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The ability to perceive faint,briefly presentedvisual stim-
uli is usually studied in detection experiments in which the
dependentmeasure is detection threshold. In this article, I
examinedetectionin a two-choice task,which is rarely used,
and show how the diffusion model (Ratcliff, 1978) can ac-
count not only for the accuracy of performance in visual
signal detection, but also for multiple aspects of response
times (RTs). The model accounts for the shapes of the RT
distributionsfor correct and error responses and for the re-
lationshipsbetween speed and accuracy, across levelsof ac-
curacy varying from near-chance performance to near-
perfect performance.

There have been only a few previous attempts to relate
RT and accuracy in signal detection tasks in which accuracy
varies across a wide range, and none was completely suc-
cessful in providing an account of processing. For exam-
ple, in an experimentby Carterette,Friedman, and Cosmides
(1965), subjects judged whether a weak auditory signal in
noise was present or absent. Carterette et al. examined ac-
curacy, correct and error RTs, and their distributions and
tested two sequential sampling models that were designed
to account for both RTs and accuracy (LaBerge, 1962;
Stone, 1960), but the models mispredicted error RTs.
Sekuler (1965) used a paradigm in which two brief visual
stimuli were presented sequentiallyand a subject’s task was
to detect a stripe in one of them. As in the Carterette et al.

study, differences between correct and error RTs were used
to evaluate and reject the then-current sequential sampling
models. Kellogg (1931) performed experiments in which
the stimuli were disks for which the two halves differed in
brightnessand the difference was varied from small to large.
Subjects decided which half was brighter, and RTs and ac-
curacy were measured. Link (1992) reviewed Kellogg’s ex-
periments and provided a fit of his wave theory random
walk model to RT and accuracy, but not to the distributions
of the RTs. Espinoza-Varas and Watson (1994) used as-
terisks, two-digit numbers, and tones as stimuli in a signal
detection task. As with the other studies, the results were
used to address qualitative predictions of various sequen-
tial sampling models and also to extend the database of re-
sults for manipulationsof stimulus probabilityand instruc-
tions on criterion settings.

The problem in these studies was that it was not possi-
ble to simultaneously explain the joint behaviors of accu-
racy and RT distributions for both correct and error re-
sponses. The relations between the measures are complex.
When accuracy is varied from floor (chance performance)
to ceiling (near-perfect performance), RTs for both correct
and error responses vary in systematic ways. When there
is a large change in one of the dependentmeasures, change
in the other variable may be small. Also, error RTs behave
differently from correct RTs, often increasing as correct
RTs decrease. These complexitiesmean that models devel-
oped to deal only with accuracy usually cannot make cor-
rect predictionsabout the behavior of RT (if they can make
any predictionsat all). Nevertheless, a full account of per-
formance requires an account of all aspects of both vari-
ables. The difficulty of providing such an account and the
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A brightness discrimination experiment was performed to examine how subjects decide whether a
patch of pixels is “bright” or “dark,” and stimulus duration, brightness, and speed versus accuracy in-
structions were manipulated. The diffusion model (Ratcliff, 1978) was fit to the data, and it accounted
for all the dependent variables:mean correct and error response times, the shapes of response time dis-
tributions for correct and error responses, and accuracy values. Speed–accuracy manipulations af-
fected only boundary separation (response criteria settings) in the model. Drift rate (the rate of accu-
mulation of evidence) in the diffusion model, which representsstimulus quality, increasedas a function
of stimulus duration and stimulus brightness but asymptoted as stimulus duration increased from 100 to
150 msec. To address the argument that the diffusion model can fit any pattern of data, simulated pat-
terns of plausible data are presented that the model cannot fit.
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lack of success of the models that have been examined
have led to reliance by the field only on measures of ac-
curacy or threshold level.

Recently, the diffusion model (Ratcliff & Rouder, 1998,
2000; Ratcliff, Van Zandt, & McKoon, 1999) has enjoyed
considerable success in explaining accuracy and RT mea-
sures in a number of two-choice decision tasks similar to
those used in signal detection and visual perception ex-
periments. The goal of the research described in this arti-
cle was to apply the model to signal detection of briefly
presented visual stimuli. A brightness discrimination task
was used. Each stimulus was a 64 3 64 patch of black and
white pixels on a gray background. Brightness was ma-
nipulated by varying the proportion of black to white pix-
els in the patch, and stimulus duration was varied from 50
to 150 msec, terminated by presentation of a mask. A sub-
ject’s task was to decide whether the patch was dark or
bright. Brightness and stimulus duration were varied over
a range sufficient to produce accuracy rates from near 50%
correct to near 100% correct.

This paradigm is similar to those that have provided the
data that form the basis of Bloch’s (1885) law. The law states
that when a pulse of light is presented for some duration
that is lower than a critical duration, detection will be at
threshold (e.g., the light will be detected on 50% of trials)
when intensity(I ) multipliedby duration(T ) is a constant—
that is, IT = k (Smith, 1998; Watson, 1986). The value of
k varies as a function of background illumination (as well
as stimulus type and other variables). The law breaks down
at about 50-msec stimulus duration, and depending on
stimulus properties, additional stimulus duration may or

may not improve performance (e.g., Smith, 1998;Watson,
1986).

The brightnessdiscriminationparadigmwe used asks the
same questionsas a paradigm used by Rayner, Inhoff, Mor-
rison, Slowiaczek, and Bertera (1981). They used a read-
ing task with eye movement monitoring equipment. Dur-
ing eye fixations, they masked the fixated word and words
to the right of the fixated word after several stimulus du-
rations. They found that after about 80–100 msec of pro-
cessing time (stimulus duration), reading rate was close to
normal, which means that most of the information derived
in an eye fixation during reading is obtained with a stim-
ulus duration of 80–100 msec.

To anticipate the results of the brightnessdiscrimination
experiment presented in this article, the diffusion model
gives a good account of accuracy, RTs, RT distributions
for both correct and error responses, and the relationships
among these dependentmeasures. The model also provides
an estimate of the quality of the stimulus information that
drives the decision process and of how quality varies as a
function of stimulus duration.

The diffusion model is a member of the class of sequen-
tial sampling models for which it is assumed that evidence
is accumulated gradually over time toward one of two al-
ternative decision boundaries (Ratcliff, 1978, 1981, 1985,
1988; Ratcliff & Rouder, 1998, 2000; Ratcliff, Thapar, &
McKoon, 2001). The model is summarized in Figure 1. The
diffusion process represents the decision component of
processing; all other components of processing, such as
stimulus encoding and response execution, are summed
into one parameter, Ter, which is assumed to be distributed

Figure 1. A summary of the diffusion model. Two drift rates, v1 (solid lines) and v2 (dashed
lines), are shown that represent high and low rates of accumulations of evidence with correct
response probabilities .9 and .6 (with associated error probabilities of .1 and .4). Schematic
fast and slow processes from the two drift rates are shown, which show how equal steps in
drift rate map into skewed response time distributions.
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uniformly (for simplicity) with range st. The diffusion
process itself starts at a point z and terminates when the
process reaches a boundary at 0 or at a. The process is dri-
ven by the drift rate v, which is a function of stimulus qual-
ity. If v is zero, the average drift of the process is toward
neither boundary. A positive value of drift drives the
process toward the positiveboundary, and a negativevalue
of drift drives it toward the negative boundary. In the
brightness discrimination task, a stimulus perceived as
very bright would have a large value of drift toward the
bright boundary, and a stimulus perceived as very dark
would have a large value of drift toward the dark bound-
ary. Variability across time in the diffusion process (stan-
dard deviation, s) means that the process can sometimes
terminate at the wrong boundary by mistake, producing
an error. Even with zero drift, variability ensures that the
process will eventually hit one or the other of the bound-
aries, so the process terminates with a probability of 1.

