.

In sum, the chi-square method is somewhat worse at re-
covering accurate parameter estimates, but it is signifi-
cantly faster than the maximum likelihoodmethod. It also
turns out, as will be seen later, that the chi-square method
is a little more robust to a small proportionof outliers than
is the maximum likelihood method.

PARAMETER ESTIMATES
FROM THE WEIGHTED LEAST
SQUARES FITTING METHOD

Like the maximumlikelihoodmethod, the weighted least
squares method suffers from a speed problem. For the
weighted least squares method, the whole reaction time
distributionhas to be estimated for each conditionfor both
correct and error responses, which requires hundreds of
points (recall that we used 400 points). If the weighted
least squares method turned out to be the best estimation
method, it could be speeded up by using search methods
to find the quantiles, but it would still be at least 10 times
slower than the chi-square method.

Table 5 shows the means and standard deviations in the
recovered parameter values. The first thing to notice is that
for the lower value of a (true value 5 0.08), this method

Table 5
Means and Standard Deviations of Parameter Values Recovered From

the Weighted Least Squares Method (N = 250 per Condition)

Value Parameter Set a Ter h sz v1 v2 v3 v4

M A 0.0795 0.2955 0.0916 0.0213 0.4251 0.2637 0.1079 20.0026
B 0.0789 0.2953 0.1592 0.0191 0.4099 0.2571 0.0957 0.0041
C 0.1643 0.3086 0.0951 0.0422 0.3353 0.2228 0.1122 0.0001
D 0.1605 0.2966 0.0813 0.1011 0.3061 0.2069 0.1047 20.0010
E 0.1666 0.3082 0.1879 0.0460 0.3422 0.2282 0.1139 20.0012
F 0.1632 0.2940 0.1717 0.0998 0.3189 0.2116 0.1055 0.0027

SD A 0.0031 0.0038 0.0579 0.0144 0.0464 0.0325 0.0232 0.0205
B 0.0036 0.0037 0.0641 0.0144 0.0566 0.0365 0.0233 0.0265
C 0.0123 0.0193 0.0462 0.0443 0.0668 0.0501 0.0286 0.0118
D 0.0138 0.0213 0.0507 0.0364 0.0642 0.0500 0.0283 0.0148
E 0.0139 0.0201 0.0551 0.0504 0.0737 0.0520 0.0335 0.0175
F 0.0156 0.0269 0.0635 0.0473 0.0849 0.0640 0.0375 0.0186
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is better than the chi-square method; the recovered esti-
mates of all the parameters are nearer the true values, and
standard deviations in them are smaller. But for the higher
value of a, the opposite is true. The average across the two
values of a of the standard deviations is about 29% larger
for the weighted least squares method than for the chi-
square method. Overall, the biases in the mean parameter
values away from the true values are about the same for
the chi-square and the weighted least squares methods, but
the weighted least squares method has higher standard de-
viations overall than does the chi-square value. For both
the chi-square and the weighted least squares methods, the
estimates are less accurate than the maximum likelihood
estimates, and their variability is greater. The average of
the standard deviations for the weighted least squares
method is about 63% larger than that for the maximum
likelihood method.

The correlationsamong parameters for the weighted least
squares method are a little larger, on average, than those
for the chi-square method (they vary between 5% lower
and 10% larger, except for zero drift, for which the corre-
lationsare near zero). But the correlations all show exactly
the same patterns: When one is higher than another in
weighted least squares, it is also higher in chi-square and
maximum likelihood. This means that all three methods
produce correlations among parameters, for the reasons
that were discussed above (using the example in Figure 7).

In sum, the parameter estimates from the weighted least
squares method are about as biased as those from the chi-
square method, but they have larger standard deviations,
and the weighted least squares method has a huge deficit
in computational speed. Both the weighted least squares
and the chi-square methods recover mean parameter val-
ues less accurately than does the maximum likelihood

Figure 8. A sample fit of the three methods (maximum likelihood, chi-
square, and weighted least squares) to one set of simulated data (the Xs). The
parameters are shown at the top, and the parameters used to generate the sim-
ulated data are in the column headings of the table. The top theoretical func-
tion (for each of the five quantiles) is from the maximum likelihood method,
the middle function is from the chi-square method, and the lower function is
from the weighted least squares method.
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method (by about 5%–10%, dependingon the parameter),
and the standard deviations in the estimates are larger than
those with the maximum likelihoodmethod. But the max-
imum likelihoodmethod is slow relative to the chi-square
method and more sensitive to outliers, as will be demon-
strated below.

AN EXAMPLE OF THE QUALITY
OF THE FITS OF DIFFUSION MODEL

TO SIMULATED DATA

As was just pointed out, the parameter estimates for the
maximum likelihood method are quite accurate, and for
the chi-square and weighted least squares methods, they
are reasonablyaccurate, within about 5%–10% of the true
values. The question we raise here is how good the fit of
the diffusion model to the simulateddata is, given these es-
timates.

To provide an example of how good the fit is, we chose
one representative data set for which the estimated param-
eter values from all three methods were near to the true
parameter values from which the simulated data were gen-
erated. The true values were the first set of parameter val-

ues in Table 1. Each set of estimated parameter values, one
set from each method, was used to generate predicted val-
ues of accuracy and reaction time quantiles for each ex-
perimental condition. Figure 8 shows the quantile proba-
bility functions for the simulated data (the X points) and
the quantile probability functions for the predicted values
for each method. In general, the fits all look good, and all
indicate that the model is fitting the datawell. The weighted
least squares and the chi-square methods produce fits to
the quantile probabilityfunctions that are almost identical
to each other. The chi-square method produces a larger
value of h (50% larger) and a larger value of sz than does
the least squares fit, but the effects of these two larger val-
ues lead to only small differences (compared with the
weighted least squares method) in the predicted reaction
time quantiles in the quantile probability functions. The
maximum likelihood method produces f its that do not
match the .9 quantilesquite as well as the other two meth-
ods (by visual inspection at least), but ignoring the fits
from the other two methods, the fit looks quite acceptable.
One would be hard-pressed to determine which method
produced which of the fits in Figure 8 or to work out
which fit was the best or worst simply by looking at the

Figure 9. Predicted functions from the average parameter values from the fits of the
maximum likelihood, chi-square, and weighted least squares methods (third lines of
Tables 3, 6, and 9) to the predictions from the diffusion model for input parameters
from the third line of Table 1. The curve with Xs represents the theoretical predictions
from the input parameters. The bottom right panel shows the average quantiles from
the simulated data (the lines).
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graphical fit of the predicted functions to the data func-
tions. The maximum likelihood method produces param-
eter estimates slightly closer to the values used to gener-
ate the simulated data, but this may not translate into
better-looking fits to the quantile probability functions.

The fits for one representative data set shown in Fig-
ure 8 illustrate that all three fitting methods do well. But
the three methods do show systematic, although small,
differences in their fits. The differences come about be-
cause the chi-square and the weighted least squares meth-
ods fit data summarized in quantiles, whereas the maxi-
mum likelihood method fits all the individual reaction
times. We will explain and illustrate this in the next para-
graphs.

Figure 9 shows data and fits for the third set of param-
eter values in Table 1. The lines in the bottom right-hand
panel of Figure 9 show the average quantiles for the 100
sets of simulated data generated with these parameter val-
ues. The Xs are the predicted values of the quantiles. As
the figure shows, the average quantiles from the simulated
data do not exactly match the predicted values: For errors
that have very low probability (points to the far left), the
average quantiles for the data are higher than their pre-
dicted values. This is an inherent characteristic of the dif-
fusion model becauseof the variability in drift rate. As drift
rate varies around its mean, some responses will come
from slightly higher values of drift rate, and some from
slightly lower values. For slightly higher values of drift
rate, accuracy will be greater, and so there will be rela-
tively fewer errors. For slightly lower values of drift rate,
accuracy will be lower, and there will be relatively more
errors. The errors from low values of drift rate are slower,
and there are more of them, so averaging across all the re-
sponses that have the same mean drift rate gives slower er-
rors than would be expected from the mean alone. Also,
for some of the data sets, accuracy in the most accurate
experimental conditions may have been so high that there
were too few errors to compute quantiles.Drift rate would
have been large for these conditions,and so error response
times would have been fast. Eliminating these fast errors
because there were too few of them to compute quantiles
would make the quantiles computed from the simulated
data larger than the predicted quantiles.

The chi-square and weighted least squares methods fit
data as it is summarized by quantiles.Because the extreme
(far left) error quantiles for data are systematicallyhigher
than predicted, the chi-square and weighted least squares
fits yield parameter estimates that also give slower ex-
treme errors. This is shown in the bottom left and top right
panels of Figure 9, where the Xs are the same as in the
bottom right panel—that is, they are the quantile values
predicted from parameter values that were used to gener-
ate the simulated data—and the lines are the quantile val-
ues predicted from the means of the parameters estimated
from fitting the 100 sets of data. In contrast, the maximum
likelihoodmethod fits individual reaction times, so quan-
tiles predicted from the means of the parameters esti-

mated for the 100 data sets with this method do not show
the problem with extreme errors. Because the extreme
quantilesare higher than the predicted values from the pa-
rameters, they are fit with higher values of h, thereby pro-
ducing slightly slower errors in the most accurate condi-
tion. When sample size is increased to 1,000 observations
per condition, the bias in h is reduced for the chi-square
and weighted least square methods, because the quantile
error reaction times in the most accurate conditionare bet-
ter estimated.

If the bias toward estimating higher values of h for the
chi-square and weighted least squares methods results
from the bias in the data, fits of the chi-square method to
the average quantile reaction times should show the same
bias. Fits of the chi-square method to the average data are
shown in the bottom right panel of Figure 9 (the least
squares method shows the same results). Parameter esti-
mates were within a few percent of those in Parameter Set
C of Table 4: for example, the values of a 5 0.1643, Ter 5
0.3091, h 5 0.0952, and v1 5 0.3352 (the other drifts
were equally close to the values in Parameter Set C of
Table 4). Thus, the biases in the chi-square fits do indeed
come from the method’s use of quantile reaction times as
summary statistics for the data.

It should be noted that when quantiles computed from
single data sets are graphed and compared with quantiles
predicted from parameters estimated with the chi-square
and weighted least squares methods, the fits will often ap-
pear to the eye to be slightly better than quantiles pre-
dicted from parameters estimated with the maximum like-
lihoodmethod.This is because the chi-square and weighted
least squares methods capture the same bias toward slow
extreme errors, as is exhibited by the quantiles of the data
themselves.

In summarizing the quality of the fits of the three meth-
ods, we pointed out that the estimated values of param-
eters for the maximum likelihood method were quite ac-
curate and that the estimated values for the chi-square and
weighted least squares methods were about 5%–10% far-
ther away from the true values and about 30%–60% more
variable. The bias in the values of the standard deviation
in drift across trials (h) for these two methods arose from
the fact that error quantile reaction times are biased in the
highest accuracy condition. When the chi-square and
weighted least squares methods were used to fit predicted
quantile reaction times and accuracy rates generated from
the model (and not simulated data), the recovered param-
eter values matched the values used to generate the pre-
dicted values quite accurately.

CHANGING THE RANGE OF DRIFT RATES

In the investigationswe have reported so far, drift rates
spanned a range such that accuracy rates varied widely,
from floor to ceiling.In this section,we will show what hap-
pens for other ranges of accuracy values. To summarize
the conclusions, parameters are recovered about as accu-
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rately when the range of accuracy rates is much smaller
than floor to ceiling. The only exception occurs when ac-
curacy rates have a small, very high range, with accuracy
in all the experimental conditions above about 90% (as
would be the case in many lexical decision experiments).

Table 6 shows what happens with the maximum likeli-
hood and chi-square fitting methods when the drift rates
used to generate the simulated data are limited in range.
(Because weighted least squares provides the same qual-
ity of fits as the chi square, it would provide the same re-
sults here as the chi square.) The results are qualitatively
the same as those obtained when drift rates span the range
from ceiling to floor (Tables 2 and 4). For example, when
the chi-square estimator is biased in Table 6, it is also bi-
ased in Table 4. For Sets A and B, the standard deviations
are about the same as those shown in Tables 2 and 4, and
the biases in the parameters are about the same. For Sets
C and D, the standard deviation in Ter is larger, but the
other estimates and standard deviationsare about the same
as those in Tables 2 and 4. The larger standard deviation
in Ter occurs because the .1 quantile and shortest reaction
times are larger and more variable than when there are
larger drift rates that produce shorter reaction times,
which locates Ter better. For Set E, the standard deviations
are larger for both maximum likelihood (Table 2) and chi
square (Table 4; except for Ter, which is better because the
.1 quantile is smaller and less variable than in the lower ac-
curacy conditions).

