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There has been much recent interest in the hypothesis
that performance in many cognitive tasks is simultane-
ously mediated by qualitatively distinct processing sys-
tems. Arguments for multiple systems have come from
such diverse fields as memory (Mishkin, Malamut, &
Bachevalier, 1984; Schacter, 1987; Squire, 1992), reason-
ing (Sloman, 1996), motor learning (Willingham,Nissen,
& Bullemer, 1989), discrimination learning (Kendler &
Kendler, 1962), and function learning (Hayes & Broad-
bent, 1988). In general, these studies have suggested at
least two distinct types of learning systems: (1) an explicit,
rule-based system tied to language functions and con-
scious awareness, and (2) an implicit or habit-formingsys-
tem, which may not have access to conscious awareness.

Within the domain of category learning, there also
were early arguments for multiple systems. For example,
Brooks (1978) hypothesized that category learning is
mediated by separate “deliberate, verbal, analytic control
processes and implicit, intuitive, nonanalytic processes”
(p. 207). Nevertheless, most quantitativeaccounts of cat-
egory learning assume the existence of a single system
(e.g., Estes, 1986; Hintzman, 1986; Kruschke, 1992;
Medin & Schaffer, 1978;Nosofsky, 1986). Recently, how-
ever, quantitative models that assume multiple category
learning systems have been developed (e.g., Ashby,
Alfonso-Reese, Turken, & Waldron, 1998; Erickson &
Kruschke, 1998). For example, Ashby et al. (1998) pro-
posed a formal neuropsychologicaltheory of multiple cat-
egory learning systems called COVIS (competition be-
tween verbal and implicit systems), which assumes

separate explicit (rule-based) and implicit (procedural
learning-based) systems. In response, Nosofsky and Jo-
hansen (2000) have argued that single-system (exemplar)
models can account for many of the phenomena that have
been used to support the notion of multiple systems.

This article presents evidence for the existence of sep-
arate category learning systems. Using a concurrent task
methodology, we evaluated the ability of observers to
learn categories defined by simple or complex rules, while
at the same time they performed a numerical analogue of
the classic Stroop task (Stroop, 1935). Single-system
models of category learning naturally predict that the
Stroop task interference observed with the simple cate-
gory structures should be less than or equal to the inter-
ference observed with the complex category structures.
Consistent with COVIS, however, the data show strong
concurrent task interference with the simple rules and min-
imal interference with the complex rules. We end with a
discussion of the implications that the present results pose
for current models of categorizationas well as for the more
general field of human learning.

Evidence for Multiple Systems
Empirical evidence for multiple category learning sys-

tems comes from several different sources. For example,
Ashby, Queller, and Berretty (1999) reported evidence for
multiple systems from an unsupervised category learning
experiment. It is well known that with supervision (i.e.,
trial by trial feedback), people can learn complex rules
that are difficult or impossible to verbalize (e.g., Ashby
& Maddox,1992; McKinley & Nosofsky, 1995; Medin &
Schwanenflugel, 1981). However, in category learning
situations where trial by trial feedback is absent, people
almost always use unidimensional rules (Ahn & Medin,
1992; Ashby et al., 1999; Imai & Garner, 1965; Medin,
Wattenmaker, & Hampson, 1987; Wattenmaker, 1992).
Ashby et al. (1999) have shown that without supervision,
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Participants learned simple and complex category structures under typical single-task conditions
and when performing a simultaneous numerical Stroop task. In the simple categorization tasks, each
set of contrasting categories was separated by a unidimensional explicit rule, whereas the complex
tasks required integrating information from three stimulus dimensions and resulted in implicit rules
that were difficult to verbalize. The concurrent Stroop task dramatically impaired learning of the sim-
ple explicit rules, but did not significantly delay learning of the complex implicit rules. These results
support the hypothesis that category learning is mediated by multiple learning systems.
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subjects could learn simple unidimensionalrules, whereas
no learningwas seen with more complex two-dimensional
rules.1 This pattern of results is suggestiveof distinct learn-
ing systems, where one system can learn in the absence of
supervision (i.e., an explicit system) and the other sys-
tem can only learn under supervised conditions (i.e., an
implicit system).

