
Memory & Cognition
2004, 32 (3), 399-415

A remarkable accomplishment of the human percep-
tual system is the experience of a stable world amid chang-
ing perspectives. When movement occurs, the cognitive
system updates the locations and orientations of objects
in the environment accordingly. For example, when an
observer turns 90º clockwise, a chair that was initially on
the right is now perceived as being in front of the ob-
server. Likewise, when the chair itself is moved from its
rightward position to in front of the stationary observer,
it is not perceived as a new object in a different location,
but rather as the same chair having undergone a dis-
placement. A recent trend in research in how the cogni-
tive system achieves such stability is to focus primarily
on the nature of retinal inputs, independently of the type
of perspective change carried out (e.g., Biederman &
Gerhardstein, 1993, 1995; Bülthoff & Edelman, 1992;
Tarr, 1995; Tarr & Bülthoff, 1995; Tarr & Pinker, 1989).
Few researchers have examined the role that perspective

change itself may play (Simons & Wang, 1998; Wang &
Simons, 1999). Although the examples of viewer and ob-
ject movement described above may result in successful
updating, the questions of whether these processes are
similarly efficient and, if not, what factors may con-
tribute to the differences are empirical ones. The aim of
this paper is to examine these issues more closely.

There is some evidence suggesting that spatial updat-
ing is not equivalent across different types of perspective
change. In much of this work, observers’ updating perfor-
mance during imagined self- and display movement has
been examined (e.g., Amorim & Stucchi, 1997; Hutten-
locher & Presson, 1979; Presson, 1982; Wraga, Creem, &
Proffitt, 2000). In these experiments, blindfolded partic-
ipants typically update the memorized locations of objects
in a display after either imagining themselves rotating
about the display or imagining the display itself rotating.
Updating performance is usually found to be faster and
more accurate after imagined rotations of the viewer than
of the display. This advantage has been shown to persist
whether the observer is immersed within the display or
separate from it, and also when the display configuration
is reduced to only one object (Wraga et al., 2000).

A viewer advantage also has been found for spatial up-
dating during physical movement of the self versus phys-
ical movement of the display. Simons and Wang (1998)
showed that participants’ ability to detect covert changes
of a configuration of objects viewed from different per-
spectives depended on whether the display or the observer
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In four experiments, we examined observers’ ability to locate objects in virtual displays while rotat-
ing to new perspectives. In Experiment 1, participants updated the locations of previously seen land-
marks in a display while rotating themselves to new views (viewer task) or while rotating the display
itself (display task). Updating was faster and more accurate in the viewer task than in the display task.
In Experiment 2, we compared updating performance during active and passive self-rotation. Partici-
pants rotated themselves in a swivel chair (active task) or were rotated in the chair by the experimenter
(passive task). A minimal advantage was found for the active task. In the final experiments, we tested
similar manipulations with an asymmetrical display. In Experiment 3, updating during the viewer task
was again superior to updating during the display task. In Experiment 4, we found no difference in up-
dating between active and passive self-movement. These results are discussed in terms of differences
in sources of extraretinal information available in each movement condition.
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moved. Performance was quite good for view changes pro-
duced by observer movement; however, it deteriorated
when the changes were caused by rotations of the dis-
play itself. The latter result persisted even when partici-
pants actively controlled the rotation of the display via
an attached rod (Wang & Simons, 1999).

A common factor of these experiments is that optical
information for the self- and display transformations was
not available. In the imagined-movement studies, transfor-
mations were performed from memory; in the physical-
movement studies, the displays were covered during
transformations. In the absence of optical information
specifying perspective change, the observer must solve
these tasks solely by transforming representations of the
spatial reference frames corresponding to each imagined
movement. Imagined viewer rotation involves transfor-
mation of the egocentric reference frame, which speci-
fies an object’s location and orientation with respect to
the intrinsic axes of the observer’s body (see, e.g., Howard,
1982). Imagined display rotation involves transformation
of the object-relative reference frame, which specifies
the relationship of one object to others (see, e.g., Easton
& Sholl, 1995). The difficulties found in imagined dis-
play rotations performed from memory have been attrib-
uted to cognitive deficits in transforming cohesive rep-
resentations of the object-relative reference frame (Wraga
et al., 2000).

How does the presence of optical information affect
updating performance during viewer and display move-
ment? One might predict that optical flow generated by
a moving environment would improve updating perfor-
mance to that of viewer movement, perhaps by dimin-
ishing observers’ need to rely on representations of the
object-relative frame. However, several studies suggest
that updating during viewer movement continues to re-
main advantageous under full-cue conditions (Chance,
Gaunet, Beall, & Loomis, 1998; Christou & Bülthoff,
1999; Klatzky, Loomis, Beall, Chance, & Golledge, 1998;
Pausch, Proffitt, & Williams, 1997). For example, Chance
et al. (1998) tested participants’ ability to update targets
encountered while they were immersed in virtual mazes.
The participants traversed the mazes using different lo-
comotion modes. In the walking condition, they walked
normally through a given virtual path. In the visual con-
dition, they transported themselves through the path via
a hand-held joystick and thus received only visual infor-
mation. Despite the fact that optical flow information
was nearly identical across conditions, Chance et al.
found that updating performance during walking was su-
perior to updating performance during visual transport.
Pausch et al. (1997) found similar results in a task in
which participants immersed in a virtual room searched
for items in it by turning about the room via a head-
tracked virtual reality (VR) system or via a hand-tracked
joystick. The participants were better able to keep track
of the search space during the former movement than
during the latter, even though optical information was

held constant across conditions. Collectively, these find-
ings suggest that sources other than retinal inputs may
be critical to spatial updating during self-movement.

Going Beyond the Retina
The sources of extraretinal information available during

viewer and display movement usually are not equivalent.
During viewer movement, changes in optical informa-
tion are accompanied by inputs from proprioceptive and
vestibular systems. When an observer walks, for exam-
ple, proprioceptive information specifying such move-
ment is elicited from contact of the soles of the feet with
the ground and from receptors in the muscles, tendons,
and joints of the legs. The vestibular system registers in-
formation for the position of the head with respect to the
gravitation vertical, and for linear body acceleration via
the otolith organs and angular body acceleration via the
semicircular canals. In contrast, such information is un-
available during display movement, unless there is some
observer interaction with the display.