Drift rate (v) and starting point (z) are assumed to vary
across different trials with the same stimulus (Laming,
1968;Ratcliff, 1978,1981;Ratcliffet al., 1999).Thisallows
the model to account for the patterns of error and correct
RTs that have been observed across a number of experi-
ments: fast errors when accuracy is high, slow errors when
accuracy is low, and a crossover pattern so that errors are
slow when accuracy is low but fast when accuracy is high
(Ratcliff, Gomez, & McKoon, 2002; Ratcliff & Rouder,
2000; Ratcliff et al., 1999; Smith & Vickers, 1988). With-
out the assumptions of across-trial variability, the model
could not produce the correct patterns of error and correct
RTs. It is reasonable to assume variability in these param-
eters because subjects cannot encode information exactly
the same way across (ostensibly) equivalent trials, nor can
they accurately reset the zero point of the information ac-
cumulation process from trial to trial. Specifically, drift
rate is assumed to be normally distributed with standard
deviationh, and starting point is assumed to be uniformly
distributed with range sz. The uniform assumption for
starting point replaces the normal assumption used by
Ratcliff and Rouder (1998, 2000) and Ratcliff et al. (1999)
because the normal assumption allows the starting point to
be placed outside the decisionboundarieswith some small
probability (see Ratcliff & Tuerlinckx, in press).

The diffusion model is a good candidate for application
to the data from the brightness paradigm because Smith
(1998) recently showed that a different member of the dif-
fusion model family (the Ornstein Uhlenbeck, or OU,
process) could explainBloch’s law and, more impressively,
could explain the different ways the law broke down. Al-
though the OU model did not deal with RTs or RT distri-
butions, it has all the machinery needed to produce RT
predictions in simple detection paradigms (Smith, 1995).

The diffusion model itself has given good accounts of
data in visual signal detection of categorical stimuli—for
example, letters (Ratcliff & Rouder, 2000). On each trial
of Ratcliff and Rouder’s (2000) experiments, one of two
letters was displayed for one of five stimulus durations,
thenmasked.Accuracy varied from near chanceto near ceil-

ing. Two variationsof the diffusion model were tested. For
one, it was assumed that the information from the stimu-
lus that drives drift rate follows the availability of percep-
tual information: When the stimulus is on, drift rate has
some nonzero value, and when the stimulus turns off, drift
rate returns to zero. For the second model, it was assumed
that the perceptual information is integrated (summed)
over the time for which the stimulus is presented and that
this constant value drives the drift rate. Only this latter ver-
sion of the diffusion model, the version with constant drift
rate, was consistentwith the experimentaldata.This version
of the model gave an accurate account of accuracy rates,
RTs, and RT distributions across all values of accuracy.
The question for the experiment described below was
whether the diffusion model could explainvisual signal de-
tection with the noncategorical, brightness patch stimuli.

The goal for modeling is to predict the distributions of
correct and error RTs and accuracy for each experimental
condition. To show the distributions and accuracy values
for all the conditions at once, we introduce quantile-
probabilityfunctions.These plot the quantilepoints of the
RT distributions (e.g., the .1, .3, .5, .7, and .9 quantile
points) against the probability of a response. Thus, for
each value of response probability, the five quantile RTs
are plotted in a vertical line. Horizontal or inverted-U-
shaped lines can be drawn to connect each of the quantiles
(e.g., the .1 quantiles, the .3 quantiles, and so on) across
conditionsor to connect the theoreticalpredictions for the
quantiles.Usually, about five quantilepointsare sufficient
to capture the shapes of the distributions. Because a
quantile-probability plot shows the RT distribution for
each level of accuracy, it provides in one display the mul-
tiple aspects of the data that need to be explained.

EXPERIMENT

The goal of this experiment was to generate data that
provide a strong test of the diffusionmodel by varying stim-
ulus duration and stimulus brightness to produce a range
of values of accuracy. The experiment was also designed
to examine processing of brief visual stimuli as a function
of duration and brightness. For application of the diffu-
sion model, it is assumed that the effects of brightness and
stimulusdurationare qualitativelythe same: Both limit the
amount of available stimulus information.Stimulus infor-
mation translates into a single quantity, drift rate, to drive
the decision process in the diffusion model.

In addition to the stimulus brightness and duration ma-
nipulations,speed–accuracy instructionswere varied across
alternatingblocks of trials. For a speed block, the subjects
were instructed to respond as quickly as they possibly
could, and for an accuracy block, they were instructed to
be as accurate as possible. This manipulationplaces addi-
tional strong constraints on the diffusion model. If pro-
cessing of stimulus information is the same in the speed
and the accuracy conditions in every way except a change
in decision criteria, the model should be able to capture
the data with a change only in the distance between the
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two decision boundaries and no change in any other para-
meter.

Method
Subjects. One Northwestern undergraduate participated in nine

sessions, 1 in eight sessions, and 1 in seven sessions (plus each par-
ticipated in one practice session). They were paid $8 for each 45-min
session.

Stimuli. The stimuli were 64 3 64 squares of black and white pix-
els on a gray background (the whole display was 320 3 200 pixels).
Brightness of the square was manipulated by varying the probabil-
ity that a pixel was white. Four checkerboard patterns, each 64 3 64
pixels, were used to mask each stimulus; presented sequentially, they
were a checkerboard with 2 3 2 black and white squares, a checker-
board the same as the first but with the black and white squares re-
versed, a checkerboard with 3 3 3 black and white squares, and its
reverse. The checkerboards were designed by trial and error to mask
both smaller and larger random features of a stimulus that might
have remained visible through only one or two of the masks. The
smaller checkerboard seemed to eliminate the smaller random pat-
terns in a stimulus, and the larger checkerboard seemed to eliminate
the larger random patterns.

Apparatus. The stimuli were presented on a Pentium II class ma-
chine, and the responses were collected on the keyboard.

Procedure. There were six levels of brightness, achieved with six
values for the probability of a pixel’s being white: .350, .425, .475,
.525, .575, and .650. These were crossed with three stimulus dura-
tions: 50, 100, and 150 msec.