Allen and Brooks (1991) investigated the effects of
experimental instructions on classification behavior.
Using stimuli that varied on five binary-valued stimulus
dimensions, one group of participants was explicitly told
the optimal categorization rule before training (the rule
group), whereas a second group was told to memorize the
category assignments of all stimuli (the memory group).
The optimal rule was of the following form: “If the stim-
ulus has at least two of three critical attributes, choose
category A, otherwise choose category B.” This rule was
complex enough so that participants in the memory group
were unlikely to discover it during training. The main re-
sult concerned the categorization of a novel stimulus in a
subsequent transfer task. This stimulus was designed so
that it would be assigned to one category by the optimal
rule, even though it was more similar to the exemplars
from the other category. Allen and Brooks found that if
the participantswere given the optimal rule explicitly, they
were then more likely to categorize the novel stimulus ac-
cording to the optimal rule. The participants that were
instructed to memorize the stimulus–category relation-
ships, however, were more likely to categorize the novel
stimulus as a member of the category with more similar
exemplars. In a recent positron emission tomography
(PET) study (Smith, Patalano, Jonides, & Koeppe, 1996;
cited in Smith, Patalano, & Jonides, 1998) done with a
similar paradigm, different brain areas were found to be
active in the rule and memory conditions.For example, in
the rule condition, there was greater activation of frontal
areas, whereas the memory condition produced greater
activation in more posterior cortical areas. These results
are consistent with the notion of multiple category learn-
ing systems because they show that task instructions can
induce qualitatively different categorization strategies
and different patterns of neural activation.

All of these results are consistent with the assumption
of multiple category learning systems. Nevertheless,
many of them could be accounted for by a single system
able to implement decision rules of differing complexity.
For example, a single-system model could account for
the Ashby et al. (1999) unsupervised results by assuming
that simple (e.g., unidimensional) rules can be learned
without feedback, but that the learning of complex rules
requires supervision. The Allen and Brooks (1991) re-
sults could be subject to a similar interpretation. Partic-
ipants in the memory group might have been using one of
the many possible decision rules that would succeed with
the training stimuli, whereas the rule group was told
which one of these rules to use. Finally, in the Smith et al.
(1996) neuroimaging study, there was considerable over-
lap in patterns of activation between the rule and mem-

ory groups, and it is difficult to rule out the possibility that
the differences that were seen occurred simply because of
the extra learningprocesses required of the memory group.

Goals of the Present Study
Our goal in the present study was to provide a stronger

test of the multiple-systemshypothesis.We examined the
ability of participants to learn explicit (i.e., unidimen-
sional) and implicit (i.e., complex three-dimensional)
categorization rules under normal conditions; at the same
time, they were performing a secondary task that was de-
signed to interfere with explicit category learning, but
not with implicit learning.

The categorization stimuli were colored geometric
figures presented on a colored background. The stimuli
varied on four binary-valued dimensions: background
color (blue or yellow), embedded symbol color (red or
green), symbol numerosity (one or two), and symbol
shape (square or circle). This yielded a total of 16 possi-
ble stimuli. For the explicit category structures, the rule
separating the categories was always a unidimensional
rule of the following form: “If the background color is
blue then choose category A, if background color is yel-
low then choose category B.” Four different category
structures were created by varying which stimulus di-
mension was critical. We refer to these rules as explicit,
because they are easy to describe verbally and because, at
the end of training, all participants were able to describe
these rules accurately.

We constructed a set of implicit category structures in
the following manner. First, one level of each stimulus di-
mension was arbitrarily assigned the numerical value of
21, and the other level was assigned a value of +1 (e.g.,
a backgroundcolor of blue = 21, and a backgroundcolor
of yellow = +1). Next, one of the four stimulus dimen-
sions was selected to be irrelevant. Call the three remain-
ing (relevant) dimensionsX, Y, and Z. Finally, stimuliwere
assigned to categories according to the following rule:

If value(X) + value(Y) + value(Z) . 0,
assign to category A,
otherwise assign to category B.