These results show that the best estimates of the pa-
rameters of the diffusion model are produced when ex-
perimental conditionsspan a moderately wide range of ac-
curacy values, but not necessarily all the way from ceiling

to floor. Only when accuracy is very high (above, say,
90%) for all conditions do the estimates suffer seriously
for each of the three methods. Therefore, when collecting
data for fitting this model (and probably similar stochas-
tic models), it is important to have conditions that span a
moderately wide range of values of accuracy.

CHANGING SAMPLE SIZE:
CONSISTENCY OF ESTIMATORS

So far, we have discussed results for simulateddata with
a sample size of 250 observations per condition. This
would be about one session of data per subject (4 3 250
trials 3 3 sec per trial 5 50 min). The means of the esti-
mated parameter values and their standard deviations
(presented in the tables) can be used to construct confi-
dence intervals around the parameter values estimated for
a single session for a single subject. For the simulations
with 1,000 observations per condition, the results were
exactly what would be expected for the behavior of the
standard deviations as a function of sample size: They
scaled as a function of 1/ÏN (the standard deviationis the
square root of the sum of squared differences divided by
N ). For example, the average standard deviation in the
maximum likelihoodparameter estimates is decreased by
1.98 (with symmetric boundaries) as N is increased from
250 to 1,000 observations per condition, and for the chi-
square estimation method, the standard deviation is de-
creased by 2.03.

Because the standard deviations scale as expected, ta-
bles for standard deviations for a sample size of 1,000 are
not necessary. To a good approximation (within 10%),

Table 6
Maximum Likelihood and Chi-Square Fitting Methods Applied to Samples Where Drift Rates Do Not

Span the Range From Low to High (N = 250 per Condition)

Set Measure a Ter h sz v1 v2 v3 v4

High drift rates (A) Target value 0.0800 0.3000 0.0800 0.0200 0.4000 0.3500 0.3000 0.2500
MLH mean 0.0790 0.3005 0.0743 0.0164 0.4117 0.3570 0.3052 0.2522
MLH SD 0.0026 0.0027 0.0467 0.0151 0.0381 0.0359 0.0300 0.0285
x2 mean 0.0803 0.3009 0.1103 0.0263 0.4283 0.3689 0.3167 0.2648
x2 SD 0.0039 0.0038 0.0552 0.0161 0.0591 0.0506 0.0417 0.0378

High drift rates (B) Target value 0.1600 0.3000 0.1600 0.0200 0.3000 0.2500 0.2000 0.1500
MLH mean 0.1618 0.3047 0.1704 0.0243 0.3158 0.2585 0.2096 0.1570
MLH SD 0.0075 0.0089 0.0271 0.0314 0.0368 0.0338 0.0258 0.0244
x2 mean 0.1657 0.3047 0.1832 0.0414 0.3372 0.2678 0.2158 0.1594
x2 SD 0.0105 0.0109 0.0380 0.0343 0.0535 0.0410 0.0368 0.0272

Low drift rates (C) Target value 0.0800 0.3000 0.0800 0.0200 0.1500 0.1000 0.0500 0.0000
MLH mean 0.0792 0.3011 0.0730 0.0203 0.1558 0.1065 0.0519 -0.0026
MLH SD 0.0024 0.0032 0.0671 0.0145 0.0246 0.0247 0.0214 0.0184
x2 mean 0.0816 0.3018 0.1177 0.0286 0.1651 0.1157 0.0536 -0.0023
x2 SD 0.0049 0.0067 0.0953 0.0205 0.0372 0.0337 0.0243 0.0211

Low drift rates (D) Target value 0.1600 0.3000 0.1600 0.0200 0.1500 0.1000 0.0500 0.0000
MLH mean 0.1609 0.3061 0.1665 0.0259 0.1553 0.1011 0.0499 0.0004
MLH SD 0.0072 0.0118 0.0318 0.0315 0.0249 0.0188 0.0175 0.0161
x2 mean 0.1638 0.3066 0.1655 0.0414 0.1949 0.1048 0.0515 -0.0008
x2 SD 0.0090 0.0180 0.0397 0.0373 0.0716 0.0229 0.0194 0.0152

Very high drift rates (E) Target value 0.1600 0.3000 0.1600 0.0200 0.4500 0.4000 0.3500 0.3000
MLH mean 0.1606 0.3030 0.1672 0.0223 0.4692 0.4135 0.3576 0.3046
MLH SD 0.0076 0.0072 0.0228 0.0265 0.0450 0.0397 0.0324 0.0336
x2 mean 0.1669 0.3072 0.1987 0.0492 0.5073 0.4416 0.3829 0.3279
x2 SD 0.0173 0.0107 0.0508 0.0366 0.0796 0.0752 0.0668 0.0655
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standard deviations for sample size N can be computed
from the values in the tables for sample size 250 by mul-
tiplying the standard deviations by Ï(250/N).

However, the means of the parameter estimates do
change as a function of sample size. They approach the
input values from Table 1, so that a value of h (for the chi-
square method) of 0.1135 in Table 4 (top row) becomes
0.0951 with N 5 1,000. Likewise, a drift rate of 0.4346 in
Table 4 (top row) becomes 0.4116 for N 5 1,000. For the
chi-square and the weighted least squares methods, the
mean parameter values were closer to the parameter val-
ues that generated the simulated data for 1,000 observa-
tions per condition than to those for 250 observations per
condition (the maximum likelihood method had param-
eters that had little bias with both 250 and 1,000 observa-
tions per condition). This reduction in bias is due to bet-
ter estimation of the quantiles for error reactions times in
the conditions with few errors.

CONTAMINANTS AND VARIABILITY IN Ter

One of the major problems bedevilingresearch in which
reaction time measures are used is the problem of contam-
inant reaction times—reaction times that come from some
cognitive process other than the one being studied. Con-
taminants include both reaction times that overlap the dis-
tribution of reaction times from the decisionprocess under
study and outlier reaction times that are outside the distri-
bution of reaction times from the process being studied.

In this section, we will construct new sets of simulated
data for which contaminant reaction times are added to the
reaction times generated from the diffusion model. We will
show that the chi-square and maximum likelihood meth-
ods fail badly with these data. We will also show that the
weighted least squares method is robust, although the re-
covered parameter values are different from those used to
generate the diffusion model portion of the data.

Then we will apply a correction for contaminants to the
maximum likelihood and chi-square methods (we did not
apply the correction to the weighted least squares method,
because implementations are slow and it would perform
about the same as the chi-square method). With the cor-
rection, the chi-square and maximum likelihood methods
do a good job of recovering parameter values. Importantly,
however, it is not possible to correct for all possible con-
taminants. If, after correction, there remain a small num-
ber of contaminants not represented in the model (e.g., a
small number of fast responses in one condition), the chi-
square method performs adequately, but the maximum
likelihood method does not.

To correct for contaminants,we explicitlyrepresent them
in the fitting process and estimate their proportions. The
correction leads to an increase in the standard deviations
of the estimates of parameter values, because the contam-
inants reduce the quality of the data and also increase the
number of parameters to be estimated.

Besides contaminants,we investigatedvariability in the
parameter Ter, the parameter that encodes the time taken

up by processes involvedin the task under study other than
the decision process itself. In examining how well the dif-
fusion model fitted data from a recognition memory ex-
periment (Ratcliff & Smith, 2002), the weighted least
squares fitting method produced good fits (by visual in-
spection). But the chi-square method failed dramatically
(Ratcliff & Smith, 2002). For example, the predicted .9
quantile reaction times missed the data by as much as
200–400 msec across experimental conditions.We noticed
that in the data, the .1 quantile was much more variable
than was the case in other data sets and was especially
more variable than the simulated data examined in this ar-
ticle so far. To accommodate the increased variability in
the .1 quantile reaction times, we assumed that Ter was
variable across trials. Previously, variability in Ter was
never considered a necessary addition to sequential sam-
plingmodels for two-choicedecisions(when it was thought
about at all). However, the investigations we will present
below indicate that variability in Ter should always be in-
cluded in models when data are fit.

In the end, the fitting methods we present as optimal
are chi-square and maximum likelihood methods that in-
corporate the correction for contaminants and also have
variability in Ter. But we also argue that the weighted least
squares method is the most robust of the three methods.

Fast and slow outliers that lie outside the distributionof
reaction times from the decision process under investiga-
tion can occur for many reasons. For example, fast guesses
often occur when subjects anticipate the stimulus and hit
the response key by mistake. Or they can occur when sub-
jects become frustrated or bored and start hitting response
keys quickly without trying to perform the task (although
this behavior can sometimes be eliminated by introducing
a time delay after every response time shorter than some
value, such as 250 msec). Slow outliers often occur when
subjects are momentarily distracted,which leads to a delay
in responding.

We treat fast and slow outliers differently. First, fast
guesses, as was suggested in the introduction,can be elim-
inated (in large part) experimentallyor with cutoffs on re-
action times. Once most fast guesses have been eliminated,
some of the remaining fast responses that are not from the
decision process under investigation might be subsumed
by variation in Ter. If there are spurious fast responses still
remaining in the data, but only a few of them, they have
relatively small effects on parameter estimates obtained
with the chi-square method, because they will have little
effect on the .1 quantile reaction time. Slow outliers can be
eliminated by cutoffs, as was also mentioned in the intro-
duction. Any remaining contaminants, contaminants that
overlap with the distributions of response times from the
cognitive processes under investigation, are accommo-
dated by our correction, as we will show below.

Fast Contaminants and Their Consequences for
the Three Fitting Methods

Fast contaminants provide a particularly nasty problem
for the maximum likelihood method. Because each re-
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sponse time has to have a probability density assigned to
it [ f (t)], the value of Ter has to be lower than the shortest
reaction time. This usually severely distorts the estimates
of all the other parameters. The chi-square and the weighted
least squares methods avoid this problem to some degree
because they group responses into quantiles, so that the
precise location of the minimum is lost and not used by the
fitting method. But when the proportion of fast contami-
nants is greater than a few percent, the chi-square method
producespoor recovery of parameters, because the .1 quan-
tile is distorted, as we will show below. The weighted least
squares method is the most robust to fast contaminants.

To illustrate the dependence of maximum likelihood
parameter estimates on the fastest responses, we exam-
ined the correlations of estimates of Ter with minimum re-
action times for the fits for the simulated data generated
from the parameters in Table 1. The average correlation
over the six groupsof parameter valueswas about .45. This
means that Ter is being determined to a large degree by the
minimum reaction time. In contrast, the correlations be-
tween Ter and the minimum reaction time for the chi-
square and weighted least square estimates averaged about
zero, as would be expected because the fitting methods
have information only about quantile reaction times.

Slow Outliers and Their Consequences for the
Three Fitting Methods

Slow outliers cannot easily be eliminated by cutoffs, ex-
cept in extreme cases. They can be difficult to detect, be-
cause they can hide in the tail of the reaction time distrib-
ution (see Ratcliff, 1993; Ulrich & Miller, 1994). They
spread out the tail, rather than producing a second mode
(as sometimes occurs with fast contaminants; Swensson,
1972). There is always going to be some small number of
responses that are slow outliers, so it is important that
methods be developed that allow their effects to be re-
duced or minimized. However, little can be done with
really bad data. As a rule of thumb, if more than about 5%
of responses are fast guesses or slow outliers, we should
consider the data unusable for model fitting. This rule of
thumb motivates the choice of 5% as the assumed propor-
tion of contaminants in the simulations presented next.

We examined the dependence of the parameter esti-
mates shown in Tables 2, 4, and 5 on long reaction times
for the fits to the simulated data generated from the pa-
rameter values from Table 1. The correlations (averaged
over fits to the 100 sets of data and over the six groups of
parameter values) between the estimated values of the pa-
rameters and the smallest .1 quantile and the largest .9
quantilewere computed for the three methods. There were
small correlationsbetween all the parameter estimates and
the .1 quantile for chi square (.1), weighted least squares
(.1), and maximum likelihood (2.08), and there were
larger correlations (.35 for chi square, .40 for weighted
least squares, and .20 for maximum likelihood) between
all the parameters and the .9 quantile.This means that ran-
dom variation in the recovered parameter values across the
simulated data sets is determined to some degree by the

variation in the largest of the .9 quantiles across the ex-
perimental conditions (a conditionwith a large .9 quantile
will often have a large .7 quantile also). This reflects the
point made earlier about correlations among parameter
values, that if one of the .9 quantiles is increased, most of
the estimated parameter values increase.Again, this shows
how much the estimated values of the parameters are de-
termined by the tail of the reaction time distribution.

If, as we have just shown, parameter estimates depend
significantly on the longest reaction times, then if those
reaction times are contaminants, the parameter estimates
will be altered, sometimes drastically, away from their true
values. We will show this in the next section by explicitly
adding contaminants to simulated data.