The findings of Chance et al. (1998) and Pausch et al.
(1997) mentioned previously implicate proprioceptive
and vestibular systems in spatial updating during viewer
movement. Further evidence comes from studies on nav-
igation without vision, which have shown that human be-
ings are capable of reconstructing whole-body displace-
ments using proprioceptive and vestibular inputs only, a
process termed path integration (e.g., Berthoz, Israël,
Georges-François, Grasso, & Tsuzuku, 1995; Grasso,
Glasauer, Georges-François, & Israël, 1999; Loomis,
Klatzky, Golledge, & Philbeck, 1999). (For related abil-
ities in animals, see, e.g., McNaughton, Chen, & Markus,
1991; Samsonovich & McNaughton, 1997.) For example,
Grasso et al. (1999) found that blindfolded participants
transported in motorized vehicles could reproduce linear
displacements of distances of up to 10 m, even when pre-
vented from utilizing the same speed characteristics used
during initial movement. Replications of angular whole-
body displacements also have been tested. Brookes, Gresty,
Nakamura, and Metcalfe (1993) found that normal ob-
servers who were rotated in darkness up to 180º could ac-
curately counterrotate themselves back to their starting po-
sitions. Interestingly, patients with vestibular deficits were
unsuccessful at performing the same task.

The contribution of vestibular and proprioceptive in-
formation to spatial updating also has been assessed in
studies showing superior performance with physical ver-
sus imagined self-movement (e.g., Farrell & Robertson,
1998; Presson & Montello, 1994; Rieser, 1989; Rieser,
Garing, & Young, 1994; Rieser, Guth, & Hill, 1986). For
example, Rieser (1989) found that blindfolded partici-
pants’ ability to point to the location of an object from a
novel perspective was more accurate when they were
physically moved to the viewpoint than when they merely
imagined moving to it. Moreover, updating during phys-
ical self-movement has been shown to be independent of
the distance traversed. Researchers have interpreted the
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latter finding as evidence of “automatic” processing:
The proprioceptive information available during self-
movement ensures that an observer’s egocentric reference
frame is always aligned with his or her current perspec-
tive. Updating thus occurs in tandem with movement
(Farrell & Robertson, 1998; Presson, 1982; Rieser, 1989).

Another difference between viewer and object move-
ment is that the perspective change accompanying the
former is usually actively self-produced, whereas that of
the latter is not. The critical extraretinal information un-
derlying this distinction is most likely efference copies
of motor commands (Bridgeman, 1986; von Holst &
Mittelstaedt, 1950). When an observer moves his body,
a copy of the motor commands sent to the muscles may
be incorporated into the representation of that action,
where it can be used to update changes in position as they
occur. Direct comparisons of active and passive move-
ment for spatial tasks have yielded mixed results (e.g.,
Gugerty, 1997; Larish & Andersen, 1995; Péruch, Vercher,
& Gauthier, 1995; Wang & Simons, 1999; Yardley & Hig-
gins, 1998). For example, active participants are better
than passively moved participants at predicting future
self-positions within simulated optic flow fields (Larish
& Andersen, 1995). Active navigation through a simu-
lated driving scene also has been shown to elicit greater
recall of the locations of potentially dangerous cars than
passive navigation (Gugerty, 1997). However, other stud-
ies suggest that active control may be less critical to spa-
tial processing. Wang and Simons (1999) found that par-
ticipants who were passively moved to a new viewpoint
about a display were as accurate at updating the display
as participants who had actively moved. Yardley and
Higgins (1998) found a similar result for updating dur-
ing unidirectional angular displacements up to 180º. In
this experiment, blindfolded participants imagined that a
large circle in which they stood was a clock face. After
passive or active rotation of their bodies about the clock’s
center, the participants updated their new locations by
reporting which number of the clock they would now be
facing. Performance was found to be equivalent across
both types of movement. However, an active-movement
advantage emerged in a subsequent experiment, in which
participants actively or passively moved through a com-
bined series of two to three counterdirectional rotations.
These results suggest that active control may be impor-
tant for keeping track of more complex, multidirectional
movements.

Overview of the Experiments
To examine these issues further, we conducted a se-

ries of experiments in which updating performance dur-
ing viewer movement was compared with updating per-
formance during movement of a display about the viewer.
We used a novel spatial updating task, which employed
a room-like display created in VR. Our specific aim was
to examine updating during viewer and display move-
ment within a perceptual context. We wished to extend

the viewer updating advantage found by Simons and
Wang (1998), Wraga et al. (2000), and others to the do-
main previously used by Chance et al. (1998) and Pausch
et al. (1997), in which optical information was continu-
ously present. Thus, we predicted that participants’ per-
formance would be faster and more accurate during viewer
rotation than during display rotation. With optical infor-
mation kept similar over viewer and display movement
conditions, we also were able to assess the contribution
of some sources of extraretinal information to spatial
updating. We speculated that vestibular and propriocep-
tive information found in viewer movement would facil-
itate spatial updating performance, but that active con-
trol of movement would play a less important role.

We conducted four experiments to test these hypothe-
ses. In the first two, a symmetrical VR display was used.
In Experiment 1, participants either rotated the display
about themselves (display task) or rotated themselves in
place about the display (viewer task). In Experiment 2,
we assessed the role of extraretinal information in the
viewer advantage by comparing updating performance
during active versus passive self-movement. In the ac-
tive task, seated participants searched for items in the
display by rotating themselves in a swivel chair. In the pas-
sive task, participants were rotated in the chair by the ex-
perimenter. In Experiments 3 and 4, similar manipula-
tions were tested using a more complex display, which
consisted of a round room with five alcoves appearing in
an asymmetrical configuration.

EXPERIMENT 1
Viewer and Display Rotations: 

Symmetrical Display

In the first experiment, we examined participants’
ability to update the locations of objects within a symmet-
rical, four-object display. Previous research has shown
that people are faster and more accurate at keeping track
of their surroundings during imagined self-movement
about a simple symmetrical display than during imag-
ined movement of the display about themselves (Wraga
et al., 2000). In the present experiment, we tested for a
similar trend for updating during physical movement
with optical information fully available. Participants
were required to rotate in place to find a given object ap-
pearing in one of four alcoves in a square VR room. On
finding the object, they were asked to locate another al-
cove with respect to the new viewpoint. The participants
searched the virtual room by either turning themselves in
place (viewer task) or by turning the virtual room around
their stationary bodies via a handheld joystick (display
task). Thus, beyond the optical information present, the
viewer task involved proprioceptive inputs from the soles
of the feet and the legs, as well as vestibular inputs. The
display task involved proprioceptive inputs specific to
hand positioning with respect to the joystick—that is,
haptic information.



402 WRAGA, CREEM-REGEHR, AND PROFFITT

We predicted that updating performance would be
faster and more accurate in the viewer task than in the
display task.

Method
Participants. Twenty-four University of Virginia students (14 fe-

male, 10 male) participated in the experiment as part of a research
credit requirement. All of the participants were tested individually.
None knew of the hypothesis being tested.