Each trial began with a 1 sign fixation point presented on a gray
background for 250 msec. Then the stimulus was displayed, followed
by the four checkerboard masks displayed for 17 msec each. Then a
gray background was presented until a response was made. In accu-
racy blocks, if a response was correct, there was a 500-msec pause
and then the next trial; if a response was incorrect, the word error

was displayed for 300 msec, then erased, and then there was a 500-
msec pause before the next trial. In speed blocks, there was no ac-
curacy feedback. If a response was shorter than 250 msec, a message
too fast was displayed; if a response was longer than 700 msec,
too slow was displayed. Then, there was a 500-msec pause before
the next trial.

In each session, there were five blocks of accuracy trials alternat-
ing with five blocks of speed trials, with 144 trials per block presented
in random order. There was a total of 40 trials for each brightness,
duration, and speed versus accuracy condition in each session.

In accuracy blocks, the subjects were instructed to respond accu-
rately. In the speed blocks, the subjects were instructed to respond
quickly, using the too slow message as a guide to when they were
responding too slowly.

Results
Trials with responses shorter than 250 msec and longer

than 2,500 msec were eliminated from analyses (less than
0.9% of the data), and the data in each conditionare based
on about 880–920 observations. There was a strong bias
toward a bright response, especially at the shortest stimu-
lus duration for 2 of the 3 subjects. Figure 2 shows accu-
racy as a function of brightness and duration for the speed
and accuracy conditions averaged over the 3 subjects. If
there was no bias, the three functions would pass through
the cross hairs in the middle of the figure. The bias prob-
ably occurred because the neutral gray background was
perceived as dark, as compared with the white in the stim-
ulus. However, the 3rd subject seemed less affected and
showed a small bright bias at short stimulus durations and

a small dark bias at longer durations. Because the subjects
differed in their bias and 1 showed little bias, this suggests
that the bias is acting just as in a standard signal detection
analysis.

The manipulation of the brightness and duration vari-
ables led to values for the probability of a bright response
ranging from .05 to .95. The RTs were shorter and their
range was smaller in the speed conditionrelative to the ac-
curacy condition. In the speed condition,RTs varied from
390 to 470 msec, and in the accuracy condition, responses
varied from 450 to 610 msec. The differences in response
probabilitybetween the speed and the accuracy conditions
showed a steeper psychometric function for the accuracy
conditionthan for the speed condition, and differences be-
tween the two were as large as 7% when accuracy was in
the middle of its range between ceiling and floor—that is,
between .7 and .8.

To display the joint RT and accuracy data, we collapsed
the 18 conditionsinto 5 conditionsby grouping conditions
with the same valuesof accuracy (within .04). Thiswas pos-

Figure 2. Probability of a bright response as a function of bright-
ness of the stimulus for three flash times and the speed and ac-
curacy conditions. The data are averaged over subjects.



282 RATCLIFF

sible because there were no systematic differences in RTs
for conditionswith the same accuracy values. The data are
shown in quantile-probability functions in Figure 3, sepa-
rately for the speed and the accuracy conditions. The xs
are the experimental data, and the solid lines are fits of the
diffusion model, which will be discussed later. On the right
of the x-axis, the probability of a response ranges from .5
to 1.0; responses with these probabilities are correct re-
sponses (bright responses to bright stimuli and dark re-

sponses to dark stimuli). On the left, responses with proba-
bilities 0 to .5 are error responses (bright responses to dark
stimuli and dark responses to bright stimuli). The RT quan-
tiles were averaged across subjects (cf. Ratcliff, 1979) in
order to display them.

The vertical spread of the five quantile points for each
conditiongives a pictureof the shape of the RT distribution.
With speed instructions, the quantiles show little change
in distributionshape across the nine brightness3 duration
conditions.The distributionsare all skewed to the right, as
is shown by the larger spread between the .7 and .9 quan-
tile points than between any of the other pairs of adjacent
quantiles. For the more difficult conditions (those with a
response probability of around .5), the tails of the distrib-
utions spread somewhat, relative to the easier conditions
(which is what makes the mean RTs larger for the difficult
conditions), but the effect is not large. The leading edge of
the distributions (the .1 quantile) stays constant at about
330 msec.

With accuracy instructions, the differences between the
distributions for the difficult versus easier conditions are
much more pronounced.The .9 quantilepoint ranges from
about 540 msec for responses with a probability of .95 to
about 720 msec for responses with a probability of .5, a
difference of about 180 msec. In contrast, there is almost no
change in the .1 quantile across conditions. This pattern
shows that the RT distribution spreads in the tail as accu-
racy goes from ceiling to floor.

With accuracy instructions, subjects produce error re-
sponses slower than correct responses for all but the con-
ditions in which accuracy is highest; in the highest accu-
racy conditions, the errors are only a little slower than the
correct responses. With speed instructions,errors are a lit-
tle slower than the correct responses across all conditions,
but essentially they show the same pattern as with accu-
racy instructions.

Figure 3 shows the value of quantile-probability func-
tions in providing a compact summary of all the depen-
dent variables. The quantiles show the shapes of the RT
distributions at all the levels of accuracy, and they show
how the shape changes as a function of accuracy. Compar-
ison of the right to the left halves of the plots allows com-
parison of RTs for correct and error responses and shows
how the relationship between them changes as a function
of accuracy. Comparison of the plots for accuracy instruc-
tions to the plots for the speed instructions shows the
squashing of the distributionsbecause of faster responses
with speed instructions.

Quantile-probability functions are parametric plots for
sequential sampling models such as the diffusion model.
The shapes of the lines that connect the quantile values
across accuracy levels are determined by only a few para-
meters. In Figure 3, there are five quantiles for each of 5
conditions (grouped from 18 conditions), and for the dif-
fusion model, the shapes of the five lines that connect the
quantiles across conditionsare completely determined by
only three parameters, a, h, and sz (drift rates determine
the positions along the functions, and Ter determines the

Figure 3. Quantile-probability functions for the speed condi-
tion (top panel) and the accuracy condition (bottom panel) for
average data in the experiment. The continuous lines show the fit
of the diffusion model and the xs are the experimental data. For
the 18 experimental conditions, conditions with similar accuracy
and response times were grouped to produce the 5 conditions
presented in the panels. Also, bright responses to bright stimuli
were grouped with dark responses to dark stimuli, and bright re-
sponses to dark stimuli were grouped with dark responses to
bright stimuli.
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vertical location of the function). Fitting the five lines
means fitting all the aspects of the data that they summa-
rize, a strong challenge for a model.

FITTING THE DIFFUSION MODEL

As was mentionedin the introduction,Ratcliffand Rouder
(2000) tested two versionsof the diffusion model, one with
drift rate reflecting the on and then off again availability
of stimulus information, and the other with drift rate de-
termined by a constant value, the integration of stimulus
informationover time until mask. The data in Figure 3 show
the inverted-U-shaped pattern to be consistent with the
constant drift rate model, and so this version of the model
was used here.