FITTING THE DIFFUSION MODEL
IN THE PRESENCE OF CONTAMINANT

RESPONSE TIMES

To examine the behaviors of the three fitting methods
when they are applied to simulateddata that contain a small
proportion of contaminants, we added, with a probability
of po, a random time of between 0 and 2 sec to reaction
times derived from the diffusion model.The valueof po was
set to .05, which means that if there are 250 observations in
a condition,on average12.5 will be contaminants,although
sometimes there might be 0 or 25 contaminants.With con-
taminants in the data, all three methods fail badly to re-
cover reasonable parameter estimates when a 5 0.08, and
fail, but not as badly, when a 5 0.16. In the former case,
contaminants occur well out in the tail, where no reaction
times occur in the data simulated from the diffusion
model. In the latter case, the diffusion model produces re-
action time distributions with much longer tails, and so
the contaminants overlap much more with the tails. If we
were to assume that the range of the contaminant reaction
times increased as a increased, then a 5 0.16 fits would
have failed as much as those in the a 5 0.08 case. How-
ever, the assumption we made (range from 0 to 2 sec) is
about what might be expected in practice in experimental
data. The next three sections will detail our results, and
then we will go on to discuss corrections for fitting con-
taminated data.

Maximum Likelihood Method
The maximum likelihood method uses each reaction

time in the fitting computation, and each one is weighted
equally, so contaminants have a serious effect on param-
eter estimates. We fitted only a small number of represen-
tative data sets, because each fit produced extremely bad
estimates of the parameters and each fit took a very long
time (hours). In each case we examined with a 5 0.08, a
was estimated to be about 0.14, h was estimated to be
about 0.5, instead of 0.08, and the drift rates were two to
four times their correct values.

Figure 10 shows quantile probability functions pro-
duced from the parameters estimated from the maximum
likelihood method for one representative set of contami-
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nated data. The method attempts to fit correct responses
at the expense of error responses, because there are more
observationsfor correct responses (hence, the large misses
between the predictions for the error quantiles and the
data). We will discuss the issue of poor fits further in the
next section, with reference to the chi-square method. The
arguments there can be applied equally well to the maxi-
mum likelihood method.

Chi-Square Method
Table 7 shows the means and standard deviations in the

parameter values for the chi-square method applied to the

contaminated data. The result is relatively poor recovery
of the parameter values. The boundary separation (a) is
overestimated in each case by as much as 20%, the drift
rates are overestimated by as much as 40% (especially at
low values of a), and h is overestimated by a factor of two
to three at low values of a. The standard deviations in the
parameter values also increased from those for simulated
data without contaminants (Table 4), especially at the low
value of a. For the conditions with a 5 0.16, some of the
recovered parameters are quite close to the target values.
This is because the contaminants span much the same
range as the real data. The average maximum reaction

Figure 10. Quantile probability functions for fits of the maximum likelihood,
weighted least squares, and the chi-square methods, with and without corrections for
contaminants, to one data set with contaminants. The data set was chosen to illustrate
some of the worst fits of the models without corrections for contaminants. The top
panel shows the parameter values for the fits. The five lines represent the .1, .3, .5, .7,
and .9 quantile reaction times.
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time from the simulated data without contaminants is
about 2,500 msec, and the largest maximum contaminant
reaction time is about 4,300 msec, but few of the contam-
inants are this large. The median reaction time from the
diffusion model plus the maximum contaminant is about
2,700 msec, and extra long reaction times are possible
with and without contaminants being added. In contrast,
for small values of a, all long reaction times are contami-
nants; the average maximum reaction time from the model
is less than 1,000 msec, and contaminants have up to
2,000 msec added to the reaction time generated from the
model. In practice with real data, some of these reaction
times would be trimmed out as outliers, and the problem
would not be as severe.

Figure 10 shows one of the pathological cases in which
the drift rates are estimated to be very high (as compared
with the parameters used to generate the diffusion process
portion of the data), the variability in drift is estimated to
be very high, and the boundary separation is estimated to
be high. The method is attempting to fit correct responses
at the expense of errors (which are weighted less because
there are fewer of them). One reason that the fits are poor
for this set of data is that there are contaminants in the four
conditions for correct responses but few contaminants in
the error responses (because there are only 5% contami-
nants, on average, in any condition; on a particular simu-
lation, there may be 0%, 5%, or 10% contaminants). The
predicted function gets close to the correct responses and
to the intermediate accuracy errors and badly misses the
extreme errors (to the left-hand side of the top panel).

The key point is that parameter estimates are much
larger than the values used to generate the noncontami-
nant data, because the data set is generated not from a dif-
fusion model with the target parameter values, but from
the diffusion process plus contaminants.

Weighted Least Squares Method
As was discussed earlier, in the weighted least squares

method, the .9 quantileis weighted less than the lowerquan-
tiles. This is because the shorter quantiles have less vari-
ability, whereas the longerquantileshave more variability.

Because the .9 quantile shows the effects of contaminants
most and is weighted least, the weighted least squares
method is less affected by contaminants than are the other
methods.

The recovered drift rates are quite near their true values
(except the highest drift rates for a 5 0.08, which may
have had cases in which the number of errors was too
small to provide quantiles). The parameter a was better es-
timated than with the chi-square method, but Ter was un-
derestimated, which it was not for the chi-square method.
The value of h was overestimated, but by much less than
with the chi-square method. The standard deviations in h
were less for the chi-square method than for the weighted
least squares method, which means that the former pro-
duced an incorrect estimate with smaller spread than did
the latter. The value of Ter was more overestimated for
weighted least squares, but all the other parameters were
more overestimated for chi square (on average).

Figure 10 shows the quantileprobability functions from
the best-fitting parameter values for the weighted least
squares method, using the parameter values in Figure 10.
Unlike the chi-square and maximum likelihood methods,
the data are fit reasonably well, and the speed-up in error
reaction times, going from the middle of Figure 10 to the
left-hand side, is well captured. The parameter values are
much closer to those that generated the diffusion model
portion of the data, and the effects of contaminants on the
parameter estimates are not large.

We concludethat the weighted least squares method does
better than the chi-square and the maximum likelihood
methods (without corrections for contaminants) at fitting
contaminated data. The fitted quantile probability func-
tion comes much closer to all the data for the weighted
least squares method than for the chi-square and the max-
imum likelihoodmethods (for this single example and for
other data sets). This is true especially in cases such as the
one presented in Figure 10, where the contaminants affect
correct reaction times more than they affect error reaction
times. The parameter estimates are biased away from the
true parameter values for the diffusion component of the
simulated data because of the contaminants.This is a prob-

Table 7
Means and Standard Deviations of Parameter Values Recovered

From the Chi-Square Method With No Corrections Applied to Data with
5% Contaminants (N = 250 per Condition)

Value Parameter Set a Ter h sz v1 v2 v3 v4

M A 0.1024 0.3012 0.2874 0.0556 0.5530 0.3570 0.1570 0.0085
B 0.1047 0.3018 0.3817 0.0587 0.5653 0.3684 0.1631 20.0001
C 0.1866 0.2991 0.1378 0.0630 0.3449 0.2345 0.1217 0.0011
D 0.1791 0.2896 0.1133 0.1154 0.3073 0.2089 0.1088 0.0004
E 0.1838 0.2916 0.1992 0.0439 0.3314 0.2184 0.1186 0.0021
F 0.1770 0.2777 0.1733 0.0977 0.3082 0.1953 0.0982 0.0002

SD A 0.0159 0.0073 0.1600 0.0317 0.1707 0.1099 0.0691 0.0313
B 0.0134 0.0065 0.1247 0.0295 0.1513 0.0921 0.0693 0.0455
C 0.0169 0.0163 0.0462 0.0442 0.0688 0.0457 0.0271 0.0147
D 0.0166 0.0217 0.0565 0.0384 0.0637 0.0439 0.0299 0.0123
E 0.0107 0.0123 0.0349 0.0315 0.0405 0.0295 0.0289 0.0173
F 0.0126 0.0236 0.0467 0.0409 0.0480 0.0381 0.0252 0.0164
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lem if the aim is to recover accurate values of the param-
eters but is not a problem if the aim is to see whether the
model can fit the data. The example in Figure 10 illustrates
the point that the weighted least squares method is much
more robust than the other two methods to contaminated
data.

CORRECTION FOR CONTAMINANTS

In this section,we will examine a correction scheme for
the maximum likelihood and chi-square methods. The
correction allows recovery of estimates of parameters that
are about as good as when the data contain no contami-
nants but the standard deviations in the estimates are about
10% larger. The qualityof the fit is usuallysimilar or some-
what better than that of the weighted least squares method
without correction for contaminants.

Contaminants are added to simulated data by adding a
random amount of time of between 0 and 2 sec to a reac-
tion time derived from the diffusion model. This assump-
tion about the distribution of contaminants is our best
guess about what happens when motivated subjects have
occasional distractions. The random amount of time is
added to a small proportion of the responses with proba-
bility po, which we set to .05. This sum produces a com-
bined distribution of contaminated reaction times that is
almost a rectangulardistribution.It has a rapid rise, a long
flat asymptote, and a slow fall in the tail (see Figure 10;
Ratcliff, 1993).

In order to take contaminants into account in the fitting
methods, it is necessary to make an assumption about
what form the distribution of contaminant response times
takes, an assumption that entails few additional param-
eters and is consistent with what we know about contam-
inants in real experimental data. The assumption we make
below in modeling is not identical to the assumption we
make in generating the simulated data but is not too dif-
ferent (the assumption in modeling allows contaminants
to be random, as well as the result of a random delay added
to a regular decision). The assumption we make is that
contaminants come from a rectangular distributionwith a
range determined by the maximum and the minimum re-
action times in each experimental condition and that the
probabilityof a contaminant ( po) is the same in each con-
dition (i.e., is independentof the stimulus). The maximum
and minimum reaction times will not determine the true
range of contaminants in any particular condition (there
may not be any contaminants in some conditions).But our
method of fitting all the conditions with the same param-
eter values gives successful recovery of the parameters of
the diffusion process and the proportion of contaminants.

To summarize, to fit the diffusion model to simulated
data with the added contaminants, a mixture of two distri-
butions is used. The first component is the distribution of
reaction times from the diffusion process weighted with
probability 1 2 po, and the second component is a uni-
form distribution that ranges from the minimum to the

maximum reaction times in each condition, weighted by
probability po. The probability density for each reaction
time is (12 po) f d(t) from the diffusion model plus po fu(t)
from the uniform distribution.

We applied the correction method to the maximum like-
lihood and the chi-square fitting methods. The weighted
least squares method is robust, and the contaminant cor-
rection method would improve performance about as much
as it does for the chi-square method, but implementations
would be so slow that it would never be used in practice.

Maximum Likelihood
For the maximum likelihood method, each reaction

time is used to compute the probability density [ f (t)] for
the diffusion process and the probabilitydensity for a uni-
form distribution with a range of maximum reaction time
minus minimum reaction time. These are weightedby 1 2
po and po, respectively, and summed to provide the likeli-
hood of that reaction time. In all other respects, the fitting
method is the same as without correction.

Generally, the parameters of the diffusion model are re-
covered a little less accurately than when the uncorrected
method is applied to data without contaminants.For all six
sets of parameter values, the value of h is overestimated
by 10%–20%, and drift rates are overestimated by
5%–10%, as compared with the values used to generate
the simulated data (Table 1). For a 5 0.08, the proportion
of contaminants ( po) recovered by the fitting program is
about .049, close to the true value of .05. For a 5 0.16, po
is estimated to be less than .03, and the value of a is over-
estimated by about 5%. With a 5 0.16, the reaction time
distribution is spread more than in the a 5 0.08 case, and
the fitting method accommodates some proportion of the
contaminants as though they were generated from the dif-
fusion process. The standard deviations in the parameter
values are increased by approximately15% relative to fit-
ting the uncontaminateddata.

In practice, it is not possible to know whether data do
or do not contain contaminants (unless they are extreme
enough to be removed by cutoffs). Therefore, it is impor-
tant to check whether the contaminant correction method
recovers parameter values accurately even when there are
no contaminants in the data. We applied the corrected
maximum likelihood method to the original sets of simu-
lated data that contained no contaminants. The estimated
value of po was less than .01. The parameters a, h, and sz
were slightly underestimated, and drift rates were under-
estimated by around 5%. The standard deviations were
close to the same as when the method was applied with-
out the correction for contaminants. This means that ap-
plicationof the corrected method to data without contam-
inantsproducesresults similar to thosewhen theuncorrected
method is applied.