Equipment and Stimuli. The virtual environment was designed
and created using Alice, a 3-D computer graphics authoring soft-
ware program. Alice was run on a Gateway 2000 computer with a
233-MHz Intel Pentium processor via a Monster 3-D PCI Video
Multimedia Device graphics card. The stimuli were transmitted to
a Virtuality Visette Pro head-mounted display (HMD), which had
two active-matrix color LCDs operating in a pseudo-VGA video
format. The resolution of each display screen was 640 (horizon-
tal) � 480 (vertical) pixels per color pixel. The field of view (FOV)
per eye was 60º (horizontal) � 46.8º (vertical). Viewing in the
HMD was biocular: The two display screens presented the same
image to each eye. The images were viewed through collimating
lenses that allowed the observer’s eyes to focus at optical infinity.

Stimuli were tracked with a Polhemus InsideTrak magnetic track-
ing system. This system consisted of six-degrees-of-freedom trackers,
which continuously recorded and updated x, y, and z coordinates as
well as pitch, roll, and yaw movements. The end-to-end latency be-
tween observer movement and scene updating was approximately
100 msec. In the viewer task, the tracking system recorded the
movement of the viewer’s head in the HMD. To emulate real opti-
cal flow during self-movement, the virtual world moved in the di-
rection opposite that of head movement. In the display task, stimuli
were transmitted to the HMD, but the HMD was not tracked. In-
stead, the tracking system recorded the movement of a 15 � 15.5 �

4.5 cm hand-held joystick. A 14-cm handle controlled roll and yaw
through 360º of movement; pitch was controlled via a 4-cm-diam
dial atop the handle. The speed of these movements was controlled
by the participant. To emulate real room movement, the virtual
world moved in the same direction as joystick movement.

The virtual scene consisted of a 2.7 � 2.7 � 2.7 m cube-like
room with white walls of minimal texture, but sufficient for speci-
fying optical flow (see Figure 1). On the floor appeared a gray car-
pet, also of minimal texture. The room was illuminated from an in-
visible light source positioned 4 m above the floor’s center. Each
wall contained a 45 � 56 � 74 cm alcove, or shelf, designed to hold
single objects. The alcoves were centered on each wall at a height
of 1.08 m from the ground. Each alcove was a different color (green,
yellow, blue, and red). To further differentiate them, the uppermost
part of each was marked with a distinctive pattern (e.g., dots, checker-
board, stripes). The four objects appearing in the alcoves were 3-D
objects rendered in Alice: a 56 � 16 � 48 cm horse, a 69 � 30 �
34 cm truck, a 72 � 36 � 36 cm fish, and a 58 � 28 � 57 cm chicken.

The participant was positioned in the center of the room, 1.2 m
from the alcoves. When looking directly at one alcove, the FOV at
that distance included the alcove itself and approximately 16º of wall
on either side of it; thus, only one alcove could be viewed at a time.

Procedure. All the participants performed in both the viewer
and display movement conditions. Before the participants put on
the HMD, the experimenter gave them a general description of the
virtual room layout. Once the HMD was on, the participants found
themselves in the center of the virtual room (see Figure 1). They
were permitted to explore the room for as long as they wished by
“looking” up and down each of its walls. During the training phase
of the viewer task, they explored by turning their bodies in place
while tilting their heads. During the training phase of the display
task, they controlled the pitch1 and rotation of the room via the joy-
stick. Once they were acclimated to the virtual space (M � 1.5 min),
the participants were systematically shown the locations of the four

Figure 1. View of the virtual display used in Experiments 1 and 2, with ob-
server added. In the actual experiments, the participants could view only one
alcove at a time.
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alcoves. They learned the alcove locations (i.e., front, back, right,
and left) with respect to a default start position. They were allowed
to move freely and were given as much time as necessary to mem-
orize the locations. They were then tested for the alcove locations
from a stationary position. Criteria for learning were met if the par-
ticipants could identify the alcove locations correctly within 1 sec.
During the testing and subsequent trials of the viewer task, the par-
ticipants were instructed to face forward while turning.

Each task was comprised of two components: rotation and loca-
tion. The participants were told to perform each as quickly as pos-
sible. On each trial, one object appeared randomly in each of the
four alcoves. The participants first were instructed to find an object
(e.g., “Find the chicken”) by either rotating themselves counter-
clockwise (viewer task) or by using the joystick to rotate the room
counterclockwise around themselves (display task). The HMD al-
lowed free movement of the head; however, the participants were in-
structed to face forward during the rotation and location phases.
When the participants indicated verbally that they had found the
object, the experimenter “froze” the virtual world by temporarily
decoupling the HMD or joystick tracking via a buttonpress. This
ensured that the participants could not view other alcoves by self-
or joystick movement. The participants then were asked to locate
one of the alcoves with respect to the new viewpoint (e.g., “Where’s
the blue alcove?”). They answered verbally with a position relative
to themselves (e.g., “left”). After a response was given, the virtual
world was unfrozen and the participants returned (via self- or joy-
stick movement) to the default starting position for the next trial.
After completing one task, the participants were given a short break
out of the HMD before beginning the second task. For the second
task, they were presented with a new room (consisting of the same
alcoves arranged in a different configuration), and the acclimation
and learning procedures were repeated. Response latency (mea-
sured from the end of the presentation of a stimulus to the onset of
the participant’s response) was recorded for both rotation and loca-
tion components using the computer’s timer. The timer was con-
trolled by the experimenter. The experimenter pressed the space bar
on the keyboard to initiate and end the timed event. For the location
tasks, number of errors also was recorded.

Design. Each participant performed both tasks (viewer and dis-
play). Task order was counterbalanced across participants. The lo-
cations of the alcoves appeared quasi-randomly across tasks, with
the constraint that no alcove occupied the same position twice. Each
of the four search degrees of rotation (0º, 90º, 180º, and 270º) was
matched with each of the alcove updating locations (front, back,
left, and right) for a total of 16 trials in each task. The trials ap-
peared in random order.

Results
Unless otherwise noted, we performed a 2 (task) � 4

(rotation magnitude) � 2 (task order) � 2 (sex) mixed-
design analysis of variance (ANOVA) on the data for the
experimental subcomponents listed below.2

Rotation latency. No difference in search time was
found between viewer and display tasks (see Table 1).

The ANOVA revealed only a main effect of rotation mag-
nitude [F(3,60) � 234.73, p � .001]. As would be ex-
pected, time to search increased linearly with the angu-
lar distance of viewer and display movement. There were
no other significant effects or interactions.

Location latency. The principal finding was that par-
ticipants were faster at updating during viewer (M �
1.42 sec) than during display (M � 1.88 sec) movement.
Figure 2A shows mean reaction times (RTs) and stan-
dard errors for viewer and display tasks as a function of
the magnitude of search rotation. The ANOVA yielded a
main effect of task [F(1,20) � 10.27, p � .001], but no
other effects including rotation magnitude ( p � .20) and
no significant interactions. Thus, updating responses in
both tasks were unaffected by the magnitude of initial
search rotation.