Four such category structures were created by varying
which dimension was irrelevant. We call these rules im-
plicit, because they are extremely difficult to describe
verbally. When asked to describe the rule that they used
with these implicit structures, none of the participants
were able to do so, even though they all learned to cate-
gorize the stimuli successfully. For a more complete dis-
cussion of explicit and implicit categorization rules, see
Ashby et al. (1998).

These explicit and implicit rules are similar to the
Type I and Type IV (respectively) rules initially studied
by Shepard, Hovland, and Jenkins (1961).2 Shepard et al.
also studied four other rule types and found that the rela-
tive difficultyof the different rules was largely determined
by the number of dimensions relevant to the categoriza-
tion decision—that is, the more the relevant dimensions,
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the more difficult the categorizationproblem (see Nosof-
sky, Gluck, Palmeri, McKinley, & Glauthier, 1994, for a
recent replication). It has been suggested that this result
occurs because it takes “more cognitive effort or capacity
to consider more dimensions” (Kruschke, 1992, p. 26).
Thus, empirical evidence suggests that the explicit rules
should be easier to learn than the implicit.

How should the addition of a concurrent task affect
the learning of the explicit and implicit rules? A concur-
rent secondary task is commonly thought to reduce pro-
cessing resources available for a primary task (see, e.g.,
Pashler, 1994). Accordingly, the learning of any new cat-
egory structures should be more difficult in the presence
of a concurrent task. If more effort or capacity is required
in order to learn more complex rules and there is only a
single system (or processing resource) that operates on
all rules, then the degree of concurrent task interference
for the more complex rules should always be greater than
or equal to the interference for the less complex rules.3
However, if the different rule types are learned by sepa-
rate systems, then the pattern of concurrent task inter-
ference between the rule types should only reflect the
relative interference of the concurrent task on each com-
ponent system. Thus, given separate systems, it is possi-
ble that the concurrent task could cause less interference
with the complex implicit rules than with the simple ex-
plicit rules.

Since this prediction is unique to the multiple-systems
hypothesis, we attempted to conduct an experiment that
would produce this pattern of interference. To this end, we
reasoned that our secondary task should interfere with
the explicit category learning system, but not with the im-
plicit system. As mentioned above, COVIS (Ashby et al.,
1998) is a neuropsychological theory of category learn-
ing that assumes separate explicit and implicit systems.
Briefly, the key structures in the COVIS explicit system
are the prefrontal cortex, the anterior cingulate, and the
head of the caudate nucleus;COVIS assumes that learning
in the implicit system is mediated by the tail of the caudate
nucleus. Thus, according to COVIS, the ideal secondary
task would strongly activate the prefrontal cortex and the
anterior cingulate, but not the tail of the caudate nucleus.
Recent neuroimaging studies have shown that the anterior
cingulate and dorsolateral prefrontal cortex are strongly
activated in the Stroop (1935) task (Bench et al., 1993).
For this reason, we chose as our secondary task a numer-
ical version of the Stroop task.

Notice that we are assuming that the interference be-
tween primary and secondary tasks is a function of the
degree to which the two tasks activate the same neural
structures. One could also argue that the numerical Stroop
task has more task requirements in common with the ex-
plicit system assumed in COVIS than with the implicit
system. An important example of such a demand is the
ability to focus executive attention selectively on a single
dimension or component of the stimulus. In the Stroop
task, attention must be focused selectively on one aspect
of the stimulus (i.e., word color) in the context of a more

salient aspect (i.e., word name). With the unidimensional
explicit rules used in the present study, selective attention
processes are crucial, because one must maintain attention
on a single stimulus dimension and ignore the other three
dimensions.