The addition of the correction method to maximum
likelihood allows it to produce parameter estimates that
are close to those used to generate the data, differing from
the true values by only about 20% for h and 10% or less
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for the other parameters. Standard deviations increased by
about 15%. Even though the distribution assumed for fit-
ting is not quite the same as the distribution used to gen-
erate the simulated data (a diffusion process reaction time
plus a uniformly distributed distraction time), the use of
the mixture allows the maximum likelihood method to
produce good fits, in contrast to its failure with contami-
nated data when no correction is used. Also, the imple-
mentation does not suffer in speed, running at about the
same speed as the program without the correction.

Chi Square
Just as for the maximum likelihood method, the chi-

square fitting method is corrected with the assumption
that the data are a mixture made up of a distribution of re-
action times from the diffusion process and a uniform dis-
tributionof contaminants.The range between the maximum
and the minimum reaction times for each condition pro-
vides the range of the rectangular distribution of contam-
inants, and po is the probability density within that distri-
bution of contaminants.

To apply the chi-square method to the mixture distrib-
ution, we first obtain the quantile points of the observed
reaction time distributionsfrom the data just as for the chi-
square method without corrections for contaminants.
Then we estimate the proportion of contaminantsbetween
the quantiles, and we subtract these away to leave the pro-
portion of responses between the quantiles that arise from
the diffusion process. Specifically, the rectangular distri-
bution of contaminants is divided into ranges by the ob-
served quantile reaction times (the sum of the proportions
of responses between the quantiles is po). Then the pro-
portions of responses between the quantiles (and outside
the quantiles) assumed to come from contaminants are
subtracted from the observed proportions from the data
(which are .1, .2, .2, .2, .2, and .1). The resulting propor-
tions represent the probabilitydensities between the quan-
tiles that come from (and are to be fit by) the diffusion
process. (In the computer program used to fit the diffu-
sion model, these proportions are normalized by dividing
by 1 2 po, and the diffusion model is fit as before.)

The correction method gives reasonably good recovery
of parameter values. The h parameter is overestimated by
25% or less, and drift rates are overestimated by less than
10%, as compared with the valuesused to generate the dif-
fusion process portion of the data. The overestimation is
about as large as that obtained with the corrected maxi-
mum likelihoodmethod applied to contaminateddata and
about the same, overall, as the uncorrected chi-square
method applied to uncontaminated data. The estimated
proportion of contaminants from the fitting method is
.043 for a 5 0.08, near the correct value of .05, but as for
the maximum likelihood method, for a 5 0.16, the value
is less than the true value, about .03 instead of .05. The
standard deviations in the parameter values increase by
only about 5% over the standard deviations for the chi-
square method without corrections applied to uncontami-
nated data. They are about 38% greater than the standard
deviations for the corrected maximum likelihood method
applied to contaminated data.

When the chi-square method is applied to data without
contaminants, the biases are about the same as those for
the chi-square method without the correction for contami-
nants, and the standarddeviationsare about6% smaller. The
proportion of contaminants estimated is less than 0.9%.

The chi-square method with the correction for contam-
inants has biases in recovered parameters about the same
as those for the maximum likelihoodmethod with the cor-
rection for contaminants, but it has standard deviations,
on average, 22% higher than those for the maximum like-
lihood method. The chi-square method also runs 25–100
times faster.

If there are reasons to believe that a particular task has
some other known distributionof contaminants, this could
be used instead of the uniform distribution used here.

VARIABILITY IN Ter

As was mentioned above, it has never been considered
necessary to add variability in Ter to sequential sampling
models; generally, the models fit their target data well
without it. However, given the need for it in recent fits of

Table 8
Means and Standard Deviations of Parameter Values Recovered From the Maximum Likelihood Method With

Corrections Applied to Data with 5% Contaminants and Variability in Ter (N = 250 per Condition)

Value Parameter Set a Ter h sz v1 v2 v3 v4 po st

M A 0.0806 0.3053 0.1135 0.0337 0.4603 0.2861 0.1136 20.0020 0.0554 0.2019
B 0.0794 0.3054 0.1832 0.0307 0.4413 0.2729 0.1083 20.0029 0.0554 0.2022
C 0.1708 0.2950 0.0985 0.0273 0.3102 0.2086 0.1051 20.0002 0.0244 0.1883
D 0.1707 0.2987 0.1011 0.1134 0.3095 0.2103 0.1101 20.0023 0.0226 0.1917
E 0.1709 0.2968 0.1753 0.0275 0.3103 0.2115 0.1035 20.0025 0.0247 0.1880
F 0.1702 0.2935 0.1756 0.1063 0.3091 0.2064 0.1029 0.0009 0.0258 0.1875

SD A 0.0046 0.0063 0.0814 0.0118 0.0805 0.0544 0.0292 0.0220 0.0088 0.0103
B 0.0050 0.0050 0.0802 0.0070 0.0716 0.0489 0.0338 0.0253 0.0101 0.0099
C 0.0090 0.0177 0.0271 0.0348 0.0378 0.0251 0.0179 0.0113 0.0145 0.0252
D 0.0112 0.0175 0.0344 0.0239 0.0436 0.0292 0.0193 0.0124 0.0157 0.0260
E 0.0106 0.0173 0.0369 0.0386 0.0444 0.0327 0.0214 0.0155 0.0180 0.0280
F 0.0147 0.0206 0.0488 0.0352 0.0568 0.0390 0.0242 0.0180 0.0195 0.0278
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the diffusion model (Ratcliff & Smith, 2002), we will in-
vestigate its effects here. We will explicitly model vari-
ability in Ter and will examine the effect of the additional
parameter and additionalvariability in data on recovery of
all the parameters of the model.

Variability in Ter was modeled by assuming a rectangu-
lar distribution of Ter values with range st . A rectangular
distribution was chosen because it limits the range of val-
ues (as compared, for example,with a normal distribution).

The most important consequence of adding variability
in Ter is to increase the robustness of the fitting methods
to variability in fast responses. Because Ter has a distrib-
ution of values, probability density or cumulative proba-
bilities exist for values of time less than Ter. This increases
robustness, because now st , not Ter alone, is determinedby
the shortest reaction time (this may also help with fast out-
liers that are in the range of Ter 2 st /2). However, the as-
sumption of variability in Ter also adds one parameter,
which increases the standard deviations in the other pa-
rameter estimates. Also, greater variability in the .1 quan-
tile reaction times will reduce the accuracy of the loca-
tion of Ter, which will increase the variability in all the
parameters.

We chose a value of st 5 200 msec (for the uniform dis-
tribution with range st , the standard deviationis st /Ï12 5
58 msec) for our simulations,because this value was at the
high end of those we obtained when fitting experimental
data.

Adding variability in the onset of the decision process
(Ter) actually changes the predicted quantile reaction
times by a relatively small amount, as compared with the
case in which there is no variability in Ter. For example, a
value of st 5 200 msec (as compared with st 5 0 msec) re-
duces the .1 quantile reaction time by only 10–40 msec,
and it reduces the .3 quantile by only 0–10 msec (depend-
ingon drift rate).Butvariabilityin Ter producesmuch greater
variability in the .1 quantile reaction time across conditions
in simulated data sets (and hence, accommodates such
variability in fitting data with large variability in the .1
quantile reaction time across conditions).

We generated simulated data as in the other simula-
tions, with 5% contaminants and with a range in the dis-

tribution of Ter of st 5 200 msec, using the six sets of pa-
rameter values in Table 1. We will present the results for
the maximum likelihood method with 250 observations
per condition and for the chi-square method with 1,000
observations per condition. The computations for the
maximum likelihood method with 1,000 observationsper
condition would have taken several weeks to run, so we
used the results for 250 observations per condition.

We chose to use 1,000 observations per condition for
the chi-square method because with 250 observations per
condition, the results for the chi-square method were very
poor. There were large biases away from the parameter val-
ues used to generate the diffusion process reaction times.
For example, the estimate of a was 0.094 instead of 0.08,
h was 0.19 instead of 0.08, and drift rates were 20% too
high (for the values in the first row of Table 1). In the 100
sets of fitted parameter values, there were values of h that
were 0.45 instead of 0.08. These large biases are clearly
unacceptable. The standard deviations, on the other hand,
were exactly what was expected as a function of the num-
ber of observations: The average standard deviation for
250 observations per condition was 1.96 the standard de-
viation for 1,000 observations per condition (i.e., scaling
as a function of the square root of N ). We attribute the bi-
ases in parameter estimates with 250 observations per
condition to excessive variability in the estimated quan-
tiles for error reaction times when there was variability in
Ter and when there were small numbers of observations.
With 1,000 observations per condition, there were only a
few cases in which there were serious distortions in pa-
rameter estimates, because quantile reaction times were
better estimated with this number of observations.For this
reason, we present results for the chi-square fits only for
1,000 observations per condition and note that at least
1,000 observations per condition are needed when apply-
ing this version of the chi-square method.

Maximum Likelihood Method With Correction
for Contaminants and Variability in Ter

To examine the effects of slow contaminants and vari-
ability in Ter, we simulated data from the diffusion model
with a rectangular distribution for Ter with a range of

Table 9
Means and Standard Deviations of Parameter Values Recovered From the Chi-Square Method With
Corrections Applied to Data with 5% Contaminants and Variability in Ter (N = 1,000 per Condition)

Value Parameter Set a Ter h sz v1 v2 v3 v4 po st

M A 0.0832 0.2955 0.0972 0.0255 0.4025 0.2543 0.1014 20.0007 0.0382 0.1962
B 0.0827 0.2965 0.1714 0.0235 0.4055 0.2538 0.1020 20.0023 0.0426 0.1979
C 0.1650 0.2964 0.0896 0.0277 0.3010 0.2036 0.1026 0.0007 0.0369 0.1954
D 0.1617 0.2888 0.0749 0.0939 0.2811 0.1908 0.0953 20.0004 0.0375 0.1927
E 0.1651 0.2970 0.1687 0.0251 0.3080 0.2025 0.1031 20.0000 0.0418 0.1954
F 0.1625 0.2849 0.1524 0.0858 0.2865 0.1873 0.0954 20.0009 0.0379 0.1928

SD A 0.0048 0.0090 0.0461 0.0158 0.0543 0.0308 0.0166 0.0108 0.0207 0.0095
B 0.0061 0.0082 0.0671 0.0192 0.0741 0.0475 0.0244 0.0119 0.0209 0.0080
C 0.0072 0.0095 0.0176 0.0230 0.0201 0.0150 0.0093 0.0052 0.0184 0.0227
D 0.0087 0.0174 0.0302 0.0268 0.0336 0.0218 0.0121 0.0069 0.0195 0.0343
E 0.0077 0.0096 0.0215 0.0244 0.0234 0.0196 0.0123 0.0077 0.0171 0.0189
F 0.0132 0.0197 0.0436 0.0408 0.0450 0.0350 0.0194 0.0091 0.0193 0.0258
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200 msec and 5% contaminants from the distribution that
was used in earlier simulations (i.e., by adding between 0
and 2,000 msec to a reaction time generated from the dif-
fusion model). In generating simulated data, we first
added variability to Ter by adding a random number of be-
tween 2100 and 1100 msec, and then, on 5% of the re-
sponses, we added a random number of between 0 and
2,000 msec to produce the contaminant.

The only modification to the fitting program was adding
the computationthat integratedover values of Ter (with the
range of integrationof 2st /2 to 1st /2). Then we fitted the
simulated data with the maximum likelihood method with
the correction for contaminants as before and with the as-
sumption of a uniform distribution of values of Ter.

Table 8 presents the means and standard deviations of
the estimated parameter values. The standard deviations
are about 36% higher than those in Table 2 for the uncor-
rected method without variability in Ter applied to data
without contaminants.There are biases in some of the pa-
rameter values. For example, a, the drift rates for some
conditions,and the values of the variabilityparameters (h
and sz) are usually overestimated (by up to 40% for the
conditionswith a 5 0.08). The estimate of the proportion
of contaminants is underestimated (.025 instead of .05) at
the larger value of boundary separation a. Values of Ter
and a are estimated within 5% or 6% of the values used to
generate the simulated data. With larger values of the
number of observations per condition, these biases would
be reduced (but fitting time for 100 data sets would ap-
proach weeks).

Chi-Square Method With Correction
for Contaminants and Variability in Ter

First, we determined that applicationof the uncorrected
chi-square method without variability in Ter to contami-
nated data with variability in Ter would fail. In the real data
set mentioned above, for which the chi-square method
failed, we believed that the failure was due to excessive
variability in the .1 quantile, and we wanted to check that
this was correct. As was expected, there were severe bi-
ases in parameter estimates. Boundary separation, a, was

overestimated by between 10% and 20%, Ter was under-
estimated by 30–60 msec, drift rates were underestimated
by 10%–30%, h was one quarter its target value when a 5
0.08 but close to the correct values when a 5 0.16 (prob-
ably an overprediction from contaminants was canceled
out by underprediction from variability in Ter). Drift rates
were underestimated by 40% for a 5 0.08 and by 5%–
20% for a 5 0.16.