In an additional analysis, we assessed RTs as a func-
tion of the angular distance between new view and al-
cove to be located. The ANOVA performed on the mean
scores replicated the main effect of task [F(1,20) � 13.58,
p � .001]. The effect of rotation magnitude also was sig-
nificant [F(3,60) � 11.83, p � .001]. Linear contrasts
for the rotation magnitude effect yielded a significant RT
increase from 0º and 90º distances ( p � .001), but no
differences between RTs for rotations of 90º, 180º, and
270º. We also found a significant task � rotation mag-
nitude interaction [F(3,60) � 2.92, p � .05]; however,
post hoc comparisons revealed no significant difference
in rotation magnitude across tasks. To examine the inter-
action in a different way, we used paired-sample t tests to
compare the RTs of the two tasks for each degree of ro-
tation (e.g., Viewer 0 vs. Display 0). At 0º, there was no
difference in RT across tasks ( p � .55). Display RTs were
significantly longer than viewer RTs for 90º ( p � .033)
and 270 ( p � .005). At 180º, display RTs were margin-
ally greater than viewer RTs ( p � .058; see Figure 2B).

Location accuracy. The principal finding was that the
participants made fewer errors in the viewer task (M �
0.18) than in the display task (M � 0.60). Figure 3A shows
mean errors for the two tasks as a function of the magni-
tude of search rotation. The ANOVA yielded a main effect
of task [F(1,20) � 15.11, p � .001], but no effect of rota-
tion magnitude ( p � .32) and no significant interactions.

We also assessed errors as a function of the angular
distance between new viewpoint and alcove to be located
(see Figure 3B). The ANOVA replicated the main effect
of task [F(1,20) � 13.62, p � .001] and also yielded a
main effect of rotation magnitude [F(3,60) � 6.92, p �
.001]. Simple contrasts for the rotation magnitude effect
yielded an increase in errors from 0º to 90º [F(1,20) �
15.36, p � .001], no change from 90º to 180º ( p � .627),
and an increase from 180º to 270º [F(1,20) � 5.98, p �
.03]. There were no significant interactions.

Discussion
As was predicted, the participants were faster and

made fewer errors at spatial updating while rotating their
bodies within a virtual room than while rotating the
room itself. The fact that rotation times were more or

Table 1
Mean Search Latencies (in Seconds) and Standard Errors (SEs)

in Experiments 1 and 2

Rotation Magnitude

0º 90º 180º 270º

Experiment Task M SE M SE M SE M SE

1 Viewer 0.90 .04 2.09 .38 3.15 .49 4.14 .15
Display 0.92 .04 2.38 .17 3.13 .15 4.09 .24

2 Active 0.70 .04 2.94 .12 5.32 .23 7.12 .30
Passive 0.68 .05 4.83 .22 8.93 .28 13.02 .45
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less identical across display and viewer tasks suggests
that performance differences in updating were not at-
tributable to differences in the movement devices per se
(i.e., joystick vs. HMD). These findings are in line with
those of other full-cue studies (Chance et al., 1998;
Klatzky et al., 1998; Pausch et al., 1997), as well as those
in which optical information was not available (e.g.,
Presson, 1982; Simons & Wang, 1998; Wang & Simons,
1999; Wraga et al., 2000). They lend support to the no-
tion that updating during viewer and display movement
may be subserved by different mechanisms. Such mech-
anisms might, at least in part, differ by the type and/or
amount of extraretinal information available. The dis-

play task elicited haptic information specifying the posi-
tion of the hand with respect to the joystick, whereas the
viewer task elicited proprioceptive inputs for leg posi-
tion and foot placement as well as vestibular inputs for
angular body acceleration. The role of such information
in viewer updating was investigated further in Experi-
ment 2.

One way in which viewer and display tasks were similar
is that updating RTs in both were unaffected by the mag-
nitude of the search rotation. Although the viewer finding
is in agreement with findings of previous studies suggest-
ing that updating occurs in tandem with self-movement
(e.g., Farrell & Robertson, 1998; Rieser, 1989), the identi-

Figure 2. Mean reaction times (RTs) and standard errors in Experiment 1 as a function of (A) magnitude of
search rotation and (B) distance between alcoves.

Figure 3. Mean errors (out of a possible 16) and standard errors in Experiment 1 as a function of (A) magni-
tude of search rotation and (B) distance between alcoves.
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cal finding for the display task is, to the best of our knowl-
edge, the first of its kind. Previous studies (e.g., Parsons,
1995; Wraga et al., 2000) have shown updating RTs for
imagined object rotations to increase with angular dis-
tance. A plausible explanation for the automaticity of
display-rotation updating found here might be the presence
of visual information during rotation, which could be used
to solidify the representation of the rotating display. This
issue was addressed further in Experiment 3.

EXPERIMENT 2
Active and Passive Viewer Rotations:

Symmetrical Display

Having demonstrated an updating advantage for viewer
movement in Experiment 1, we were interested in discern-
ing what sources of extraretinal information might con-
tribute to this advantage. In Experiment 2, we used the
same virtual room and rotation/location components as
in Experiment 1, but we tested updating during viewer
movement only. Specifically, we compared performance
during active and passive self-rotations. In the active con-
dition, participants sat in a rotating chair and searched the
virtual room by rotating themselves in the chair. Extra-
retinal information available in this condition included
vestibular inputs similar to those described in Experi-
ment 1; proprioceptive inputs from the soles of the feet,
the legs, and changes in pressure on the skin’s surface pro-
duced by the chair movement; as well as efference copies
of motor commands. In the passive condition, seated par-
ticipants were rotated in the chair by the experimenter.
Extraretinal information available included vestibular
inputs and, possibly, proprioceptive inputs from changes
in pressure on the skin’s surface produced by the chair
movement. These conditions allowed us to test the rela-
tive advantages of active versus passive control to spatial
updating during self-movement within a full perceptual
context. On the basis of previous studies (e.g., Wang &
Simons, 1999; Yardley & Higgins, 1998), we expected
the gain from active movement to be minimal.

Method
Participants. Twenty-four University of Virginia students (14 fe-

male, 10 male) participated in the experiment as part of a research
credit requirement. All of the participants were tested individually.
None knew of the hypothesis being tested.

Materials. The materials used were the same as those of Exper-
iment 1.

Procedure. The procedure was identical to that of Experiment 1,
except for the following changes. The participants performed in two
task conditions: active and passive. Both tasks employed head
tracking via the HMD as in the viewer task of Experiment 1; no joy-
stick was used. The HMD allowed free movement of the head dur-
ing training; however, as in Experiment 1, the participants were in-
structed to face forward during the rotation and location phases. In
the active task, the participants sat in a rotating chair. To learn the
display and to search for items in the rotation component, they ro-
tated themselves clockwise in the chair using their feet. In the pas-
sive task, the participants also sat in the chair but were turned by the
experimenter during the training and rotation phases. For each trial,

the participants in the passive task adjusted the position of their feet
so that they did not move or touch the ground during rotation. The
participants were rotated at a mean angular velocity of approxi-
mately 20º/sec.3

Design. The design was identical to that of Experiment 1. The
order of tasks (active and passive) was counterbalanced across par-
ticipants.