Executive selection attention plays a critical role in the
COVIS explicit system, but COVIS assumes that the
more difficult three-dimensional rules would be learned
by the implicit system, which has no formal representa-
tion of selective attention.Thus, COVIS assumes that the
Stroop task shares more task requirements and overlap-
ping neural structures with explicit category learning than
with implicit category learning. Accordingly, the predic-
tions derived from COVIS suggest that the Stroop task
should interfere with the learning of explicit rules more
than with the learning of implicit rules.

In summary, this experimental design will provide a
strong test of the multiple-systems hypothesis. If the
concurrent task impairment for explicit rules is less than or
equal to the impairment for implicit rules, then we would
not be able to reject the single system hypothesis. How-
ever, if the concurrent task impairment for the explicit
rules is greater than that observed for the implicit rules,
then we would have strong evidence for the existence of
multiple category learning systems.

METHOD

Participants
One hundred thirty undergraduate students at the University of

California, Santa Barbara, participated in this experiment in partial
fulfillment of a class requirement.

Stimuli and Apparatus
The stimuli and category structures are described above. Each

categorization stimulus subtended a visual angle of 9.5º (300 3
300 pixels). The stimuli in the numerical Stroop-type concurrent
task were single digits between 2 and 8 that were either 95 pixels in
height or 180 pixels in height, subtending 3º and 5.8º of visual
angle, respectively. The stimuli were presented on a black back-
ground using Macintosh PowerPC computers running the Psycho-
physics Toolbox software (Brainard, 1997; Pelli, 1997) in the Mat-
lab (MathWorks; Sherborn, MA) environment.

Procedure
In the category learning task, participants classif ied each stimu-

lus into category “A” or category “B” by pressing the appropriate
key on the keyboard after the categorization stimulus appeared on
the CRT display. The stimulus remained on the screen until a key
was pressed. A brief high-pitched tone (500 Hz) was presented if
the response was correct, and a low-pitched tone (200 Hz) was pre-
sented if the response was incorrect. The criterion for learning the
category structures was eight consecutive correct responses. After
the criterion was met, the participant was instructed by the com-
puter that the categorization rule was about to change. If the partic-
ipant was not able to achieve the criterion within 200 trials, the tri-
als then terminated and the participant was informed by the
computer that the categorization rule was to change.

The experiment was conducted over two sessions separated by a
week. This was done to ensure that participants were well practiced
with the category learning task and that any interference caused by
the concurrent task was not due to learning how to perform the cat-
egorization task. Over the course of the two sessions, the partici-
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pants learned four explicit rules and four implicit rules. They never
learned the same rule twice. During the first session, the partici-
pants learned four rules (two explicit and two implicit) in the fol-
lowing order: explicit, implicit, explicit, implicit. The data from this
session were considered practice and were not included in any of
the analyses reported below. A week later, the participants were
randomly assigned to the concurrent task condition or the control
condition. So that we could investigate the temporal dynamics of
the concurrent task, the participants learned two sets of two rules.
Each set contained an explicit rule and an implicit rule. In order to
control for any effects due to the order with which rules were
learned, the participants were randomly assigned to one of the two
possible rule orders (explicit first or implicit first) for each of the
two sets of rules. This yielded four possible rule orders for the sec-
ond session (E = explicit, I = implicit): EIEI, IEIE, EIIE, IEEI. The
specific rule of each type given at any time was randomly deter-
mined without replacement for each participant.