We then applied the corrected chi-square method with
the correction for contaminants and with variability in Ter
to the data sets with contaminants and with variability in
Ter. Table 9 presents the results. There are slight biases of
3–15 msec in Ter, and there are biases of about 5% of the
mean in a and about 10% of the mean in h, except when
h and a are small (the first condition). Drift rates are also
within 5% of the target values, except for the first condi-
tion. The recovered range in Ter (st) is around 180–
200 msec, which is close to the input value of 200 msec,
and the estimated proportion of contaminants is between
3% and 4%, smaller than the input value of 5%. The stan-
dard deviations in Table 9 are about 50% larger than those
for the uncorrected chi-square method without variability
in Ter applied to data without contaminants or Ter vari-
ability for 1,000 observationsper condition.They are also
about 45% greater than standard deviations with the cor-
rected maximum likelihoodmethod with variability in Ter
(scaled for 1,000 observations per condition).

These results show that estimates of parameters from
the corrected chi-square method with variability in Ter are
no more biased (with 1,000 observations per condition)
than those for the uncorrected method without variability
applied to uncontaminated data without Ter variability.
The standard deviations in the parameter values are in-
creased relative to the case with neither contaminants nor
Ter variability, but that is to be expected because both con-
taminants and variability in Ter reduce the quality of the
data and because the number of parameters in the model
is increased. Applying the method to data without conta-
minants or Ter variability recovers the parameters of the
model as well as does the method that does not have these
factors built into the fitting program.

Table 10
Means and Standard Deviations of Parameter Values Recovered From the Weighted Least Squares Method

(With No Corrections) for Data With Contaminants and Variability in Ter (N = 1,000 per Condition)

Value Parameter Set a Ter h sz v1 v2 v3 v4

M A 0.0940 0.2507 0.0454 0.0145 0.3175 0.2026 0.0801 20.0001
B 0.0933 0.2493 0.0870 0.0134 0.2980 0.1853 0.0736 20.0016
C 0.1710 0.2616 0.0730 0.0217 0.2635 0.1820 0.0933 0.0006
D 0.1688 0.2526 0.0636 0.0896 0.2499 0.1732 0.0872 20.0002
E 0.1731 0.2595 0.1428 0.0286 0.2643 0.1785 0.0912 20.0003
F 0.1716 0.2571 0.1415 0.0970 0.2613 0.1755 0.0896 20.0011

SD A 0.0026 0.0032 0.0351 0.0118 0.0243 0.0176 0.0114 0.0076
B 0.0018 0.0036 0.0283 0.0127 0.0183 0.0144 0.0091 0.0079
C 0.0052 0.0097 0.0190 0.0279 0.0219 0.0158 0.0095 0.0046
D 0.0077 0.0194 0.0313 0.0290 0.0342 0.0257 0.0129 0.0062
E 0.0078 0.0143 0.0286 0.0349 0.0349 0.0265 0.0172 0.0068
F 0.0105 0.0206 0.0381 0.0336 0.0455 0.0306 0.0184 0.0085



ESTIMATING PARAMETERS OF THE DIFFUSION MODEL 469

Weighted Least Squares Without
Correction Applied to Data With
Contaminants and Variability in Ter

To illustrate the robustness of the weighted least squares
method, Table 10 shows the results of application of the
method to the data set with contaminants and variability
in Ter with 1,000 observationsper condition.The weighted
least squares method is not corrected for slow contami-
nants, and it does not have variability in Ter represented in
the fitting program. The results show large biases in
parameter estimates. There is underestimation (by 30–
60 msec) of Ter, overestimation of a by up to 20%, under-
estimation of the variance parameters h (by up to 40%)
and sz, and underestimationof the drift rates by up to 25%.

The standard deviations for the fits for the weighted
least squares method without contaminants or variability
in Ter, shown in Table 5 (with N 5 250 observations per
condition),are about twice (94% greater) as large as those
for the weighted least squares method applied to data with
contaminants and variability in Ter for N 5 1,000 obser-
vationsper condition (Table 10). Because the standard de-
viations scale as the square root of N, this means that the

variability is comparable for the two cases. This means
that the weighted least squares method is finding solutions
around parameter values that are clustered just as tightly
for the cases with and without contaminants and variabil-
ity in Ter, but with large biases in the former cases.

Although we do not present a figure showing this, the
quality of the fits to data (quantile probability functions)
are good for the application of the weighted least squares
method applied to data with contaminants and variability
in Ter. There appear to be no large systematic deviations
of the theoretical fits from the data using the average pa-
rameter values from fits to the 100 simulated data sets.
Thus, the weighted least squares method provides a good
method to see whether the diffusion model can fit the data
but does not provide accurate parameter estimates if there
are contaminants or variability in Ter.

REACTION TIME DISTRIBUTIONS WITH
CONTAMINANTS AND VARIABILITY IN Ter

Earlier, we said that adding variability in Ter does not
change reaction time distribution shape very much. Here,

Figure 11. Five reaction time distributions for predictions from the diffusion
model with the various sources of variability present and absent (see the figure
legend).
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we show how the various sources of variability and con-
taminants affect distribution shape. Adding variability in
Ter alters the shape of the reaction time distribution, be-
cause the leadingedge rises more slowly than it does with-
out variability in Ter. But the effect on the shape of the re-
action time distribution is relatively small, even though it
affects the fitting methods a great deal because it allows a
lot of variability in the early quantile reaction times (e.g.,
the .1 quantile). Figure 11 shows reaction time distribu-
tions with the presence and absence of the various sources
of variability: variability in drift, starting point, Ter, and
contaminants, for one set of parameter values. The first
function has no variability in drift or starting point across
trials. The second adds variability in drift, the third adds
variability in starting point, the fourth adds variability in
the nondecision component of reaction time (Ter), and fi-
nally, the fifth adds the distribution of contaminants used
above. The key differences among these functions are the
following. In adding variability in drift across trials, ac-
curacy decreases (dropping from .83 with h 5 0 to ap-
proximately .69 for the other four functions with h 5
0.16), and the distributionbecomes more peaked. Adding
starting point variability (sz ) shifts the distribution a little
to the left, and adding variability in Ter shifts it even fur-
ther to the left. Adding contaminants changes the last dis-
tribution little, raising the extreme right tail a little. In each
of these latter four cases, the tail of the distributionchanges

little, and the shape of the distribution remains about the
same.

The changes in quantile reaction times as variability in
Ter is added to the model with the parameter values in Fig-
ure 11 can bedescribedas follows:The .1 quantiledecreases
by 14 msec when st is 200 msec relative to the case in
which st is 0. The .3 quantile decreases by about 4 msec,
and higher quantiles change by less than 5 msec. The size
of the differences is greater at higher drift rates (e.g., the
.1 quantile is lowered by 30 msec when the drift rate is
0.4), but generally, changes in drift rate produce what
seems to be a shift in the distribution by about 10–
40 msec for the range of parameter values we have con-
sidered (those in Table 1). This means that with variabil-
ity in Ter, high drift rates, and small boundary separations,
what would appear to be a shift in the position of the re-
action time distribution as a function of moving from an
easier to a harder condition (e.g., Balota & Spieler, 1999)
could actually be the result of variability in Ter (Ratcliff
et al., 2002).

The effect of adding variability in Ter is to add a mod-
est shift in the leadingedge of the theoretical reaction time
distribution.However, it allows random samples of data to
have large differences in the leading edge (e.g., .1 quan-
tile) from data sample to data sample. Adding variability
in Ter into the diffusion model allows the chi-square and
maximum likelihood methods to accommodate these

Figure 12. Examples of the graphical Monte Carlo method for 100 sets of
simulated data with 5% contaminants with parameters from the third line of
Table 1. The black dots represent the quantile reaction times from the theoret-
ical fits from the average parameter values for the fits to each data set, and the
gray dots represent the Monte Carlo samples.
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large differences in the leadingedge. This allows the meth-
ods to fit experimental data in cases in which they would
not fit the data without variability in Ter.

GOODNESS OF FIT: THE GRAPHICAL
MONTE CARLO METHOD

Evaluating goodness of fit for the diffusion model has
not been mentioned up to this point. This is because the
focus is on just this one model. There are no other models
that have been shown to fit all the data that are obtained
from two-choice reaction time experiments. We see four
steps that represent different points in the development
and testing of models, and in the reaction time domain,
the field is still largely at the first step. The first step is to
ask whether there is any model at all that might fit the ex-
perimental data. If we are at this point, a graphical Monte
Carlo method for displaying goodness of fit is sufficient,
as will be presented shortly. Second, do we have more than
one model that might fit the data? Then, we can use the
graphical Monte Carlo method to determine whether and
how well all the models fit the data. Third, if we have more
than one model that adequately fits the data, is it possible
to devise experiments that differentiate between the mod-
els? Do the models make differential predictions,or do the
models mimic each other? Fourth, if the models do not
mimic each other exactly, but no strong differential pre-
dictions can be obtained, standard goodness-of-fit mea-
sures can be used to distinguish among them.

When a numerical value to represent the goodnessof fit
is needed,a chi-square statisticcan be used.The use of a chi-
square statistic is a standard method for assessing good-
ness of fit, and the chi-square fitting method would pro-
vide it as a by-product of fitting data (it is the objective
function being minimized).

The graphical Monte Carlo method offers a visual pre-
sentationof the variabilityassociatedwith predictionsfrom
a model for the sample size and conditions in the experi-
ment. The idea is to use the best-fittingparameters to gen-
erate random samples of simulated data with the same
number of observationsper conditionas the data. Then the
experimental data can be plotted with the simulated data,
and for 100 random samples of simulated data, the exper-
imental data should lie within limits established by the
middle 95%.

One example of the graphical Monte Carlo method is
presented in Figure 12. We chose one of the sets of param-
eters with symmetric boundaries (the third set in Table 1).
From this set of parameters, 100 sets of simulated data
were generated with 1,000 observationsper condition (we
chose 1,000 observationsper condition to reduce the over-
lap between the quantiles; see Figure 2) and with 5% con-
taminants with no variability in Ter. The diffusion model
with correction for contaminants was fitted to the data,
using the chi-square method, and the data and the two sets
of fits are shown in Figure 12. This example illustrates
how well the model with corrections for contaminants fits
the simulated data with contaminants.

Bothpanelsof Figure 12 displaygray dots (that as groups
approximately form ellipses) representing the 100 sets of
simulated data. The black points are predictions from the
means of the estimatedvaluesof the parameters. The means
of the parameter values a, Ter, h, sz , and four drift rates
were 0.162, 0.301, 0.086, 0.027, 0.308, 0.210, 0.103, and
0.001, respectively, and the estimated probability of con-
taminantswas .0484.The fits fall in the middle of the range
of simulated data points, and there appear to be no sys-
tematic deviations between the simulated data sets and
predictions. Examples of the use of this method are pre-
sented in Ratcliff et al. (2002).

USING THE WEIGHTED LEAST
SQUARES METHOD TO EXPLORE

THE QUALITY OF THE FIT

In examining how well the diffusion model would fit
data from a recognition memory experiment (Ratcliff &
Smith, 2002), the weighted least squares fitting method
was used, and it produced quite good fits by visual in-
spection.As was notedearlier, when the chi-squaremethod
was used to fit the data, it failed dramatically (see Ratcliff
& Smith, 2002); for example, the .9 quantile reaction
times missed by as much as 200–400 msec. We noticed
that in the data, the .1 quantile was much more variable
than in other data sets and was especially more variable
than simulated data examined in our simulation. Because
the weighted least squares method fitted well, we looked
for factors that might have caused the chi-square method
to fail, and it was as a result of this search that we added
variability in Ter into the chi-square fitting method. The
use of the weighted least squares method allowed us to de-
termine that the data could be fit adequatelyand prompted
us to search for problems with the chi-square method. In
general, if there are problems with the chi-square method,
but the weighted least squares method fits adequately, the
chi-square method should be examined for the source of
the problems.

If the weighted least squares method does not produce
good fits, it is possible to change the weights on the vari-
ous components of the sum of squares in order to experi-
ment to see whether better fits can be obtained. For ex-
ample, if the fits to the higher quantile reaction times (e.g.,
.7 and .9 quantiles) are poor, the .9 quantile could be
weighted more and more until the value generated from
the parameter values for the fit comes into line with the
data. Then the .1 quantile could be weighted more, and ac-
curacy could be weighted less, for example. This might
allow the predicted accuracy values to deviate away from
their best fits (by a few percent) and bring the reaction
time quantiles into better register. The point is that the
weighted least squares method allows more flexibility in
weighting different components of the data than do the
chi-square and the maximum likelihood methods.