Results
Unless otherwise noted, we performed a 2 (task) � 4

(rotation magnitude) � 2 (task order) � 2 (sex) mixed-
design ANOVA on the data for the experimental sub-
components listed below.

Rotation latency. Because the two search tasks were
not equivalent (i.e., one was under active control and the
other was not), we did not perform parametric tests on
the rotation data. Mean time to search for objects took
longer in the passive task in comparison with the active
task. As in Experiment 1, time to search increased lin-
early with degree of rotation (see Table 1).

Location latency. The principal finding was that the
participants were slightly but significantly faster at up-
dating during active (M � 1.24 sec) than during passive
(M � 1.34 sec) viewer movement. Figure 4A shows mean
RTs and standard errors for passive and active conditions
as a function of search rotation magnitude. The ANOVA
performed on the mean scores revealed main effects of
task [F(1,20) � 5.43, p � .03] and rotation magnitude
[F(3,60) � 3.18, p � .03]. Planned simple contrasts re-
vealed no difference between each of the degrees of ro-
tation. A significant sex � task interaction also was found
[F(1,20) � 5.40, p � .03]. Post hoc analyses revealed
that the males produced the elevated latency in the pas-
sive task [passive, M � 1.41 sec; active, M � 1.16 sec;
F(1,9) � 7.09, p � .03], whereas the females did not
(passive, M � 1.28 sec; active, M � 1.28 sec; p � .99).

We also assessed RTs as a function of the angular dis-
tance between new view and updating alcove (see Fig-
ure 4B). The ANOVA performed on the mean scores repli-
cated the main effect of task [F(1,20) � 5.44, p � .03].
We also found a significant effect of rotation magnitude
[F(3,60) � 24.10, p � .001]. Linear contrasts for the ro-
tation magnitude effect yielded significant increases in
RT between all degrees of rotation (0º–90º, p � .001;
90º–180º, p � .001; 180º–270º, p � .005). The task � task
order interaction also was significant [F(1,20) � 5.45, p �
.03]. Post hoc analyses revealed that the RT difference
across tasks occurred for participants who performed the
passive task first [F(1,11) � 9.34, p � .01], but not for
those who performed it after the active task ( p � .835).

Location accuracy. In general, the participants made
few errors. We found no difference in error between the
active (M � 0.21) and passive (M � 0.24) tasks. Fig-
ure 5A shows mean errors for passive and active tasks as
a function of search rotation. The ANOVA performed on
mean errors revealed no main effects or interactions.
Figure 5B shows mean errors for the two tasks as a func-
tion of the angular distance between new viewpoint and
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updating alcove. The ANOVA revealed no main effects
or significant interactions.

Discussion
The participants who were passively moved to new

views were slightly albeit significantly slower at updat-
ing (Mdiff � �100 msec) than those who actively moved
themselves. However, error rates were similarly low
across both tasks, and the level of updating automaticity
did not differ across tasks. Thus, the gain in updating
performance from self-initiated movement appears to be
minimal. Similar findings have been obtained for self-
rotations up to 180º (Wang & Simons, 1999; Yardley &

Higgins, 1998). The present findings extend the active–
passive similarity to self-rotations of up to 270º. More
importantly, the minimal difference between updating
conditions suggests that the vestibular and propriocep-
tive information common to both active and passive tasks
may play a more critical role in spatial updating than do
efference copies of motor commands, which are avail-
able in active movement only.

An alternative explanation of the findings above is
that that the symmetrical display we used was too sim-
plistic. Differences in spatial updating performance as a
function of display complexity have been reported else-
where (Easton & Sholl, 1995). The display used in the

Figure 4. Mean reaction times (RTs) and standard errors in Experiment 2 as a function of (A) magnitude of
search rotation and (B) distance between alcoves.

Figure 5. Mean errors (out of a possible 16) and standard errors in Experiment 2 as a function of (A) magni-
tude of search rotation and (B) distance between alcoves.
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present study was sufficiently elementary in that it might
have masked real differences between active and passive
tasks as well as any lag between physical and projected
egocentric reference frames. The symmetrical display
contained alcoves that were aligned with the axes of the
body. The participants may have been able to use such
coordinates to encode the alcove locations, which in turn
may have rendered the task nearly effortless. A more
complex, asymmetrical display might reveal substantive
differences in updating ability across active and passive
viewer conditions. We addressed this issue further in Ex-
periments 3 and 4.

We found two noteworthy interactions for location la-
tency. Analysis of the sex � task interaction revealed
that the males had relative difficulties in the passive task,
whereas the females did not. Sex differences in spatial
cognitive abilities are well documented in the literature
(see, e.g., Halpern, 1986), and recent studies have begun
to elucidate their neural underpinnings (e.g., Grön, Wun-
derlich, Spitzer, Tomczak, & Riepe, 2000; Jordan,
Wüstenberg, Heinze, Peters, & Jäncke, 2002; Viaud-
Delmon, Ivanenko, Berthoz, & Jouvent, 1998). However,
most spatial cognition studies showing sex differences
have indicated a trend opposite to the one we found: rela-
tive difficulties in performance for females versus males.
The critical factor in the males’ poor performance dur-
ing the passive task of Experiment 2 may have been the
speed at which the participants were rotated, which was
about 40% slower than in the active task (passive, M �
20º/sec; active, M � 34º/sec). Because of this speed dis-
crepancy, signals for angular body acceleration picked up
by the semicircular canals of the vestibular system dif-
fered across tasks. Viaud-Delmon et al. (1998) demon-
strated that males tend to use vestibular signals in spatial
processing tasks to a greater extent than females, who
rely more on visual cues. Thus, we might expect the dif-
ficulties in males’ performance to dissipate with more
congruent rotation speeds across tasks. We address this
issue further in Experiment 4.

The second interaction of note pertained to all partic-
ipants. Those who performed the passive task first expe-
rienced difficulties in comparison with those who per-
formed the active task first. Interpretation of the second
interaction seems clear-cut: The participants who per-
formed the active task first showed faster updating in the
subsequent, passive task in comparison with those who
performed the passive task first. Those in the former
order thus exhibited a transfer of updating ability from
active to passive viewer tasks. This is an interesting find-
ing that warrants further investigation.