In the concurrent task condition (second session), the partici-
pants had to perform a numerical analogue of the Stroop task along
with learning the four categorization rules. The concurrent task re-
quired the participant to remember which of two numbers was
physically larger and which was numerically larger. The analogy
with the Stroop effect relied on the fact that on 85% of the trials, the
numerically larger number was physically smaller (see, e.g.,
Algom, Dekel, & Pansky, 1996; Besner & Coltheart, 1979). On the
remaining 15% of the trials, the numerically larger number was also
physically larger. During a concurrent task trial, the two numbers to
be discriminated were presented for 200 msec to the right and to the
left of the categorization stimulus, followed by a uniform white
mask for another 200 msec. The participant was to first respond to
the categorization stimulus. Feedback for the categorization task
was given immediately following the categorization response. After
the categorization feedback was given, the word value or size ap-
peared on the screen, signaling the participant whether to respond
with the numerically larger or the physically larger digit, respec-
tively. The participant then responded with the appropriate key as
to whether the appropriate digit was on the “right” or the “left.”
After the concurrent task response, feedback was given in the same
manner as for the categorization task. Thus, during the process of
making the categorization decision, the participant needed to hold
in memory both the numerical value and the physical size of the
briefly presented numbers. The participants were instructed to per-
form the Stroop task perfectly and, “with what was left over,” learn
the categories. For each participant, any categorization rule in
which concurrent task performance was less than 80% was ex-
cluded from further analysis.

RESULTS

Stroop Task Performance
Participants performed the concurrent Stroop task with

a high degree of accuracy, achieving an overall average of
91.6% correct. There was no significant difference be-
tween Stroop task accuracy on trials when the catego-
rization rule was explicit (92.1%) and on those when it
was implicit (91.2%) (t = .0001, p . .20). There was also
no difference between Stroop task accuracy early in the
session (91.2%) and late in the session (90.7%) (t = .006,
p . .20). Finally, there was no significant difference be-
tween the control and concurrent task groups with re-
spect to the number of blocks (i.e., category structures)
for which the categorization learning criterion (i.e., eight
correct responses in a row) was not met within 200 trials
(Z = .95, p . .10). Any block for which the categorization

learning criterion was not met was excluded from further
analysis. In addition, any block for which the Stroop task
accuracy was below 80% was excluded from further
analyses, resulting in the exclusion of five blocks of data
(two explicit blocks and three implicit blocks all involv-
ing different participants).

It is important to note that there was no effect of cate-
gorization task type (explicit vs. implicit) on the perfor-
mance of the Stroop task. This result was expected,given
that participants were instructed to perform the Stroop
task perfectly and, “with what was left over,” perform the
categorization task. This equivalence in Stroop task per-
formance between the explicit and implicit categorization
groups is crucial for making any claims about the relative
effects of the Stroop task on categorization performance.

Category Learning Performance
A preliminary analysis of the observed data done with

Box’s test revealed significant differences in the covari-
ance matrices between the control and the concurrent
task groups [F(70,4896) = 2.88, p , .001] (Box, 1950;
Winer, 1971). Thus, we proceeded to analyze the data in
two ways. First, a log10 transformation of the data was
performed to meet the assumptions of the mixed factor
analysis of variance (ANOVA). This transformation effec-
tively normalized the covariance matrices across groups
[F(70,4896) = 1.292, p . .05]. A five-way (two within,
three between) mixed factor ANOVA was performed on
the transformed number of trials taken to reach criterion
(eight consecutive correct responses) with the following
factors: rule type (within subjects: explicit vs. implicit),
session (within subjects: early vs. late), condition (be-
tween subjects: control vs. concurrent task), early session
rule order (between subjects: explicit first vs. implicit
first), late session rule order (between subjects: explicit
first vs. implicit first). This analysis revealed a number
of important results. First, there was a significant main
effect of condition [F(1,94) = 53.31, p , .001], showing
that the concurrent task group needed more training to
learn the category structures than did the control group.
Second, there was a marginally significant main effect
of early session rule order [F(1,94) = 3.91, p , .051],
suggesting that if the implicit rule was learned first, more
training was required in order to reach criterion for all
rules than if the explicit rule was learned first. Third,
there was a significant main effect of rule type [F(1,94) =
58.14, p , .001], showing that, over all other conditions,
explicit rules required less training than did implicit
rules. Fourth, there was a significant interaction between
rule type and condition [F(1,94) = 4.62, p , .034], show-
ing that the concurrent task produced greater interfer-
ence with explicit rules than with implicit rules. Figure 1
shows the nontransformed data for the early (A) and late
(B) session separately.