The weighted least squares method can be seen as an
exploratory tool; the graphical quality of the fits can be
manipulated because each component (accuracy and the
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quantiles for both correct and error reaction time quan-
tiles) can be weighteddifferently.Although ad hoc weight-
ing schemes are not recommended for final presentation
of fits to data, and especially not for model comparison,
they can be used to understandwhere a model is misfitting
data and what specific aspects of the data are providing
the problems.

At this point in the history of testing reaction time mod-
els and evaluating their goodness of fit, we finally have
models (e.g., diffusion models, accumulator models, etc.)
that appear capable of accounting for the full range of ex-
perimental data. The data include two dependentvariables
for each experimental condition, reaction time and accu-
racy, as well as reaction time distributions for correct and
error responses. In terms of the stages of model testing
that were described above, we feel we are about at the stage
of trying to determine whether models can handle larger
and more comprehensive data sets than they have so far,
whether the models are capable of mimicking each other,
and whether we can find cases in which the models make
differential predictions (e.g., Ratcliff & Smith, 2002).

DISCUSSION

This article has presented the first study aimed at inves-
tigating methods for fitting a sequential sampling model,
the diffusion model, to experimentaldata. We evaluated fit-
ting methods, presented examples of parameter estimates
and their standard deviations, and examined the proper-
ties of the estimators. We conclude that the fitting methods
provide reasonable solutions for estimatingparameters for
the diffusion model even when the data contain contami-
nants. The results provide measures of bias and standard
deviations in the recovered parameter values for ranges of
parameter values that match experimental data. The stan-
dard deviations can be used as guides to the standard de-
viations we might expect in parameter values from fits to
group data from single experiments or from fits to data
from single subjects. The standard deviations can be used
in testing hypotheses about differences in parameter val-
ues between conditions or groups of subjects—for exam-
ple, whether one group adoptsmore conservativeresponse
criteria than another. We hope that the work in this article
can serve as a prototype for investigationsof fitting meth-
ods for other models of reaction time and accuracy and for
other models more generally.

The method that is usually the first choice for parameter
estimation is the maximum likelihood method. It has at-
tractive statistical properties: The parameter estimates are
asymptotically unbiased, and the variances in the param-
eter estimates are the smallest possible for asymptotically
normally distributed estimators. We found in application
to the diffusion model that the maximum likelihood
method provided the smallest standard deviations in pa-
rameter estimates and the most unbiased estimates among
the methods we studied. The method was very sensitive to
contaminated data, and we were able to correct for con-
taminants that overlapped the reaction time distributions

for the simulateddata by explicitlyrepresenting them in the
model.With the correction, the method providedbetter pa-
rameter estimates (estimates with about the same bias but
lower variance) than did the other method with the same
correction. However, the maximum likelihood method is
very sensitive to spurious fast responses and excessive
variability in the fastest responses (i.e., more variable than
those produced from the model), because it has to place
Ter below the shortest reaction time to determine its prob-
ability density, f (t). If it is possible that data contain such
variability or fast outlier responses and they cannot be
eliminated experimentally, the estimated parameters and
fits can be severely distorted. To address the issue of ex-
cessive variability in the fastest responses, we added as-
sumptions about variability in Ter and found that the max-
imum likelihood method again produced better estimates
than did the other methods. However, the method is not
robust: If the assumptionsabout contaminantsor variabil-
ity in Ter are not reasonably accurate, the method can fail
quite badly, even with just a few deviant data points.

The chi-square method with corrections for contami-
nants and variability in Ter is very fast (25–100 times
faster than the maximum likelihood method and runs in
minutes, as opposed to hours, on fast workstations). The
chi-square method has higher standard deviations in pa-
rameter estimates than the maximum likelihood method
and will often produce biased estimates of the parameter
values. This is the result of biases in the estimates of the
quantile reaction times for errors with small numbers of
observations.However, the chi-square method is robust to
a few fast or slow contaminants, much more robust than
the maximum likelihood method.

The weighted least squares method is about 100 times
slower than the chi-square method, but it is robust in the
face of contaminants and variability in Ter, more robust
than either of the other two methods. When the method is
applied to data with contaminants or with variability in
Ter, as implemented in the studies above, it produces a so-
lution that produces predicted functions near the data.
This is very useful because it shows whether or not the
model is capable of fitting the data. But the estimated pa-
rameters are usually biased away from the parameters
used to generate the portion of the data generated by the
diffusion model (unless such corrections were introduced
into the method). The parameter estimates are about as bi-
ased as those for the chi-square method when applied to
data without contaminants or variability in Ter, but the
standard deviations in parameter values are larger.

Besides being more robust, the weighted least squares
method is easier to manipulate (i.e., to experimentwith) to
determine the source of misses between the model and the
data. For example, if there are slow contaminants, the .9
quantilecan be weighted less, or if error rates in some con-
ditions are thought to be the result of guessing, accuracy
in these conditions can be weighted less. This allows var-
ious guesses about distortions in the data to be evaluated
using the model, and this could (and did) lead to other as-
sumptions (explicit representation of contaminants and
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variability in Ter) being added to the chi-square and max-
imum likelihood methods.

It is also important to note that the three different fitting
methodsare fittingdifferent objectivefunctions.Thismeans
that biases in parameter estimates can be due to the dif-
ferent summaries of the data used in fitting (e.g., biases in
quantile reaction times vs. individual reaction times). We
showed that in the case of the chi-square and weighted
least squares methods, biases in parameter estimates were
due to biases in the data summaries used in fitting the
model (quantile reaction times for error responses). When
the methods are applied to accurate predicted quantile re-
action times and accuracy values, the parameters used to
produce the predictions are recovered quite accurately.

When a model is to be fit to data, it is important to con-
sider the aim of the project. We listed four aims: (1) to find
out if a model can produce fits that are near the experi-
mental data, (2) to competitively test between models on
a single data set, (3) to devise manipulations that produce
differential testable predictions from the models, and
(4) to use goodness-of-f it methods to discriminate be-
tween models that make about the same (but identifiably
different) predictions. At this point of research using the
diffusion model and other models of this class, the usual
aim is to determine whether a model can fit experimental
data, and the methods we have presented here allow this
to be done. We are at the point in this domain of research
where comprehensive projects aimed at testing between
models and examining mimicking between models are
possible. Such projects will require careful consideration
of fitting methods, and the methods presented here will
provide a good starting point for model comparison.

One important question that is often asked is the fol-
lowing: Can the diffusion model fit any pattern of reaction
time and accuracy data, or are there patterns the model is
incapable of fitting? The short answer is that there are
many patterns the model cannot fit but these rarely occur
in experimentaldata. Some examplesof patterns the model
cannot fit are the following. First, the model predicts that
the reaction time distribution shape is right skewed and
that it has about the same qualitative shape across a wide
range of drift rates and boundary separations. Data sets
from a variety of tasks all show about the same shape for
reaction time distributions, which matches the shape pre-
dicted from the model. If the shapes of empirical reaction
time distributions were considerably more symmetric or
more skewed than they are, the model would fail. Second,
if drift rate changes across conditions in a within-subjects
design in which all other parameters are fixed, the reaction
time distribution must skew with only a small change in
the shortest quantile,but with a large change in the longest
quantile (e.g., Figure 2). If instead the whole distribution
shifted (i.e., all quantiles slowed or speeded up equally),
the model would fail. Third, if it is assumed that a speed/
accuracy manipulation affects only the boundary separa-
tion parameter, this must be reflected in a moderate in-
crease in the .1 quantile (e.g., 100 msec) for the accuracy

condition relative to the speed condition and a large in-
crease in the .9 quantile (e.g., 500 msec). If the data
showed a large shift in the position of the whole distribu-
tion, the model would fail, or it would have to be assumed
that some other parameter (e.g., Ter) is affected by the ma-
nipulation. For examples of other patterns that cannot be
fit by the diffusion model, see Ratcliff (2002).

After working with the sequential sampling class of
models for some time, we find that intuition can often be
wrong. Sometimes it seems obvious that a pattern of data
cannot be accommodated by the model, but after applica-
tion of the model, it turns out that the data are fit in an un-
expected way. Conversely, although a set of data might be
qualitativelyconsistent with the behavior of a model, it is
only when the model has been fit to the data that it is pos-
sible to say that the model can fit the data. This is because
the model may fail to fit quantitatively.

Limitations
In this section, we will present a discussion of the lim-

itationson what this article has accomplished.We will dis-
cuss when the tables can be used in assessing standard
errors in parameters, what needs to be done when the ex-
periments involve more conditions than are presented
above, what happens if the assumptions about contami-
nants or variability in Ter are not correct, and what patterns
of data can make the diffusion model fail.

1. The tables of means and standard deviations pre-
sented in this article assume that the number of observa-
tions is the same for each condition in an experiment. For
cases in which the number of observations per condition
is the same across conditionsbut the number differs from
those presented here, the standard deviationscan be scaled
by the square root of N. However, if numbers of observa-
tions differ substantially across conditions, new simu-
lations will be required to compute values of standard de-
viations.

2. The values of the standard deviations in the tables
cannot be used when the experiments deviate a lot from
those that are mimicked in our simulations, but there are
some generalizationsthat can be made. In our simulations,
each set of fits of the model to Monte Carlo data presented
in the tables represents experiments in which four condi-
tions are tested with one set of boundaries, one value of
Ter, and one value of the between-trial variance param-
eters. The four drift rates represent the experimental con-
ditions, which might represent number of repetitions of a
stimulus in a memory experiment or several levels of stim-
ulus intensity in a perceptual experiment. But in some ex-
periments, subsets of parameters might be kept constant
across blocks of trials, and others might be allowed to
vary. For example, if we vary speed–accuracy instructions
between blocks of trials, only boundary settings might be
expected to change between speed and accuracy condi-
tions, and all other parameters, including Ter and drift
rates, might be expected to be the same. For model fitting,
it is first necessary to find out what the reasonable hy-
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pothesesare and, second, to fit the model to the data, keep-
ing all other parameters constant. The results in the tables
for standard deviations cannot be used to provide esti-
mates for the standard deviations for experiments like
these. However, from our experience, to a rough approxi-
mation, the standard deviations in the tables can be scaled
by the total number of observations. So, for instance, if
there are N observations per condition for speed trials and
N observations for accuracy trials, a rough scaling factor
(for drift rates, Ter, and variance parameters) is the square
root of 2N instead of N in the first point in this section.

To determine whether speed and accuracy trials can be
fit with the same parameter values, allowing only bound-
ary separation to change, we recommend the following
procedure (Ratcliff & Rouder, 1998). First, perform sep-
arate fits to the data for the speed and accuracy conditions.
Make sure that the only parameter that has a large change
between speed and accuracy is boundary separation. Then
modify the fitting program to fit the model to both speed
and accuracy conditionssimultaneously, with only bound-
ary separation changingbetween speed and accuracy con-
ditions. The same process can be carried out for other ma-
nipulations, such as varying the probability of the two
responses.

3. Our choices of assumptions for contaminants and Ter
are designed to mimic what is likely to occur in real data,
but slightly different assumptions should not affect the re-
sults significantly. The uniform distributionfor Ter was se-
lected because it is a simple distribution with two param-
eters and probability density is spread across the whole
range of values. The distribution is bounded so Ter can
never be negative. The distribution of contaminants is se-
lected as one that plausibly mimics long contaminants.
Usually, fast outliers can be brought under experimental
control by punishing subjects with a time delay when they
produce a fast outlier (although having a few fast outliers
does not affect the chi-square fitting method). But if fast
outliers are part of what is being examined in the experi-
ment, different assumptionscould be made about contam-
inants, and they could be explicitlymodeled and included
as part of the fitting program.

4. There are limitationson the qualityof data to be used
in fitting the diffusion model. Averaging over subjects or
sessions can be a problem,becauseperformance can change
from session to session and different subjects can produce
different patterns of data. In examining data prior to
model fitting, it is necessary to determine whether the pat-
terns of results are different across subjects or across ses-
sions for individual subjects. For example, it would not be
a good idea to average data from subjects who are fast and
accurate with a small proportion of fast errors together
with data from subjects who are slower and inaccurate
with a large proportion of slow errors (this pattern occurs
in the lexical decision task; see Ratcliff et al., 2002). This
would lead to an average that was not representative of ei-
ther type of subject. If subjects show different patterns
from each other, their data can be combined into sub-
groups that show similar patterns and averaged.

Recommendations
Our recommendation for fitting the diffusion model to

data is to use the chi-square method with the corrections
for contaminants and variability. In preparing data for fit-
ting, cutoffs for fast and slow responses should be used.
This reduces both starting point variability and the pro-
portionof slow outliers.Also, the data from all the subjects
should show the same patterns across experimental con-
ditions. If the plots of the quantile probability functions
for predictionsand data miss each other, the weighted least
squares method shouldbe used to see whether an adequate
fit can be obtained (keeping in mind that this will gener-
ally not produce accurate estimates of the parameter val-
ues). If the weighted least squares method produces a rea-
sonable fit, the chi-square method may be failing because
some of the assumptionsare not correct (e.g., assumptions
about contaminants). Then an attempt should be made to
modify or add assumptions to the chi-square method to
match hypotheses about what kinds of contamination
there might be in the data.