EXPERIMENT 3
Viewer and Display Rotations: 

Asymmetrical Display

In Experiment 3, we tested whether the viewer advan-
tage of Experiment 1 would hold for a more complex,
asymmetrical display. Easton and Sholl (1995) found

that participants performing imaginal self-movement
were relatively faster and more accurate at spatial updating
when positioned within symmetrical displays of well-
known configurations such as circles. Performance de-
clined when the circular displays were altered so that the
relationship among their individual objects was asym-
metrical; moreover, updating with these displays did not
show the flat automaticity function. In the present exper-
iment, we used a circular virtual room, which contained
five alcoves arranged in an asymmetrical configuration
(see Figure 6). As in Experiment 1, the participants up-
dated the location of objects in the circular room during
both viewer and display rotations.

Because the display was asymmetrical, we were no
longer able to use a verbal updating response. Instead,
the participants updated the locations of the alcoves by
pointing a compass. This afforded us the opportunity to
test the generalizability of the viewer updating advan-
tage to different response measures. We predicted that
updating performance would be faster and more accu-
rate in the viewer task than in the display task, but that
automaticity in both might dissipate.

Method
Participants. Twenty-three University of Virginia students

(12 female, 11 male) participated in the experiment as part of a re-
search credit requirement. One additional participant felt ill and did
not complete the experiment. All of the participants were tested in-
dividually. None knew of the research hypothesis being tested.

Equipment and Stimuli. For the asymmetrical display, a new
virtual room was created using the computers and software dis-
cussed in the Method section of Experiment 1. The virtual room
consisted of a circular room 4.72 m in diameter and 2.43 m high,
with white, textureless walls. The floor covering and lighting were
identical to those of Experiment 1. Five alcoves of dimensions iden-
tical to those of Experiment 1 appeared on the walls. If 0º is con-

Figure 6. Overhead schematic of the asymmetrical display
used in Experiments 3 and 4.
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sidered the point which the participants initially faced, the alcoves
appeared at 0º, 75º, 133º, 196º, and 259º counterclockwise around
the circular room (see Figure 6). They were centered at a height of
1.08 m from the ground. Four of the alcoves were the same colors
as in Experiment 1; the fifth was purple. The four 3-D objects from
Experiment 1 also were used; the fifth was a 73 � 24 � 46 cm trol-
ley. Tracking for the HMD and joystick was identical to that of Ex-
periment 1.

In addition to the virtual scene, a 20-cm-diam, 2-cm-high circu-
lar compass was rendered for recording pointing responses (see
Figure 7). The compass was gray in color. When it appeared, it was
directly in front of the participant in the virtual scene, at a distance
of 30 cm. Emanating from its center was a 10-cm-long yellow arrow
whose movement was controlled by the dial of the joystick. Posi-
tioned atop the endpoint of the pointer (i.e., within the center of the
compass) was a 30-cm-tall standing human figure, which served to
orient the participant with respect to the compass. The arrow could
be turned 360º, in the transverse plane only.

The participant was positioned in the center of the room, 1.8 m
from the alcoves. When looking directly at one alcove, the FOV at
that distance included the alcove itself and approximately 21º of
wall on either side of it; thus, only one alcove could be viewed at a
time.

Procedure. Each participant performed in both viewer and dis-
play tasks; physical movement in both tasks was carried out in a
counterclockwise direction. As in the previous experiments, the
participants first learned the location of the alcoves from a default
start position. However, instead of verbally naming the position of
an alcove, they pointed to it using the virtual compass. Criteria for
learning were met if the participants pointed within 10º of the cen-
ter of each alcove location. As before, the experimental tasks con-
sisted of rotation and location components. As soon as the partici-
pants rotated to find a given object, the virtual room was frozen and
the compass appeared. They were instructed to think of themselves
as the figure standing in the center of the compass. They then used
the joystick dial to move the compass arrow to the desired position.

Once this was achieved, the participants pressed a button on the joy-
stick.

The computer recorded both degree of unsigned error (measured
in degrees from the center of each alcove) and response latency
(measured from the end of the presentation of a stimulus to the end
of the pointing response) for the updating component, although
error was our principal dependent measure. Because there were
10 possible angular differences between the new view locations and
the updating alcoves, some of which were very similar (e.g., 63º
and 58º), the data were grouped into five distinct categories. We
achieved this by taking the average of unsigned error between al-
coves of similar angular distance from the new views. The result-
ing categories were 0º, 61º, 88º, 127º, and 170º.

Design. The design was identical to that of Experiment 1.

Results
Rotation latency. The participants were slightly but

significantly faster at turning to objects in the viewer
task in comparison with the display task (see Table 2).
Because the alcoves were placed asymmetrically around
the circular room, differences in movement of the virtual
world with respect to the viewer task (contradirectional
to viewer movement) versus that with respect to the dis-
play task (unidirectional to joystick movement) resulted
in a discrepancy in the angular distance traversed in
each. The degrees of rotation for the viewer task were 0º,
75º, 133º, 196º, and 259º; for display, they were 0º, 101º,
164º, 227º, and 285º. Because of the difference in angu-
lar search distance across tasks, all analyses based on ini-
tial search rotation were collapsed over rotation magni-
tude. A 2 (task) � 2 (task order) � 2 (sex) ANOVA showed
a main effect of task [F(1,19) � 18.38, p � .001]. There
were no other significant effects or interactions.

Figure 7. The virtual compass used in Experiments 3 and 4. The participants were instructed to think
of themselves as the figure standing in the center of the compass. They then used the joystick dial held in
their hands to move the virtual compass arrow to the desired position.



UPDATING DURING SELF- AND DISPLAY ROTATIONS 409

Location accuracy. The principal finding was that
the participants were more accurate at pointing in the
viewer task (M � 21.2º error) than in the display task
(M � 26.2º error). Figure 8A shows mean unsigned error
for both tasks as a function of the magnitude of search
rotation. A 2 (task) � 2 (task order) � 2 (sex) ANOVA
revealed a main effect of task [F(1,19) � 4.06, p � .05].
We performed separate 5 (rotation magnitude) � 2 (task
order) � 2 (sex) ANOVAs for viewer and display tasks
to assess the influence of rotation magnitude on pointing
scores. The viewer analysis revealed an effect of rotation
magnitude [F(4,76) � 6.70, p � .001]. Simple contrasts
indicated an increase in error up to 133º (0º–75º, p �
.05; 75º–133º, p � .05), but no significant differences
between subsequent degrees of rotation. The display
analysis also revealed an effect of rotation magnitude
[F(4,76) � 2.93, p � .05]. Contrasts indicated a mar-
ginal increase in error above 0º (0º–101º, p � .08) but no
significant differences between subsequent degrees of
rotation.

We also analyzed pointing error as a function of the five
alcove average distances (see Figure 8B). A 2 (task) � 5
(rotation magnitude) � 2 (sex) � 2 (task order) ANOVA

replicated the main effect of task [F(4,76) � 5.03, p �
.04]. We also found an effect of rotation magnitude
[F(4,76) � 30.22, p � .001]. Linear contrasts for the ro-
tation magnitude effect yielded significant differences
between all stepwise comparisons. Pointing error in-
creased at 61º and 127º (0º–61º, p � .001; 88º–127º, p �
.002) and decreased at 88º and 170º (61º–88º, p � .002;
127º–170º, p � .004). No other effects or interactions
were significant.