To provide additional evidence for the crucial rule type
3 conditioninteraction,nonparametric tests of interaction
(see Bradley, 1968) were performed on the early and late
session raw data as well as on the combined early and late
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session raw data. This analysis revealed a significant inter-
action between rule type and condition for the combined
data [c2(1) = 5.58, p , .05] and for the early session data
[c2(1) = 10.71,p , .01]. For the late session data, the inter-
action did not reach significance [c2(1) = 0, p . .05].

Correlational Analyses
Since both explicit and implicit rule learning perfor-

mance were assessed within participants, correlations

were carried out to measure the linear relationship be-
tween the learning of both rule types.4 Partial correlations
were computed between the four rules learned on the 2nd
day (two explicit, two implicit), controlling for early ses-
sion rule order, late session rule order, and condition.
This analysis showed moderate but significant correla-
tions between the learning of both explicit rules (r = .24,
p , .02) and both implicit rules (r = .26, p , .02). All
correlations between rules of different types were not
significant.

DISCUSSION

These results provide evidence that the explicit and
implicit rules used in the present study are learned by
qualitativelydistinct category learning systems. Relative
to control performance, the addition of the concurrent
numerical Stroop task produced a profound deficit in the
ability of participants to learn simple explicit rules.
Single-system models of category learning naturally pre-
dict that as the complexity of the categorization rule in-
creases, the deficit caused by the concurrent task should
increase because of the increased processing required of
more complex rules. However, the present results show
the oppositepattern. With the more complex implicit rules
that required integrating information from three stimulus
dimensions, the interference produced by the addition of
the concurrent task was less than that seen with simple
unidimensional explicit rules.

Within-subjects correlations between explicit rule
learning and implicit rule learning also provide strong
support for the multiple-systems hypothesis. If the learn-
ing of explicit and implicit rules is mediated by a single
system, one would expect to find a strong relationship
between the learning of these two types of rules. Specif-
ically, participants who were good at learning one rule
type (i.e., implicit) should also be good at learning the
other rule type (i.e., explicit). The correlational analyses
showed that this was true for rules of the same type, but
that the ability to learn explicit rules was unrelated to the
ability to learn implicit rules.

One possible weakness in the present results was that
the critical rule type 3 condition interaction disappears
if one considers absolute differences between scores late
in the session.5 In order to better understand this late-
session effect, we carried out pairwise nonparametric
comparisons (Wilcoxon signed ranks test) between the
early and late session scores for the explicit control, ex-
plicit concurrent task, implicit control, and the implicit
concurrent task groups. Only the explicit concurrent task
group showed a significant improvement across sessions
(Z = 2.92, p , .01). A natural explanation for why an im-
provement would be seen in this group is that the con-
current task became easier to perform later in the session
and produced less interference.Furthermore, if the explicit
and implicit rules were learned by a common system, we
would also have expected to see a similar improvement
across sessions with the implicit rules. But this improve-
ment in implicit rule learning did not occur. Thus, the late

Figure 1. Mean number of trials to criterion for the first two
rules learned (A) and for the second two rules learned (B).
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session effect is actually consistent with the multiple-
systems hypothesis.

The present data also have important implications for
existing models of category learning. As previously dis-
cussed, single-system models naturally predict that the
impairment induced by a concurrent task with simple
rules should be less than or equal to the impairment with
more complex rules. To demonstrate this pointmore force-
fully, we evaluated the predictionsof Kruschke’s ALCOVE
model of category learning (Kruschke, 1992), which is
among the most widely known and successful current
single-system category learning models.