A number of issues of general importance emerge from
our investigationof fitting methods. We have shown how,
from Monte Carlo studies, it can be determined whether
estimates are biased, how large their standard deviations
are, whether the estimates’ distributionsare normally dis-
tributed or not, and whether there are tradeoffs (correla-
tions) among parameters. It can be determined whether
the accuracy and standard deviationsof the estimates vary
as a function of sample size and whether data averaging or
grouping introduces biases into the estimates. If a model
fails to fit experimental data, we have illustrated how in-
vestigations can be undertaken to determine whether the
miss is the result of contaminants or whether it might be
the result of minor misspecification of the model (e.g., in
our case, failing to include variability in Ter). If a model
fails to fit a set of experimental data, it is necessary to de-
termine whether this is a failure of the fitting method be-
cause of violation of assumptions or a failure of the
model. If it were a violation of assumptions in the fitting
method, it would be necessary to understand how conta-
minants or misspecifications affect parameter estimation
over a range of parameter values. Then a choice could be
made about whether to try to model contaminantsor elim-
inate them or to try to modify assumptions to deal with
misspecifications. A check on the new model or fitting
method would be to generate Monte Carlo data that have
no contaminants and no misspecifications, to make sure
that the fitting program could recover the parameter val-
ues used to generate the Monte Carlo data. It might also
be important to compare more than one fitting method for
the same data set, because as we have shown here, differ-
ent fitting methods can have different properties, so that
one fails where the other succeeds.

The diffusion model and other stochastic models (the
Ornstein Uhlenbeck model, Busemeyer & Townsend,
1993, and Smith, 1995; accumulator models, Smith &
Vickers, 1988, and Vickers, 1970) are currently the only
models capable of fitting the range of correct and error re-
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action times, response probabilities,and reaction time dis-
tributions (see Ratcliff & Smith, 2002). At this point in
the evolution of this class of models, goodness-of-fit and
model-fittingmethods have taken a back seat to the prob-
lem of finding a model that is capable of fitting all aspects
of the experimental data. But as the models evolve and are
evaluated, fitting methods and goodness-of-fit measures
will become important.
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APPENDIX A
Properties of Estimators

In this article, we are concerned with estimating the unknown parameters of a set of statistical distributions
produced from the diffusion model (reaction time distributions for correct and error responses for several ex-
perimental conditions). Key concepts of statistical estimation theory that underlie our methods are presented
here. We draw a distinction between an estimator (the rule or the estimation method used to determine the un-
known parameter’s value from a sample) and the estimate (the assigned value that results from applying the es-
timator). Standard references in the statistical literature on estimation are Kendall and Stuart (1967) and
Lehmann (1983). A summary of the basic ideas of estimation theory can also be found in most advanced in-
troductions to mathematical statistics (e.g., Silvey, 1975).

No estimation method succeeds in recovering the true parameter value from any arbitrary sample of a distri-
bution, and therefore,we want estimation methods that are “as good as possible.” To assess the performanceof
an estimationmethod, five featuresneed to be considered:(1) unbiasedness,(2) variance,(3) efficiency,(4) con-
sistency, and (5) robustness.

Unbiasedness and variance refer to the performance of an estimator when a sample of the same size is re-
peatedly drawn and used to estimate the unknown parameter (these are called small-sample propertiesbecause
they are concerned with properties when the sample size is finite). If the mean of a large number of estimates
from the same populationcoincideswith the parameter’s true value, the estimator is said to be unbiased,because
on average, the estimator estimates the true value. The variance of the estimates represents how tightly the es-
timates are clustered around the mean. If we have two estimators that are unbiased, the one with the smallest
variance is called the most efficient one of the two.

In simple cases, such as estimating the mean of a normal distributionby using the sample mean, it is straight-
forward to derive the distributionfor the estimator and assess its unbiasednessand variance analytically.How-
ever, this is an almost impossible task for the diffusion model, and so we use a Monte Carlo simulation method.
We draw a number of samples from the model, estimate the parameters, and determine bias and variance (or
standard deviation) in the estimates.

The consistency of an estimator is a large-sample property because it describes how the estimator behaves
when the sample size becomes infinitely large. If an estimator is consistent,the estimate it producesshould con-
verge to the true parameter value as sample size increases. Consistency has been proved in mathematical sta-
tistics for many estimators under rather general assumptions. However, as will be explained later, these as-
sumptions are not valid in the case of the diffusion model, and this is another reason we rely on simulation
methods, increasing sample size to assess consistency.

Robustness describes how sensitive an estimator is to contaminated data. Whenever contaminants are likely
or even possible, robustness is desirable. Simulation studies allow us to determine the robustness of our esti-
mation methods by introducingcontaminants and observing their effects on parameter estimation.

For the three methods we investigated,none of them performs uniformly the best on all five criteria, because
they are often involved in tradeoff relations.As an analogy, in estimating the mean of a normal distribution,the
mean has lower variance than the median, but the median is more robust to contaminants than the mean. The
same applies, but much more complexly, to our fitting methods. Also, although some aspects of our methods
have been investigated theoreticallyin statistics, it has usually been only under restrictedconditions,conditions
that are not met under the practical considerations of empirical data. In the next paragraphs, we will spell out
what aspects of our methods meet the restrictionsand what aspects do not.

The use of the maximum likelihood method is usually motivated by three properties of its estimates (under
some mild regularity conditions; see Lehmann, 1983). First, although for small samples, maximum likelihood
estimates may be biased, they are consistent. Second, maximum likelihood estimates have an asymptotic nor-
mal distribution with a parameter’s true value as its mean. Third, maximum likelihoodestimates are asymptot-
ically the most efficient estimators, because the asymptotic variance attains a lower bound and no other esti-
mator has a smaller asymptotic variance.

Ulrich, R., & Miller, J. (1994). Effects of truncation on reaction time
analysis. Journal of Experimental Psychology: General, 123, 34-
80.

Van Zandt, T. (2000). How to fit a response time distribution.Psycho-
nomic Bulletin & Review, 7, 424-465.

Van Zandt, T., & Ratcliff, R. (1995). Statistical mimicking of reac-
tion time data: Single-process models, parameter variability, and mix-
tures. Psychonomic Bulletin & Review, 2, 20-54.

Vickers, D. (1970). Evidence for an accumulator model of psycho-
physical discrimination. Ergonomics, 13, 37-58.

Vickers, D. (1979). Decision processes in visual perception. New York:
Academic Press.

Vickers, D., Caudrey,D., & Willson, R. J. (1971).Discriminating be-

tween the frequency of occurrence of two alternative events. Acta Psy-
chologica, 35, 151-172.

Yellott, J. I., Jr. (1971).Correction for guessing and the speed–accuracy
tradeoff in choice reaction time. Journal of MathematicalPsychology,
8, 159-199.

NOTE

1. The model as it is used here is the same as that described in Ratcliff
and Rouder (1998, 2000) and Ratcliff et al. (1999), with the exception
that z in those articles was assumed to have a normal distributionand we
use a rectangular distribution here. The rectangular distribution is also
used in Ratcliff et al. (2001).
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However, for the diffusion model, the standard proofs that these propertieshold do not apply. This is because
an important regularity condition required to show that the maximum likelihood method has the three proper-
ties is that the rangeof possiblevalues of the data that can be observedunder the model (technically,this is called
the support of the distribution) is independent of the model’s parameters. For the diffusion model, the lowest
possible observable response time is Ter, which is a parameter of the model, and so this violates the regularity
condition.This does not mean that it is impossible for the diffusion model parameters to be consistent; it means
that other ways of proving the result must be found, but that is generally a difficult task (e.g., such a proof has
been achieved for the diffusion model with only one absorbing boundary, the shifted inverse Gaussian distri-
bution; see Cheng & Amin, 1981).

The asymptotic variance for a maximum likelihood estimate can be computed by taking the expectation of
the second derivativeof minus the log likelihoodand inverting the quantity. In practice, the asymptoticvariance
is often approximated just by evaluating the second derivative at the maximum likelihood solution and invert-
ing it, without considering the expectation.In the multidimensionalcase (more than one parameter), the second
derivatives of minus the log likelihood are taken with respect to all the parameters (includingcross terms), and
the resulting terms are placed in a matrix that must then be inverted. Because the expressions for the diffusion
model have no closed form solutions,numerical methods would have to be used to approximate the second de-
rivatives. This would be a cumbersome task. Therefore, we have chosen instead to use Monte Carlo estimates
to approximate the variances.

The othermethods used in this article, the minimum chi-squareand the weighted least squaresmethods, both
involve grouping reaction time data. This leads to a loss of information, relative to the case in which all indi-
vidual observations are used (as in maximum likelihood). The chi-square estimation method is consistent and
asymptoticallyas efficient as the maximum likelihoodmethod, and its estimates are normally distributed (Ney-
man, 1949; Rao, 1973). But the asymptotic efficiency of this estimator is relative to other estimators that use
the same degree of grouping of the data (which means that it is asymptoticallyas efficient as a maximum like-
lihood method applied to group data, but not to a maximum likelihood method that uses ungrouped data). We
show in our Monte Carlo studies that in the diffusion model case, the maximum likelihood estimator that uses
ungrouped data has a higher efficiency than the chi-square and weighted least squares methods that use only
grouped data.

The weighted least squaresmethod minimizes the squared deviationbetween empirical and predicted values
for reaction time quantiles and response probabilitiesfor each experimentalcondition.We could find no inves-
tigation in the statistical literature of the weighted least squares method applied to quantiles. However, when
sample size increases, the sample quantilesconverge to their true values, and it is reasonable to assume that the
parameters estimated from these quantiles also converge to their true values (note that with 250 observations
per condition, the sample was too small for the quantiles to converge to their true values). However, exact re-
sults are difficult to obtain, and it is unlikely that the weighted least squares method is as efficient as the other
two methods. In our Monte Carlo simulations, the weighted least squares method was a little less efficient than
the chi-square method; for some reasons for this, see our discussion of limitations of our implementation of
weighted least squares in the body of the article.

There have been some studies of the relative amount of (asymptotic) information (or efficiency) that is lost
when going from ungrouped to groupeddata (e.g., Haitovsky, 1989; Lindley, 1950). The ratio of the asymptotic
variance of an estimate based on the ungrouped data and the asymptotic variance based on grouped data gives
the percentage of information loss owing to the grouping. The results from these studies are only marginally
relevant for our application,because only simple distributionsand, mostly, one-parameterproblems have been
studied.However, to give an idea of the percentageof increase in the asymptoticvariance introducedby group-
ing, consider the estimation of the mean of a normal distribution with the variance known. In this case, group-
ing into six classes of equal probability leads to a loss of information of 8%. For an estimate of the variance if
the mean is known, the information loss doubles to about 16%. Our results from the diffusion model show a
typical information loss of about 50%, owing to grouping in the chi-square and weighted least squares meth-
ods, relative to the maximum likelihoodmethodwithout grouping.Thus, grouping is likely responsiblefor some
of the loss of efficiency of the chi-square and weighted least squares methods, relative to the maximum likeli-
hood method, which uses ungrouped data.

Heathcote et al. (2002) have proposed a maximum likelihood method, the quantile maximum likelihood
method, that uses grouping. There is a direct connection between this method and the chi-square method ex-
amined in this article. With even moderate size samples (e.g., the same size as in the simulations in this article),
the two methods give almost identical results, becausemaximizing the multinomial likelihood is essentially the
same as minimizing a modified chi square.The modified chi square is defined as the sum over (O 2 E)2/O (note
the observed value, O, instead of the expected value, E, for the regular chi square, in the denominator), and the
large-sample equivalence of the two methods to each other has been proved in Jeffreys (1961, pp. 196–197).
Furthermore,Neyman (1949) showed that the minimization of the modified chi-squarefunction gives the same
results as the minimization of the regular chi square in large samples (see also Jeffreys, 1961). We performed
fits, using the simulated data generated from the parameter values in Table 1, and found that the regular chi-
square and the quantilemaximum likelihoodmethodsproduced the same parameter values to within 1% for each
individual simulated data set.
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APPENDIX B
Fitting the Diffusion Model

The key quantity to be computed in fitting the diffusion model to data is the cumulative distribution(cumu-
lative probability of a response) at any time t. This represents the proportion of processes that have terminated
by t. We distinguish between the cumulative distribution (or cumulative probability distribution, or the condi-
tional cumulative distribution), in which as t tends to infinity, the value of the distributionfunction approaches
1, and the defective cumulative distribution, in which as t tends to infinity, the value of the distribution ap-
proaches the probabilityof the correct or error response, depending on the condition.