As was noted in the results section, there was a bias to-
ward bright responses. There are two ways to model bias
in the diffusion model. One involves the bias in the crite-
rion that separates positive from negativedrift rates, which
is analogous to the criterion in signal detection theory. The
point between bright and dark responses that we thought
would correspond to a drift rate of 0 was 50% white pix-
els. If subjects set their zero point differently, this would
be a bias in their drift criterion. The other way of model-
ing bias is to move the startingpoint of the diffusionprocess
nearer the boundary toward which the responses are bi-
ased. Both these ways of handling bias have been needed
in fitting data (Ratcliff, 1985; Ratcliff et al., 1999). The
two sources of bias have different empirical signatures. If
the leading edge of the RT distribution,the .1 quantile RT,
is shorter in a biased condition than in an unbiased condi-
tion, the data are modeled by moving the starting point of
the diffusion process nearer the response boundary corre-
sponding to the biased response. If the .1 quantile RT is
about the same for the biased and the unbiased conditions,
the data are modeled by shifts in the drift criterion.

The data in this experiment show little change in the .1
quantile RTs across conditions, which indicates that drift
bias, not a bias in starting point, is needed. The subjects in
the experiment set their drift criterion at a point brighter
than 50% white pixels. The drift bias assumption is rea-
sonable because subjects in a bright/dark discrimination
task have to determinewhere on the bright–dark dimension
to set the point that separates bright and dark responses.
In real life, this point could vary over a large range, from
pitch black to a car headlight in the face.

Bias in drift rate was added to the model with the para-
meter vc, defined as the offset of the subjects’ drift criterion
from the unbiased criterion (50% white pixels). For a stimu-
lus with drift rate toward the bright boundary, vc was sub-
tracted from the drift rate the stimulus would otherwise
have, and for a stimulus with drift rate toward the dark
boundary, vc was added to the drift rate it would otherwise
have. A different value of vc was used for each of the three
stimulus durations, because the biases were different at
each stimulus duration.

The diffusion model was fit to the data by minimizing
a chi-square value with a general SIMPLEX minimization

routine (Nelder & Mead, 1965) that adjusts the parame-
ters of the model to find the parameters that give the mini-
mum chi-square value.The data entered into the minimiza-
tion routine for each experimental condition were the RTs
for each of the five quantiles for correct and error re-
sponses and the accuracy values. The quantile RTs were
fed into the diffusion model, and for each quantile, the cu-
mulative probability of a response by that point in time
was generated from the model. Subtracting the cumula-
tive probabilities for each successive quantile from the
next higher quantile gives the proportion of responses be-
tween each quantile.For the chi-square computation,these
are the expected values, to be compared with the observed
proportions of responses between the quantiles (multi-
plied by the number of observations). The observed pro-
portionsof responses for each quantileare the proportions
of the distribution between successive quantiles (i.e., the
proportions between 0, .1, .3, .5, .7, .9, and 1.0 are .1, .2,
.2, .2, .2, and .1) multiplied by the probability correct for
correct response distributions or the probability of error
for error response distributions (in both cases, multiplied
by the number of observations).Summing over (Observed
2 Expected)2/Expected for all conditions gives a single
chi-square value to be minimized.

Research on fitting the diffusion model to data (Ratcliff
& Tuerlinckx, in press) found two problems with this chi-
square fitting method. First, when long or short outlier
RTs were added to simulated data, the method could not
accurately recover the parameter values that were used to
generate the data. Second, variability in the fastest RTs
across conditions(e.g., the .1 quantile) also led to poor re-
covery of parameter values and poor fits to the data.

Short outliers can be trimmed out by examining the time
at which accuracybegins to rise abovechance (e.g., Swens-
son, 1972), but this does not eliminate the problem with
variability in the fastest responses. Because the chi-square
method has to produce probability density below the
shortest quantile in the data set (in order to compute an ex-
pected value below the .1 quantile), any variability above
what the model predicts in the shortest quantile distorts
the fits. This is because the chi-square computation has
the expected value on the denominator, so that a very small
expected value will produce a very large value of chi-
square and so dominate the fitting process. In practice,
variability in the shortest quantile produces large misfits
in the longest quantiles (e.g., up to 400-msec misses for
the .9 quantile).

To address these problems, the two possibilities were
explicitly modeled, which added two parameters to the
model (Ratcliff & Tuerlinckx, in press). One parameter
( po ), was added to represent the probability of a contam-
inant in each condition of the experiment. The contami-
nant was assumed to come from a uniform distribution
that had maximum and minimum values correspondingto
the maximum and minimum RTs in the condition. The
value of the probabilityparameter, po, was the same across
all experimental conditions. There may be better ways of
estimating the range or distribution of contaminants, but
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the small proportion usually estimated (less than 5%), the
ease of implementation,the fact that this adds only one pa-
rameter to the model, and the ability to recover parameter
values better than do methods without this assumption
(Ratcliff & Tuerlinckx, in press) all indicate that this was
a reasonable approximation.

The second added parameter represented variability in
Ter across trials. It is quite reasonable to assume that the
components of processing other than the decision compo-
nent vary across trials, but this assumption has not usually
been needed in fitting the model to data. However, it turns
out that for the data presented here, variability in Ter is
needed to deal with variability in the fastest responses—
that is, in the .1 quantile. For ease of implementation, the
distributionof Ter was assumed to be uniform,with a range
of st. Because the standard deviation in the distribution of
Ter is typically less than one quarter the standard deviation
in the decision process, the combination of the two (con-
volution) alters neither the distribution nor the standard
deviation in the distribution predicted from the decision
process. For example, if the standard deviation in Ter is
25 msec and the standard deviationin the decision process
is 100 msec, the combination (square root of the sum of
squares) is 103 msec. Variabilityin Ter stretchesout the lead-
ing edge of the RT distribution (e.g., the .1 quantile RT),
stretching the difference between the .1 and .3 quantiles
(typically, by less than 10% of st ). In fitting data, vari-
ability in Ter allows larger variability in the leading edge of
the distribution from condition to condition and prevents
Ter from being determined completely by the shortest
quantile. When Ratcliff and Tuerlinckx (in press) simu-
lated data with variability in Ter , the chi-square method re-
covered parameter values accurately.

The downside of these two additions to the diffusion
model is to increase the standard deviations in the recov-
ered parameter values, because of the two added parame-
ters. However, the model fits the data with these additions,
whereas without them there were significant misses.

The diffusion model, as fitted to the data presented here,
has 19 parameters that are free to vary. The data to be fitted
have36 conditions(speed and accuracycrossed with six lev-
els of brightness crossed with three stimulus durations),
and in each condition, there are 12 RT bins from five cor-
rect quantilesand five error quantiles.This means there are
(12 2 1) * 36 degrees of freedom in the data. With 19 pa-
rameters to be fit, there are 377 degrees of freedom. How-

ever, the model is much more constrained than might be
expected with this number of free parameters. First, the
nine drift rates and the three drift bias parameters deter-
mine position along the x-axis of the quantile-probability
function.They do not influencethe shapes of the functions.
Second, the value of Ter only locates the vertical positions
of the quantile-probability functions; it also does not in-
fluence their shape. Third, the estimate of the proportion
of contaminant responses ( po) is close to zero and has no
effect on the predicted quantile probability functions rel-
ative to the case in which it is zero. Fourth, although vari-
ability in Ter (st ) allows the .1 quantile RTs to be more
variable and more in line with the observed variability, its
only effect is a less than 7-msec increase in the difference
between the .1 and the .3 quantile RTs. Fifth, the shape of
the quantile-probability functions is determined only by
the parameters h (standard deviation in drift across trials),
sz (range of starting point across trials), and the values of
boundary separation (a), one value for the speed condi-
tions and one for the accuracy conditions.All the parame-
ters except a were held constant across the speed and ac-
curacy data. The starting point z was set to a/2. Thus, the
shape and location of the quantile-probabilityfunctions are
determinedonly by four parameters, with only one of them
varying between the speed and the accuracy conditions.