ALCOVE (attention learning covering map) is an ex-
emplar similarity based connectionist model of category
learning. Briefly, it assumes that category decisions are
made by computing the similarity of the stimulus to mem-
ory representations of all previously seen exemplars (see
Kruschke, 1992, for a full description). ALCOVE has
four parameters: c, f, lw , and la. The c parameter is a mea-
sure of the overall discriminability of the stimuli, f speci-
fies the consistency of responding, and the two learning
rates, lw and la , determine how quickly the exemplar–
category associations and attention weights are learned,
respectively.The most likely effect of the concurrent task
is on the parameter c. However, generating precise pre-

dictions for the effects of concurrent task interference
from ALCOVE is not straightforward, since ALCOVE
has not been previously applied to concurrent task ex-
periments. To evaluate the predictions of ALCOVE, we
created 1,000 random sequences of trials and recorded
how long it took the model to reach a criterion of eight
consecutive correct responses for each sequence. The
model’s predictions were generated by computing the
mean trials to criterion over the 1,000 random replications.
As with the participant data, we excluded replications
for which the model took longer than 200 trials. We then
found parameter values that mimicked the pattern of cate-
gorization performance observed in the early session con-
trol data of the present study. These parameter values were
c = 3, f = 9.24, lw = .2, and la = .05. With these param-
eter values, ALCOVE was able to capture accurately the
increased difficulty of the implicit structures relative to
the explicit structures.

Our concurrent task data contained only two degrees
of freedom (i.e., trials to criterion for the explicit and im-
plicit rules, respectively), so an empirical test of the model
is possible only under the assumption that the effects of
the concurrent task can be modeled by a change in a sin-
gle parameter. Therefore, we investigated the effects of
systematically increasing and decreasing each parameter

Figure 2. Predictions of ALCOVE for the explicit (solid line) and implicit (broken line) cat-
egory structures as a function of variation in each of ALCOVE’s four parameters.



174 WALDRON AND ASHBY

in turn while the other three parameters were held con-
stant at the same values that best fit the control data. The
results of this analysis are shown in Figure 2 for c (Fig-
ure 2A), f (Figure 2B), lw (Figure 2C), and la (Figure 2D).
Figure 2 shows that for each parameter, any increase in
trials to criterion predictedwith the explicit category struc-
tures is accompanied by a correspondingly large increase
in predicted trials to criterion for the implicit category
structures. Thus, ALCOVE cannot account for the pattern
of performance observed in the present study with any sin-
gle parameter. Other existing single-system models fail
for similar reasons.

Even some dual-process models have difficulty with
the present results. For example, consider the RULEX
model (rule plus exception;Nosofsky, Palmeri, & McKin-
ley, 1994), which assumes that in the process of category
learning, people apply simple rules and memorize any
exceptions to those rules. With explicit rules, RULEX
assumes that people only need to find the correct rule,
whereas with implicit rules, people need to learn a rea-
sonably effective explicit rule and then memorize any ex-
ceptions to that rule.6 There are two reasons why RULEX
predicts equal or greater concurrent task interference for
implicit rules than for explicit rules. First, the processes
required in order to learn explicit rules (i.e, rule-based
processes) are a proper subset of the processes needed in
order to learn implicit rules (i.e., rule-based processes plus
memorization). Thus, to the extent that the concurrent
task interferes with the learning of unidimensional rules,
RULEX predicts a least as much interference with the
learning of three-dimensional rules. Second, Nosofsky,
Palmeri, and McKinley (1994) explicitly assumed that

the memorizationprocess is of limited capacity. Therefore,
if the concurrent task reduces the overall capacity avail-
able for category learning, the greatest effects should be
on the ability of participants to memorize exceptions.
For these reasons, RULEX predicts that the concurrent
task interference with implicit rules (where exemplar
memorization would be necessary) should always be
greater than the interference with explicit rules. The op-
posite pattern was observed in the present data.