From the theoreticaldefective cumulativedistribution,predictedvalues for the density, the accuracy,and the
predicted quantile reaction times can be computed. From the values of quantile reaction times obtained from
data, the theoretical cumulative probabilities can be computed at those times, and differencesbetween succes-
sive theoreticalcumulativeprobabilitiescan provide the expectedvalues for the proportionof responsesbetween
the quantile reaction times. In our model fitting, the maximum likelihood method requires the theoretical de-
fective probability density, the chi-square method requires the expected proportion of responses between the
quantile reaction times, and the weighted least squares method requires predicted accuracy and quantile reac-
tion times.

In what follows, we will show schematically how to build a computer program to produce the defective cu-
mulative distribution function and then will outline how to compute the other quantities that the fitting meth-
ods need. We begin with the simplest case with no variability in the parameters across trials and then add vari-
ability in the parameters one at a time.

The parameters of the basic model are as follows. The boundary separation is a, the starting point is z, and
the drift rate is x. The parameter s is what is called a scaling parameter. This means that if it were doubled in
size, the other parameters of the model could be adjusted (doubled) to produce exactly the same predicted val-
ues. The s is set to 0.1 for consistency with fits of the model to data in other articles.The value of the defective
cumulative probabilityat time t, G(t,x,a,z) (see Feller, 1968; Ratcliff, 1978), is given by

(B1)

where

(B2)

and P(x,a,z) is the probability of a response at the bottom (zero) boundary in Figure 1. [Note that the cumula-
tive probability distribution equals the defective cumulative distribution, divided by P(x,a,z)].

Equation B1 shows the expressionfor the defective cumulative distributionfor no variability in the values of
drift rate, startingpoint, or nondecisioncomponentof reaction time. In a computer program, the valueof P(x,a,z)
can be computed in one line, and the value of G(t,x,a,z) is computed in a small loop. The first problem to face
is that the sum in Equation B1 is an infinite sum and the terms start off large and get smaller as k increases. (As
k increases, the exponentof the exponentialterm becomes a larger negativenumber, and so the exponentialterm
tends to zero. Also, on the bottom line of the equation, the second term involves k squared, so as k increases,
the reciprocal of the term tends to zero.) The standard way to compute such a sum is to compare each term to
the previous sum and terminate when the term becomes so small that it and following terms do not change the
sum. The major fly in the ointment is the sine term on the top line of the equation. This causes the value of the
product to oscillate (and not monotonically decrease), and so any term can be close to zero. Thus, monitoring
each term in the sequence and terminating the sum if the term is less than some tolerance (e.g., the current sum
multiplied by 10229) may terminate incorrectly, because the sine part of the expressionreduces the term to near
zero and the next term term may be higher than the tolerance. To avoid this problem, on each iteration of the
sum, we checked both the current term and the previous term to see whether they were both less than the toler-
ance. If they were both less than 10229 times the current sum, we terminated the sum. All the computations in
our programs are carried out in double precision.

At this point, we have the defective cumulative probabilityof the model with fixed values of the parameters
across trials. To deal with variability across trials, we need to integrate over distributionsof the parameter val-
ues (z, x, and Ter). This is quite simple using numerical integration subroutines. A numerical integration rou-
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Appendix A (Continued)

Perhaps the main conclusion from this discussion of properties of estimators is that we want to use estima-
tors that have the best balanceof the five properties that we listed above. Although there are proofs that establish
desirableproperties in many situations, there appear to be no proofs that establish all of the properties for appli-
cation of the diffusionmodel. Even if this was done, it would probablynot apply to caseswith contaminants.For
this reason,we examine the propertiesof the estimators by using Monte Carlo methods.
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tine is typicallygiven the function to be integratedand the limits of integration.We first present integrationover
drift rate, x, where drift rate is assumed to be normally distributedacross trials, with mean v and standard devi-
ation h:

(B3)

In programming this integration,we first have a subroutinethat produces the value of G(t,x,a,z), given the input
parameters and t (i.e., an implementation of Equation B1). The value of G is multiplied by the normal distri-
bution density (as in Equation B3), and the quantity within the integral (in Equation B3) is provided to the in-
tegration routine (we used Gaussian quadrature) along with the limits of integration (we used 24h to 1 4h).

The result of this integrationis a value of G1 for input parameter values and t. Next, we integrateover the dis-
tributionof the starting point (assumed to be uniform with mean z and range sz). This can be done in exactly the
same way for G1, using the density for the uniform distribution [ f (x) 5 1/sz for z 2 sz/2 , x , z 1 sz/2 and
zero outside this range] insteadof the density for the normal distribution.This will produce a value of G2 given
values of the parameters and t [G2(t, v, a, z, h, sz )].

The equationsfor the cumulativedistributionsso far assume that time begins at zero—that is, Ter equals zero.
To introduce a nonzero value for Ter into the expression for Equation B1 (for example), each occurrence of t
would be replaced by t 2 Ter. Then t would refer to reaction times with a nondecision component equal to Ter.
The final step is to integrate over the uniform distributionof values of Ter [ f (x) = 1/st for t 2 Ter 2 st /2 , x ,
t 2 Ter 1 st /2 and zero outside this range]. [When the value of x is less than zero, the value of f (x) is set equal
to zero.] This produces a defective cumulative distributionfunction, F(t, v, a, z, h, sz, st, Ter), which is used for
modeling.This provides the basis for generatingpredictionsfrom the model (e.g., given a best-fittingset of pa-
rameter values, generate the mean reaction times, accuracy values, distributions,etc.).

To fit the model to data, a minimization routine is used (Ratcliff used SIMPLEX; Nelder & Mead, 1965),
which takes a set of initial parameter values and adjusts them to minimize the objective function (e.g., sum of
squares or chi square). The SIMPLEX routine computes the M11 values of the function where each value is
obtained from parameter values that are slightly different from the input values, where M is the number of pa-
rameters. The method finds the largest value of the objective function among the M11 and alters the param-
eters for that objective function to produce a smaller value of the objective function (using simple rules for ad-
justing parameters). Then the next highest value of the objective function is selected, and the parameters are
adjusted for that function.This process continuesuntil an accuracycriterion is reached (e.g., the objective func-
tion changes by less than the critical value in 20 iterations) or the parameters do not change (e.g., by less than
some fraction of their value in 20 iterations). The minimization routine has an initial set of parameter values
input (if these are far away from the best-fittingvalues, the program can terminate with an error). The value of
the objective function is computed in a subroutine given the current set of parameter values in the search, and
the value of the objective function is returned to the minimization routine.

For the maximum likelihood method, the density at time t has to be obtained. The defective cumulative dis-
tributionF needs to be converted to a cumulativeprobabilitydistribution(F1) so that the probabilitydensity in-
tegrates to 1. This is done by dividingF(t) by P, the probabilityof a response [computedby integratingP(v,a,z)
over drift, starting point, and Ter, as for F above].A numerical value of the density can be found easily using the
approximation f (t) 5 [F1(t 1 dt) 2 F1(t)]/dt. In Ratcliff’s programs, a value of 0.5 msec was used for the value
of dt.

Tuerlinckx’s approach differs somewhat from Ratcliff’s because it starts from the density function g(t,x,a,z),
rather than from the cumulative distribution function G(t,x,a,z) (Equation B1). The density can be easily ob-
tained by calculating dG(t,x,a,z)/dt. Then, g1(t,v,a,z,h) is found by integrating over the drift rate x by complet-
ing the square in the exponent term. The explicit integrationavoids the numerical integrationover the drift rate
used by Ratcliff [but we could not obtain an explicitly integrated G(t,x,a,z) over drift rate]. We could not find
an explicit solution for the integration of g1 over the distribution of the starting point and Ter; hence, these two
integrals were approximatednumerically as described above (but with the cumulative distribution function re-
placed by the density function).

To compute the likelihood, for each reaction time ti, f (ti) is computed for the current set of parameter values.
For error responses, the parameters are changed so that z 5 a 2 z and drift rate v is replaced with drift rate 2v
(to turn the top boundary into the bottom boundary for computing the distribution function), and f (ti) is com-
puted in the same way.

For the chi-squaremethod, the value of F1(tq) needs to be computed for each of the quantile reaction times tq
for each condition.For the .1, .3, .5, .7, and .9 quantiles (q), the observed cumulativeprobabilitiesare .1 (up to the
.1 quantile), .2, .2, .2, .2, and .1 (after the .9 quantile). The expected values are F1(t.1), F1(t.3) 2 F1(t.1), . . . , 1 2
F1(t.9), which are then multiplied by the theoretical response probability for that condition and the sum of the
number of correct and error responses in that condition to give the expectedvalues. These then are entered into
the expression for chi square S(O 2 E)2/E (where E 5 expected value and O 5 observed value).
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For the weighted least squares method, estimates of the quantile reaction times have to be produced. To do
this, the cumulativedistributionfunction is generated in 5-msec steps for times starting at Ter and ending at some
upper limit, such as 2 sec. Then the quantile reaction times are computedby linear interpolation(for the .1 quan-
tile, the time correspondingto .1 cumulativeprobability is computed).Because the whole distributionfunction
has to be computed, 300 or 500 evaluationsof the cumulative probabilityhave to be performed for each correct
and each error response. This is 60–100 times more than the chi-square method and similar to the number of
evaluations needed for the maximum likelihood method with N 5 300–500 observationsper condition.

The followingare schematic code fragments that show the logic of a program to fit the diffusionmodel using
the chi-square method. The language actually used is Fortran, so the code fragments are in Fortran-like style.

subroutine G(outg,t,v,a,z)
Loop over k
sum 5sum1…*sin(…)*exp(…) (see Eq. B1)
check if this term and prior term less than 10229*sum
end loop over k
P5(exp(…)-exp(…))/exp(…)-1) (see Eq. B2)
outg5P-…*sum (see Eq. B1)

end

function Gv(t,v,a,z,h)
call G(…)
Gv5outg*((1/sqrt(…))exp(-…) (see Eq. B3)

end

G15integrate-routine(Gv,lowerlimit,upperlimit)

function Gz(t,v,a,z,h,sz)
Gz=G1*(1/sz)

end

G25integrate-routine(Gz,lowerlimit,upperlimit)
function Gt(t,v,a,z,h,sz,st,Ter)

Gt5G2*(1/st)
end

F(t,v,a,z,h,sz,st,Ter) = integrate-routine(Gt,lowerlimit,upperlimit)

This last line computes the value of the defective cumulative probability, F, as a function of time (t) and the pa-
rameters of the model (v, a, z, h, sz, st, Ter).

In these schematiccode fragments,subroutineG produces the valueG in Equation B1, and the value is placed
in variable outg. Function Gv assigns the integrand in Equation B3 (outg times the normal density) to the vari-
able Gv. The integration routine then calls Gv to get values of the integrand and integrates this from the lower
to the upper limit (e.g., 24h to 4h) and assigns the value to G1. The function Gz produces the integrand as a
function of z, and G2 is the value of the integral over z. The function Gt produces the integrand as a function of
Ter, and finally, F is the value of the integral over Ter. F is a defective cumulative distribution function, and the
cumulative distribution function, F1, is given by F/F(t 5 ¥) [F(t 5 ¥) is identical to the result of integratingP
over drift, starting point, and Ter as for F].

To model contaminantswith a probabilityof po and a range of tmin to tmax, the new cumulative probability at
time t is given by Fp 5 (1 2 po)F1(t)1po(t 2 tmin)/(tmax 2 tmin).

The data and the function F are used to produce a value of likelihood, chi square, or weighted least squares,
which is then placed in a minimization routine such as SIMPLEX.

The main program has the following core components:
Initial values of the variables:
x(1)5a
x(2)5z
…
Simplex criterion51.0E-10 (plus other control values such as maximum number of iterations)
…
call simplex(x,fun,…control…)

print,x
(the best fitting parameters.)
end
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Below is the function to return the value of chi square (for example), given the initial parameter values stored
in the array x, and given the routine to compute cumulative probabilitiesF(t) (and given the data: quantileRTs,
response probability,number of observations).

function fun(x,nparams)
read in data: rtq(i), prob, N for correct and error responses, where rtq is an array of RT quantiles, prob is

the response probability for that condition, and N is the number of observations.
form chi square using F and the data:

Expected frequency for correct responses between 0 and the .1 quantile
5 F(rtq(1))*N,
Observed frequency is .1*prob*N
Expected frequency for correct responses between the .1 and .3 quantiles
5 F(rtq(2))-F(rtq(1))*N,
Observed frequency is .2*prob*N
(etc. for the other quantiles)
chisq5sum((O-E)2/E)
fun5chisq

end

(Manuscript received November 1, 2000;
revision accepted for publication August 27, 2001.)
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