Location latency. The principal finding was that the
participants were faster at updating in the viewer task
(M � 8.8 sec) than in the display task (M � 10.6 sec).
Moreover, display RTs varied as a function of search ro-
tation, whereas viewer RTs did not. Figure 9A shows
mean RTs and standard errors for each task as a function
of the magnitude of search rotation. Collapsing over ro-
tation magnitude, a 2 (task) � 2 (sex) � 2 (task order)
ANOVA performed on the mean RT scores yielded a
main effect of task [F(1,19) � 11.50, p � .001] and a
significant task � task order interaction [F(1,19) � 5.95,
p � .05]. Post hoc analyses revealed that RTs in the dis-
play task (M � 12.27 sec) were slower than RTs in the
viewer task (M � 8.97 sec) only when the display task

Table 2
Mean Search Latencies (in Seconds) and Standard Errors (SEs) in Experiments 3 and 4

Rotation Magnitude

0º (0º) 75º (101º) 133º (164º) 196º (227º) 259º (285º)

Experiment Task M SE M SE M SE M SE M SE

3 Viewer 0.75 .04 2.49 .13 3.67 .15 5.23 .33 6.76 .39
Display 0.82 .06 3.68 .18 4.800 .24 5.43 .30 7.01 .33

4 Active 0.97 .11 2.79 .44 3.79 .27 5.21 .18 7.14 .14
Passive 0.78 .08 3.61 .16 5.35 .15 7.41 .14 9.52 .21

Note—The second values for rotation magnitude (in parentheses) apply to the display task of Experiment 3
only.

Figure 8. Mean unsigned pointing error and standard errors in Experiment 3 as a function of (A) magnitude
of search rotation and (B) distance between alcoves.
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was performed first [F(1,9) � 11.29, p � .01]. When the
display task occurred after the viewer task, RTs were not
different (Ms � 8.78 and 9.33 for viewer and display
tasks, respectively; p � .40). We performed separate 5
(degree) � 2 (task order) � 2 (sex) ANOVAs on RTs for
viewer and display tasks to assess the influence of rota-
tion magnitude. There was no effect of rotation magni-
tude for the viewer task ( p � .40). An effect of rotation
magnitude was found in the display analysis [F(4,76) �
8.9, p � .001]. Linear contrasts indicated an increase in
RT from 0º to 101º ( p � .05); however, subsequent step-
wise comparisons were not significantly different from
each other.

We also analyzed updating RTs as a function of the
five alcove average distances (see Figure 9B). A 2 (task) �
5 (rotation magnitude) � 2 (sex) � 2 (task order) ANOVA
replicated the main effect of task [F(1,19) � 11.33, p �
.003]. We also found an effect of rotation magnitude
[F(4,76) � 69.03, p � .001]. Linear contrasts of the ro-
tation magnitude effect revealed an increase in RT from
0º to 60º ( p � .001), no difference from 61º to 88º ( p �
.36), an increase from 88º to 127º ( p � .001), and a de-
crease from 127º to 170º ( p � .007). The task � task
order interaction also was replicated [F(1,19) � 6.56,
p � .05].

Discussion
As was predicted, use of the asymmetrical display

failed to dispel the viewer updating advantage. The par-
ticipants pointed more accurately and quickly to alcove
locations after self-rotation than after rotation of the dis-
play. These findings extend those of Experiment 1 to a
more complex display configuration.

The basic replication of Experiment 1 notwithstand-
ing, the results of the present experiment yielded at least

one noteworthy difference. The asymmetrical display
brought about a dissociation of automatic processing
across tasks. Like previous experiments with asymmet-
rical displays (Easton & Sholl, 1995), updating RTs in
the display task did not reflect automaticity, in that they
increased for search rotation magnitudes beyond 0. How-
ever, RTs in the viewer task continued to exhibit the flat
rotation function associated with automatic processing.
How do we account for the latter finding? In our exper-
iments, the participants had access to full optical infor-
mation as well as to physical self-movement; in Easton
and Sholl’s study, the participants performed imagined
movements from memory. One or both of these factors
likely contributed to the automaticity found in the pres-
ent viewer task. However, similar information present in
the display task was not sufficient to facilitate auto-
maticity. The difference in rotation functions across tasks
suggests that the human cognitive system has more dif-
ficulty keeping track of the locations of objects during
complex display movement than during viewer movement.
An alternate explanation is that another confounding
factor may have caused the automaticity effect to disap-
pear in the object task. For example, our use of the asym-
metrical display in Experiment 3 required a change in
the type of response measure from a verbal task to a
pointing task. Recent research indicates that the use of
different response measures can affect spatial updating
performance (De Vega & Rodrigo, 2001; Wraga, 2003).
It is possible that the pointing response interfered with
automaticity. However, it isn’t clear why such a change,
made to both tasks, would alter performance in the ob-
ject task but not in the viewer task. Thus, this explanation
seems untenable.

We also found that pointing errors and RTs were greater
for angular distances that generally were misaligned

Figure 9. Mean reaction times (RTs) and standard errors in Experiment 3 as a function of (A) magnitude of
search rotation and (B) distance between alcoves.
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from the intrinsic axes of the human body. Error rates
peaked for alcove locations at approximately 60º and
120º, both of which are oblique to the body axes. Simi-
lar patterns have been found in other spatial updating
studies involving imagined viewer rotations (Hintzman,
O’Dell, & Arndt, 1981; Wraga, 2003). These results are in
line with Franklin and Tversky’s (1990) spatial-framework
model of space conceptualization, which posits that men-
tal representations of space reflect the constraints of the
physical body.

The relative length of participants’ RTs and the rela-
tive degree of inaccuracy they exhibited warrant discus-
sion. RTs were 9 sec on average, which is much longer
than those reported elsewhere in the literature (�2 sec)
for both physical and virtual displays (e.g., Farrell &
Robertson, 1998; Riecke, von der Heyde, & Bülthoff,
2001; Rieser, 1989). We attribute this difference in RT to
the pointing response measure we used, rather than to
any difficulties the participants may have had with the
task per se. For each response, the participants first turned
the dial of the joystick with their fingers to move the vir-
tual compass and then pressed a button on the joystick
when the compass was pointing in the correct direction.
The precise movements needed to perform such a proce-
dure take more time than those required with a more
standard pointer. The magnitude of pointing error was
about 20º, which also is somewhat higher than previously
has been reported. For example, Farrell and Robertson
(1998) reported errors of about 10º. However, in their
study, participants received two trials for each rotation
magnitude, and the results were averaged. In the present
study, the participants performed only one trial of a par-
ticular rotation magnitude. Wraga (2003) also reported
mean unsigned errors of 20º with one-trial pointing using
a different pointing response measure. Thus, the relative
increase in error we found is likely due to the fact that the
participants did not experience practice.