On the other hand, the data are consistent with the pre-
dictionsof COVIS. We used the computationalversion of
COVIS to verify this claim. This is a hybrid neural net-
work consisting of a symbolic learning subsystem (ex-
plicit system) that implements logical rules and a pattern
classification subsystem (implicit system) that incre-
mentally parses stimulus space into response regions (see
Ashby et al., 1998, and Ashby & Waldron, 1999, for de-
tails). As discussed above, COVIS assumes that a com-
mon neural locus that is shared by the primary catego-
rization task and the secondary Stroop task is the anterior
cingulate. COVIS further assumes that the anterior cin-
gulate is responsible for selecting among competing rules
and models this function via a selection parameter (l)
that determines how likely a newly selected rule will be
implemented. We simulated the present experiment with
COVIS in the same manner as for ALCOVE. First we fit
the COVIS model to the control data; then we evaluated
the predictions of the model for the effects of the concur-
rent task by varying the l parameter. Figure 3 shows the
predictednumber of trials to criterion for the explicit (solid
line) and implicit (dashed line) tasks as a function of l
for the COVIS network. COVIS predicts that as the abil-

Figure 3. Predictions of COVIS for the explicit (solid line) and implicit (broken line) cat-
egory structures as a function of variation in the selection parameter.
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ity to select rules (l) declines, explicit rule learning per-
formance is impaired, whereas implicit rule learning per-
formance is unaffected. Thus, the COVIS network is able
to capture the critical aspects of the data, using a single the-
oretically derived parameter.

CONCLUSIONS

The present results suggest that performance on the
numerical Stroop and explicit categorization tasks de-
pends on a common set of neural mechanisms. COVIS
(Ashby et al., 1998) hypothesizes that these structures
are part of a frontal striatal thalamic circuit that has also
been implicated in selective attention and working mem-
ory functions. The present results also suggest that per-
formance on the numerical Stroop and implicit catego-
rization tasks rely on relatively independent processing
mechanisms. According to COVIS, the implicit system
dependson subcortical structures related to and including
the basal ganglia.

The present results also have implications for more
general theories of human learning. For example, Hayes
and Broadbent (1988) studied explicit and implicit learn-
ing under concurrent task conditions. They found con-
current task interference under conditions in which par-
ticipants could verbalize what they had learned; but in
an implicit task that yielded inaccurate verbal reports, a
mild concurrent task enhancement was found. The Hayes
and Broadbent study was one of the first to demonstrate
a performance-based dissociation between learning sys-
tems (see Shanks & St. John, 1994, for a discussion of
this issue). However, Green and Shanks (1993) were un-
able to replicate this important finding. The results re-
ported here, in the context of category learning, provide
another performance-based dissociation between learn-
ing systems.

It is important to note that in the absence of a double
dissociationor a cross-over interaction, the present results
do not unequivocally rule out all single-system models—
that is, it is theoretically possible to construct a single-
system model that could account for our data. The impor-
tant point, however, is that, to the best of our knowledge,
our results are incompatiblewith all existing single-system
models of category learning (e.g., see Figure 2). At the
same time, they are easily and naturally predicted by cur-
rent multiple systems models (i.e., see Figure 3).
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NOTES

1. In fact, the categories defined by the multidimensional rule were a
45º rotation of the categories defined by the unidimensional rule.

2. In the Shepard et al. (1961) study, the stimuli varied along three
binary-valued dimensions, whereas, the stimuli in the present study var-
ied along four binary-valued dimensions. Thus, the only difference be-
tween the category structures investigated by Shepard et al. and the pre-
sent study is the addition of an irrelevant dimension.

3. Any task requires some explicit processes. Accordingly, COVIS
predicts that the concurrent task should produce some interference for
the learning of the implicit category structures. However, the interfer-
ence for the learning of implicit category structures should be less than
that observed for the learning of explicit category structures.

4. The correlations were performed on the nontransformed data. The
same pattern of results was observed with the log10 transformed data.

5. The analyses based on the log-transformed data, which is a rela-
tive scale, did not reveal any effects of Session (early vs. late).

6. The version of RULEX tested in Nosofsky, Palmeri, and McKin-
ley (1994) assumed that the only rules available to the system were uni-
dimensional rules and two-dimensional rules. Thus, this version of
RULEX would assume that subjects would have to memorize excep-
tions in order to perform optimally in the three-dimensional rule con-
dition used in the present study.
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