FITS OF THE MODEL TO DATA

Tables 1 and 2 show the parameter values of the fits of
the model to the experimental data. First, the fits to the
group average data, combining the data from all 3 subjects,
are presented;next, the means of the parametervalues from
fits of the model to the data from the individual subjects
are presented; and third, the parameter values for the fits
to each individual subject are presented. The fits to the
group data are shown in Figure 3 by solid lines.

Typically, in applications of the diffusion model (Rat-
cliff & Rouder, 1998, Experiment 1; Ratcliff et al., 2001,
Experiment 2), differences in performance between speed
and accuracyconditionsare fully accountedfor by a change
in the boundary separation parameter a. However, occa-
sionally some subjects might “hold up” their responses in
accuracy conditions, leading to a slowdown in all the re-
sponses, which could be modeled by an increase in Ter. To
check for this, we fitted the diffusion model to the group
datawith one value of Ter for the speed conditionand a sep-

Table 1
Parameters for Fits of the Diffusion Model

Fit a (speed) a (accuracy) Ter h sz po st

Fits to average data .0700 .0998 .3650 .2532 .0556 .0003 .1133
Means over single subjects .0674 .0986 .3538 .1803 .0355 .0033 .1187
Fit to Subject 1 .0669 .0950 .3619 .1975 .0454 .0000 .1106
Fit to Subject 2 .0628 .0910 .3284 .1923 .0399 .0000 .1175
Fit to Subject 3 .0724 .1099 .3711 .1512 .0211 .0098 .1281

Note—Chi-square values for the fits for the 3 subjects are x2(11,941) = 754, x2(10,956) = 2,535,
x2(9,706) = 2,089, df = 377.
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arate value for the accuracy condition, as well as two val-
ues of boundary separation a. The two best fitting values
of Ter were 333 and 343 msec, close enough that we report
fits of the model using only one value of Ter.

The only parameter that changes between the speed and
the accuracy conditions for all the data sets is boundary
separation a. The shapes of the quantile probability func-
tions across accuracy values (the five solid lines in each
panel of Figure 3) are determined entirely by the parame-
ters a, h, and sz. The vertical location of the function is de-
termined by Ter. Drift rates for the different conditionsde-
termine only the accuracy values along the horizontalaxis
of the quantile probability functions, not the shapes of the
functionsor their vertical placement.The estimated range
(st) of times for nondecision components of processing
(Ter) was between 110 and 130 msec (note that the stan-
dard deviation in a uniform distribution is the range di-
vided by the square root of 12, so if the range is 110 msec,
the standard deviation is 110/Ï12 = 32 msec). Mean val-
ues of Ter across subjects were between 330 and 370 msec.
The estimated proportion of contaminants ( po) was less
than 1%.

As might be expected,drift rate, representing the quality
of the information extracted from the stimulus, increases
with brightness and stimulus duration.The bias in drift rate
(Table 2) was the same for the speed and the accuracy con-
ditions (see also Figure 2). Drift rates are plotted in Fig-
ure 4 for the different brightness conditions as a function
of stimulusduration.The functions increase toward asymp-
totewith different asymptotes for different valuesof bright-
ness. The drift rates are close to asymptote by 100 msec
of stimulus processing time, which means that 100 msec
is enough time to extract all the information available
from the stimulus (as in Rayner et al., 1981).

Figure 4 also contains a plot of drift rate against stimulus
duration for a letter identification experiment (Experi-
ment 1, averaging over easy and hard conditionsin the ex-
periment; Ratcliff & Rouder, 2000). The function shows
the same qualitative shape as that for our brightness dis-
crimination functions (although we would not want to
equate the processes underlyingthe two tasks). This shows

a converging result from a experimentwith similar design,
but with different stimuli.

It is important to note that the diffusion model extracts
from the whole set of data (correct and error RTs and ac-
curacy) a single quantity, drift rate, for each condition.
Drift rate is a measure of the quality of stimulus informa-
tion that drives the decision process.

In modeling extraction of information from a stimulus,
it is usually assumed that informationis graduallyextracted
over time (see Busey & Loftus, 1994; Smith, 1995). This
suggests that drift rate in the diffusion model should not,
at the beginning of the decision process, abruptly change
from a value of zero to some fixed high value. More real-
istically, drift rate might be expected to increase from zero
over the first 20–50 msec of processing. In fitting the dif-
fusionmodel to data, the abrupt change from zero to a fixed
value has always been assumed, but here we address the

Figure 4. Drift rate from the fits of the diffusion model as a
function of stimulus duration and brightness (xs) and drift rate
as a function of stimulus duration in a letter identification ex-
periment (os) from Ratcliff and Rouder (2000, Experiment 1).

Table 2
Drift Rates for Fits of the Diffusion Model

Drift Rate

Flash Time Fit to Mean Over the
Brightness (msec) Average Data Single Subjects Subject 1 Subject 2 Subject 3

.350 and .650 50 .5301 .4307 .4672 .3609 .4640

.425 and .575 50 .2595 .2064 .2234 .1363 .2595

.475 and .525 50 .0632 .0615 .0591 .0488 .0767

.350 and .650 100 .6083 .4866 .5414 .4127 .5057

.425 and .575 100 .3878 .3049 .3229 .2638 .3281

.475 and .525 100 .1398 .0713 .1130 .0978 .0031

.350 and .650 150 .6117 .4960 .5066 .4320 .5495

.425 and .575 150 .4119 .3208 .3527 .2842 .3256

.475 and .525 150 .1492 .1255 .1345 .1091 .1329
Bias 50 .2661 .1958 .2335 .2844 .0695

(subtract from 100 .0675 .0576 .0541 .1104 .0084
above drift rates) 150 .0273 .0233 .0411 .1035 2.0745
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question of what happens to fits of the model if a gradual
increase in drift rate is assumed instead.

To answer this question, simulated data were generated
from the diffusion model, with a linear increase in the drift
rate over the first 50 msec of processing from zero to a
constant value after 50 msec (see Busey & Loftus, 1994).
Accuracy values and quantile RTs were generated under
the assumptions that there were no contaminant RTs and
no variability in Ter (i.e., st = 0). Data were generated for
four experimental conditions, with drift rates of .3, .2, .1,
and 0, with 100,000 observationsper condition.The other
parameters of the model for the simulations were a = .12,
Ter = 300 msec, h = .08, and sz = .02. The model was then
fit to the simulated data with the assumption that drift rate
was constant.

Although the simulateddatawere generatedwith a grad-
ual increase in drift rate over 50 msec, fitting the model
under the assumption of an immediate abrupt increase in
drift rate led to accurate recovery of the parameter values
for a, h, and the drift rates (within 0.5%, 10%, and 3%, re-
spectively). However, variability in starting point (sz ) was
increased from .02 to .066, Ter was increased by 28 msec,
and variability in Ter, st, was estimated to be 55 msec when
the value used to generate the simulated data was zero.
The simulatedquantileRTs were within 25 msec of the pre-
dictions from the fitted model, the accuracy values were
within 2%, and there were no systematic deviationsof the
simulated data from the fits.

In sum, the effect of fitting a decision process with a
linear rise in drift rate with a model without a gradual rise
was to produce, first, an increased value of Ter; second, an
estimated value of variability in Ter greater than zero (st .
0); and third, increased variability in the starting point (z)
of the diffusion process. Thus, the effect of a gradual rise
in drift rate cannot be distinguished from increased vari-
ability in the starting point, z, and increased variability in
the nondecisional component of response time, Ter.

HOW GOOD IS THE FIT?

The issues of goodness of fit and model freedom are
usually brought up in casual conversations (or by review-
ers) with the comment “with 8 or 16 parameters you can
fit any pattern of results.” Slamecka (1991)voiced this view
about the global memory models: “If the models have
anything, they have resilience, or to put it more precisely,
their inventors have resilience, and I suspect that after
some skillful patching of assumptions and/or fine-tuning
of some parameters, these veterans will lumber down the
runway and lift off again” (pp. 303–304). For many ex-
perimentalmanipulationsin the memory domain, it is true
that the global memory models are capable of fitting al-
most any pattern of data, but it is also the case that the
models make strong predictions that are testable (and the
data that Slamecka addressed raised problems for the
models and could not be fit by them; in part, this led to the
development of new models).

Roberts and Pashler (2000) have presented a compre-
hensive discussion of constraints on models. They asked
whether a good fit alone gives any reason to increase be-
lief in a theory. One of the main pieces of information that
is needed, they argued, is information about what kinds of
patterns the theory cannot accommodate. If a theory can
fit almost any pattern of results and if the patterns of re-
sults that are obtained experimentally are significantly
more restricted than the range of possible predictions of
the model, the theory can predict patterns of data that do
not occur. Roberts and Pashler argued that a theory like
this is not supported by any fit to any individual set of
data. They argued that what is needed to support a theory
is the existence of patterns of results that neither occur ex-
perimentally nor can be fit by the theory.

Researchers working with stochastic models for RT and
accuracy have known that their models are inflexible—
that is, that there are many possible patterns of data the
models cannot fit—but there have been few attempts to
systematically demonstrate their lack of flexibility. To
begin to remedy this for the diffusion model, in this sec-
tion I present a number of patterns of results that the dif-
fusion model cannot fit. I generated fake data by hand
(often by altering predictions of the model) and then at-
tempted to fit the diffusion model to them. With a quantile-
probabilityplot, it is possible to display simultaneouslyall
aspects of the data and show how the diffusion model
fails.

The first thing to note is that the diffusion model can al-
most always, for any single experimental condition,fit the
condition’s accuracy value and two mean RTs, one for cor-
rect and one for error responses. It can do this with many
different combinationsof parameter values. One aspect of
the data that does provide at least some constraint is the
shape of RT distributions.The model cannot fit RT distri-
butions that are not positively skewed by about the right
amount. For example (as I demonstrate below), the diffu-
sion model cannot fit normal or close to normal RT distri-
butions or highly skewed distributions. The distribution
shape predicted from the model is right skewed with a tail
that is approximatelyexponentialat the extreme right (e.g.,
Ratcliff et al., 1999, Figures 12 and 13, show flat hazard
functions in the right tail, which means that the density
functionis exponentialin the right tail; see also Luce, 1986).
However, although distribution shape does constrain the
model, it does not constrain it sufficiently to provideunique
estimates of parameter values for a single condition.

Because a single experimental conditioncan be fit with
many combinations of parameter values, in order to
uniquely determine the parameters that underlie perfor-
mance on a particular task, experimental manipulations
are needed that constrain the parameters of the model.
This can be done by varying the difficulty of the task from
easy (high accuracy and fast responses) to difficult (low
accuracy and slow responses) in an experimentaldesign in
which items are presented in random order so that a sub-
ject cannot know before an item is presented what condi-
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tion it is in. In this situation, subjects cannot alter their re-
sponsecriteria or the nondecisioncomponentsof processing
time, so these parameters of the model are fixed. Then,
the only parameter of the model that is free across exper-
imental conditions is drift rate, representing the amount
of stimulus information.

As was noted earlier, across-trial variability in drift rate
and starting point allows the model to produce empirically

observedpatternsof error versus correct RTs. These include
errors always faster than correct responses (variability in
starting point dominates), errors always slower than cor-
rect responses (variability in drift rate dominates), or a
crossover in which errors in high-accuracy conditions
(e.g., accuracy greater than 90%) are faster than correct
responses, whereas errors in lower accuracy conditions
are slower than correct responses. With variability in drift

Figure 5. Eight patterns of made-up data (the xs) and the fits of the diffusion model (the solid lines). Only drift rate changes
across conditions (i.e., along the quantile-probability functions). The heavy dark bars show points of major mispredictions be-
tween fake data and fits of the diffusion model.
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rate and starting point across trials, the diffusion model
cannot producea pattern of results in which errors in highly
accurate conditions are slower than correct responses and
errors in less accurate conditions are faster than correct
responses (so long as all the other parameters are fixed
across conditions).

Figure 5 displays eight quantile-probability functions,
sevenof which are neverobserved in real data.These are the
data I generated by hand, and they are represented by the xs
in the figure. Four experimentalconditionsare represented,
such as might be used in a letter identificationtask in which
subjects are asked to identify which of two letters was dis-
played (Ratcliff & Rouder, 2000), and there are four levels
of stimuluspresentation time. On each quantile-probability
plot, the three points to the right of .5 are correct responses,
the three points to the left are error responses (correct and
error responses for zero drift are coincident and are rep-
resented by the middle point in the figures).

The diffusion model was fit to the data in the eight pan-
els in Figure 5. For the quantile-probability functions in
each panel, the only parameter allowed to vary between
conditionswas drift rate. In all except one of the fake data
cases, the model failed to fit the data well. The largest or
most important misses between the fits and the data are
highlighted with dark bars.

For the data in panel A, the differences in the quantile
RTs are the same for each experimental condition—that
is, each vertical line of xs. For example, if the .9 quantile
is 50 msec longer than the .7 quantile in the most accurate
experimentalcondition, it is also 50 msec longer in the next
most accurate condition and in all the other conditions.
This pattern would come about if the changes in mean RTs
across conditionswere the result of a shift in the whole RT
distribution, with the shape of the distribution remaining
constant. The diffusion model cannot fit this pattern; the
model requires that changes in mean RTs across condi-
tions be accompaniedby changes in distributionshape. As
drift rate decreases and RT slows, the RT distributionmust
skew, which means that the .9 quantile RTs slow a lot and
the .1 quantile RTs slow a little. Data like the fake data in
panel A have been collected in judgment-of-recency tasks
(Hacker, 1980; Muter, 1979), and the model cannot fit the
data from these tasks with only changes in drift rate across
conditions.

The fake data in panel B show U-shaped quantile-
probability functionswith accurate correct responses very
slow and inaccurate correct responses very fast. With only
drift rate changing as a function of condition, the diffusion
model cannot produce this pattern. The best-fitting func-
tions show the inverted-U-shapedfunctions that the model
predicts.

In panel C, for each experimental condition, the RT for
error responses is shorter than the RT for correct responses,
with much of the RT difference being the result of a shift
in the distribution. For example, correct responses at the
.1 quantilein the most accurate conditionare over100 msec
longer than the corresponding .1 quantiles for error RTs.
The diffusion model cannot fit these data because it re-

quires .1 quantileRTs to be aboutequal across all conditions
for both correct and error responses. For the same reason,
the model could not fit data for which the error RT distri-
bution was slowed relative to the correct RT distribution.

Panels D, E, and F show the quantile-probability func-
tions for data with normally distributed RT distributions,
moderately skewed RT distributions, and highly skewed
RT distributions, respectively. The fact that the model fits
the quantile-probability functions in panels D and F so
poorly shows its inflexibility with respect to distribution
shape. For the normally distributed data in panel D, the
poor fit comes from the model’s requirement for right
skewed distributions, reflected in the wider separations
between the upper quantiles of the quantile-probability
functions than between the lower quantiles. Exponential
RT distributions(panelE) are well fit by the model.The tail
of the distribution generated by the diffusion model is
roughly exponential, but the initial rise is not. However,
when responses are quite fast, as they are with the para-
meter values with which these fake data were generated,
the rise in the distribution generated by the model is quite
abrupt and peaks at about the .1 quantile RT. For this rea-
son, the model approximates the abrupt rise in the expo-
nential as displayed with only five quantiles.

For the data in panel F, the distributions have highly
skewed tails. They were generated from a Weibull distri-
bution with a shape parameter of .5. The diffusion model
cannot fit such distributions,and attempts to fit the data pro-
duce distributions with much shorter tails. The quantile-
probability functions show this with wider separationsbe-
tween the .7 and .9 quantiles in the fake data than in the
best-fitting quantiles from the model and with narrower
separationsbetween the .1 and .3 quantiles in the fake data
than in the best-fitting quantiles.

For panels G and H, the accuracy values for each exper-
imental condition were increased and decreased, respec-
tively, relative to the values generated from the model,
keeping the same RTs. Increasing the accuracy values
shifts the quantile RTs outward from the .5 probability
point,which leads to a wide flat quantile-probabilityfunc-
tion. When the accuracy values are decreased, the quantile
RTs are shifted inward, leading to a narrow peaked
quantile-probabilityfunction.The diffusion model cannot
fit either pattern of fake data. The model cannot produce
the flat quantiles over the wide range of accuracy values
with a large drop in RT at the extreme in panel E. Also, it
is not able to fit large changes in RT over the moderate
range of accuracy values shown in panel F.

The experiment presented in this article included a
speed–accuracy manipulation. On separate blocks of tri-
als, the subjects were instructed either to respond quickly
or to respond accurately. The assumption made in fitting
the diffusion model was that only boundary separation (a)
changed between speed and accuracy blocks of trials. The
experimental data were well fit by the diffusion model
with this assumption.

Figure 6 shows examples of the fit of the model to plau-
sible patterns of fake data under the assumption that only
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boundary separation changes between speed and accuracy
conditions.In the A panels, the data for the speed condition
were produced from the diffusion model, and the data for
the accuracy conditionwere fake; in the B panels, the data
for the accuracy condition were produced from the diffu-
sion model, and the data for the speed conditionwere fake.

For the A panels, the data for the speed and the accuracy
conditions are identical, except that a constant time was
added to each quantileRT in the speed conditionto produce
the accuracy condition. The diffusion model fits show a
smaller change between the speed and the accuracy con-
ditions in the .1 quantile RTs than the fake data do and a
much larger change in the .9 quantile RTs than the fake
data do.

In the fake data for the B panels, the speed conditions
have very low accuracy values, and the accuracy condi-
tions have much higher accuracy values. The model can-
not produce large changes in the .7 and .9 quantile RTs in
the speed conditions, along with low values of accuracy.

Except for the data in Figure 5, panel E, these patterns
of data are all patterns that the diffusion model cannot fit,
and with the one exceptionnoted, they are patterns that do

not appear in real empirical data within the scope of ap-
plication of the diffusion model. If one of these patterns
did appear in real data, the diffusion model would fail.
Such a pattern might have a simple explanation.For exam-
ple, subjects who are extremely concerned about accuracy
might hold up their responses to do a double check of their
response.Setting aside such possibilities,there are currently
few experiments that have produced qualitative patterns
of data like the ones presented above that are completely
inconsistent with the predictions of the diffusion model.

It is important to understand that the course of develop-
ment for the diffusion model was not one in which the basic
structure of the model was repeatedly adjusted and re-
designeduntil it was able to fit data. Rather, the basic struc-
ture of the model is fixed by its mathematics. The mathe-
matics determine f irst, inverted-U-shaped quantile-
probability functions; second, right skewed RT distribu-
tions; and third, distributionsthat skew rather than shift as
drift rate is varied. Additions of variability in parameters
across trials, as was discussed earlier, allow the model to
produce fast or slow errors, but these do not affect the
overall shape of the quantile-probability function, the

Figure 6. Two patterns of made-up data to be fit with a speed–accuracy manipulation. In
the diffusion model, only boundary separation is allowed to change between speed and ac-
curacy conditions. The heavy dark bars show points of major mispredictions between fake
data and fits of the diffusion model.
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overall relationship between correct RTs and accuracy, or
the shape of the RT distributions.

Figures 5 and 6 show some of the patterns of results that
the diffusionmodel cannot fit, demonstratingthat the model
is much more constrained than the “with 8 parameters you
can fit anything” view. These demonstrations address the
concerns discussed by Roberts and Pashler (2000) and help
to indicate why people working with models of the sequen-
tial sampling class believe they are strongly constrained.

DISCUSSION

The experiment presented here combinedmanipulations
of stimulus brightness and duration in a two-choice bright-
ness discrimination paradigm. Two-choice paradigms
using RT measures have had limited use in brightness and
many other perceptual discriminationparadigms, because
the two dependent variables,RT and accuracy, are difficult
to model simultaneously.The two measures have different
scales, and their values change by different amounts at dif-
ferent points on their respective scales. Interpretations of
such data are extremely difficult in the absence of a model
that relates the two variables. This is because an interpre-
tation based on mean RT may lead to one set of conclu-
sions (e.g., serial scanning), whereas an interpretation
based on the other dependent variable may lead to a dif-
ferent conclusion (e.g., a signal detection analysis). The
diffusion model has been successful in other similar situ-
ations, and it is successful with this paradigm, providing
an account for the behaviorof both dependentvariablesand
extracting a single measure of stimulus information, drift
rate, that drives the decision process.

The model also accounts for the effects of speed versus
accuracy criteria settings with a single parameter. Perfor-
mance under speed versus accuracy stress is different in
terms of accuracy, RTs for correct and error responses,
and the behaviors of RT distributions, yet all the differ-
ences are explained by a change in the single parameter,
boundary separation (a).

There are two main possibilities about how drift rate
might represent stimulus duration.One is that drift rate in-
creases when the stimulus is presented, increasingat a rate
determined by the brightness, and then decreases back to-
ward zero when the stimulus is masked. The other is that
drift rate is constant at a value reflecting the product of
brightness and stimulus duration.The first possibilitypre-
dicts slow errors, becoming dramatically slower as accu-
racy increases and error rate decreases (see Ratcliff &
Rouder, 2000, Figure 3). This was not the pattern obtained.
Instead, the error RTs slowed a little, and then sped up as
accuracy increased from 50% to over 90%. This is consis-
tent with the constant drift hypothesis (see Ratcliff &
Rouder, 2000). Drift rate increased to asymptote as a func-
tion of stimulus duration, and the asymptotic value of drift
rate was determinedby brightness (the proportionof white
vs. dark pixels).

The results in this article show that the diffusion model
is capable of explaining data from a choice RT paradigm

that is more perceptual than other paradigms to which the
model has been applied (see also Smith, 1995). The appli-
cation of the model shows how choice RT methods can be
used to address perceptual questions, how the data can be
interpreted in terms of the model, and how the variables
driving performance can be extracted from the joint RT-
and accuracy-dependentvariables.

REFERENCES

Bloch, A. M. (1885). Expériences sur la vision. Comptes Rendus de la
Societé de Biologie, 37, 493-495.

Busey, T. A., & Loftus, G. R. (1994). Sensory and cognitive compo-
nents of visual information acquisition. Psychological Review, 101,
446-469.

Carterette,E. C., Friedman,M. P., & Cosmides, R. (1965). Reaction-
time distributions in the detection of weak signals in noise. Journal of
the Acoustical Society of America, 38, 531-542.

Espinoza-Varas, B., & Watson, C. S. (1994). Effects of decision cri-
terion on response latencies of binary decisions. Perception & Psy-
chophysics, 55, 190-203.

Hacker, M. J. (1980). Speed and accuracy of recency judgments for
events in short-term memory. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 6, 651-675.

Kellogg, W. N. (1931). The time of judgement in psychometric mea-
sures. American Journal of Psychology, 43, 65-86.

LaBerge, D. A. (1962). A recruitment theory of simple behavior. Psy-
chometrika, 27, 375-396.

Laming, D. R. J. (1968). Information theory of choice reaction time.
New York: Wiley.

Link, S. W. (1992). The wave theory of difference and similarity. Hills-
dale, NJ: Erlbaum.

Luce, R. D. (1986). Response times. New York: Oxford University
Press.

Muter, P. A. (1979). Response latencies in discriminations of recency.
Journal of Experimental Psychology: Learning, Memory, & Cogni-
tion, 5, 160-169.

Nelder, J. A., & Mead, R. (1965). A simplex method for function min-
imization. Computer Journal, 7, 308-313.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Re-
view, 85, 59-108.

Ratcliff, R. (1979). Group reaction time distributions and an analysis
of distribution statistics. Psychological Bulletin, 86, 446-461.

Ratcliff, R. (1981). A theory of order relations in perceptual matching.
Psychological Review, 88, 552-572.

Ratcliff, R. (1985). Theoretical interpretations of speed and accuracy
of positive and negative responses. Psychological Review, 92, 212-
225.

Ratcliff, R. (1988). Continuous versus discrete information process-
ing: Modeling the accumulation of partial information. Psychologi-
cal Review, 95, 238-255.

Ratcliff, R., Gomez, P., & McKoon, G. (2002). Diffusion model ac-
count of lexical decision. Manuscript submitted for publication.

Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for
two-choice decisions. Psychological Science, 9, 347-356.

Ratcliff, R., & Rouder, J. N. (2000). A diffusion model account of
masking in letter identification.Journalof Experimental Psychology:
Human Perception & Performance, 26, 127-140.

Ratcliff, R., Thapar, A., & McKoon, G. (2001). The effects of aging
on reaction time in a signal detection task. Psychology & Aging, 16,
323-341.

Ratcliff, R., & Tuerlinckx, F. (in press). Estimating parameters of
the diffusion model: Approaches to dealing with contaminant reac-
tion times and parameter. Psychonomic Bulletin & Review.

Ratcliff, R., Van Zandt, T., & McKoon, G. (1999). Connectionistand
diffusion models of reaction time variability. Psychological Review,
106, 261-300.

Rayner, K., Inhoff, A. W., Morrison, R. E., Slowiaczek, M. L., &

Bertera, J. H. (1981). Masking of foveal and parafoveal vision dur-



BRIGHTNESS DISCRIMINATION 291

ing eye fixations in reading. Journal of Experimental Psychology:
Human Perception & Performance, 7, 167-179.

Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A
comment on theory testing. Psychological Review, 107, 358-367.

Sekuler, R. W. (1965). Signal detection, choice response times, and vi-
sual backward masking. CanadianJournalofPsychology, 19, 118-132.

Slamecka, N. J. (1991). The analysis of recognition. In W. E. Hockley
& S. Lewandowsky (Eds.), Relating theory and data: Essays on
human memory in honor of Bennet B. Murdock (pp. 297-306). Hills-
dale, NJ: Erlbaum.

Smith, P. L. (1995). Psychophysically principled models of visual sim-
ple reaction time. Psychological Review, 102, 567-591.

Smith, P. L. (1998).Bloch’s law predictions from diffusion process mod-
els of detection. Australian Journal of Psychology, 50, 139-147.

Smith, P. L., & Vickers, D. (1988).The accumulator model of two-choice
discrimination. Journal of Mathematical Psychology, 32, 135-168.

Stone, M. (1960). Models for choice reaction time. Psychometrika, 25,
251-260.

Swensson, R. G. (1972). The elusive tradeoff: Speed vs. accuracy in vi-
sual discrimination tasks. Perception & Psychophysics, 12, 16-32.

Watson, A. B. (1986). Temporal sensitivity. In K. R. Boff, L. Kaufman,
& J. P. Thomas (Eds.), Handbook of perception and human perfor-
mance (pp. 6-1 to 6-43). New York: Wiley.

(Manuscript received July 24, 2000;
revision accepted for publication June 20, 2001.)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