Finally, the participants who performed the viewer
task first showed faster updating in the subsequent (dis-
play) task in comparison with those who performed the
display task first. This result is similar to the task � task
order interaction of Experiment 2, except that updating
ability transferred from the viewer task to the display
task. Further investigation of this issue is required for
elucidation of the transfer process; however these find-
ings point to the general robustness of updating during
active self-movement.

EXPERIMENT 4
Active and Passive Viewer Rotations:

Asymmetrical Display

In the last experiment, we tested whether the asym-
metrical room of Experiment 3 would affect updating
performance during active versus passive movement. As
in Experiment 2, the participants performed in active and
passive self-rotations. In the active condition, the partic-
ipants sat in a rotating chair and searched the virtual room

by rotating themselves in the chair. In the passive condi-
tion, the seated participants were rotated in the chair by
the experimenter. Thus, the same contrast of extraretinal
updating information as in Experiment 2—efference
copies versus vestibular/proprioceptive information—
was available in the present experiment. However, to
make vestibular signals more equitable across tasks, we
increased the speed of rotation in the passive condition.
We expected that the gain in updating from active versus
passive self-movement would be negligible and that up-
dating in both would reflect automatic processing.

Method
Participants. Twenty-three University of Virginia students (10 fe-

male, 13 male) participated in the experiment as part of a research
credit requirement. The data of 1 additional participant were lost
due to computer error. All of the participants were tested individu-
ally. None knew of the hypothesis being tested.

Materials. The materials were the same as in Experiment 3.
Procedure. The active/passive manipulation was the same as in

Experiment 2, except that in the passive condition, the participants
were rotated at an average rate of 24º/sec.4 The participants used a
compass to make responses, as in Experiment 3.

Design. The design was identical to that of Experiment 2.

Results
Unless otherwise noted, we performed a 2 (task) � 5

(rotation magnitude) � 2 (sex) � 2 (task order) mixed-
design ANOVA on the data for the experimental sub-
components listed below.5

Rotation latency. Because the two search tasks were
not equivalent, parametric tests were not performed on
the data. Mean time to search for objects took longer in
the passive task in comparison with the active task. As in
the other experiments, time to search increased linearly
with degree of rotation (see Table 2).

Location accuracy. The principal finding was that
the participants pointed with equal accuracy in both ac-
tive (M � 23.22º error) and passive (M � 22.94º error)
tasks. Figure 10A shows mean unsigned error and stan-
dard errors for both tasks as a function of the magnitude
of search rotation. The ANOVA performed on the mean
unsigned errors yielded only a main effect of rotation
magnitude [F(4,76) � 7.92, p � .001]. The effect of task
was not significant ( p � .56), but the task � rotation
magnitude interaction was significant [F(4,76) � 2.96,
p � .03]. Post hoc analyses indicated an effect of rotation
magnitude for both active [F(4,76) � 6.8, p � .001] and
passive [F(4,76) � 3.33, p � .05] tasks. Linear contrasts
for the active task result revealed an increase in error up
to 133º (0º–75º, p � .01; 75º–133º, p � .05), but no fur-
ther stepwise differences. Linear contrasts for the pas-
sive task result revealed an increase in error from 0º to
75º only ( p � .04).

We also analyzed the pointing data as a function of the
five alcove average distances (see Figure 10B). The
ANOVA revealed a main effect of rotation magnitude
only [F(4,76) � 36.07, p � .001]. Linear comparisons of
the degree effect revealed that pointing error increased at
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61º and 127º (0º–61º, p � .001; 88º–127º, p � .001) and
decreased at 88º and 170º (61º–88º, p � .001; 127º–170º,
p � .001.)

Location latency. The principal finding was that the
participants were no faster at updating in the active task
(M � 7.04 sec) than in the passive task (M � 7.27 sec).
Figure 11A shows mean RTs and standard errors for
each task as a function of the magnitude of search rota-
tion. The ANOVA performed on the mean RT scores
yielded no significant effects of task ( p � .89) or rota-
tion magnitude ( p � .97).

Mean RTs were also analyzed as a function of the five
alcove distances. The ANOVA yielded a main effect of

rotation magnitude only [F(4,76) � 100.44, p � .001;
see Figure 11B]. Linear comparisons for the rotation
magnitude effect showed an increase in RT from 0º to
61º [F(1,22) � 207.52, p � .001], no difference between
61º and 88º ( p � .98), an increase from 88º to 127º
[F(1,22) � 13.32, p � .002], and no difference between
127º and 170º [F(1,22) � 2.35, p � .14].

Discussion
Despite the presence of a more complex asymmetrical

display, when participants were passively moved to new
views in the display, they were as fast and accurate at up-
dating alcove positions as when they actively moved

Figure 10. Mean unsigned pointing error and standard errors in Experiment 4 as a function of (A) magnitude
of search rotation and (B) distance between alcoves.

Figure 11. Mean reaction times (RTs) and standard errors in Experiment 4 as a function of (A) magnitude of
search rotation and (B) distance between alcoves.
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themselves. This similarity in performance was consis-
tent across both males and females, which suggests that
the former group benefited from slightly faster rotation
speeds in the passive task. Thus, the gain in updating
performance from self-initiated movement appears to be
minimal. This finding lends support to the notion that
vestibular and proprioceptive information common to
both passive and active self-movement play a more crit-
ical role in spatial updating than efference copies of motor
commands, available during active movement only.

The asymmetrical display had no impact on the degree
to which updating was automatic during passive self-
movement. Both tasks displayed equivalent automaticity
across all degrees of search rotation. This finding is in
contrast to those of previous studies showing that updat-
ing during passive self-movement deteriorates relative to
that during active self-movement when more complex
rotations are carried out (Yardley & Higgins, 1998). Fur-
ther empirical testing is necessary to investigate this
issue.

As in Experiment 3, pointing errors and RTs in both
tasks were greater for angular distances of alcoves that
were, on average, offset from the intrinsic axes of the
human body. This finding extends Franklin and Tver-
sky’s (1990) spatial-framework model of space concep-
tualization to representations accessed during passive
movement.

GENERAL DISCUSSION

In these experiments, we examined the role of per-
spective change in spatial updating of virtual displays.
Under conditions in which optical information continu-
ously was present, the participants searched for objects
in a virtual room-like display by either rotating their bod-
ies within the room or turning the room about them-
selves. They then updated the locations of landmarks
from the new view. In addition to comparing effects of
viewer and display rotation, we also compared updating
during active and passive viewer rotation. We found a
consistent advantage for updating during viewer versus
display movement, across symmetrical and asymmetri-
cal displays (Experiments 1 and 3). We also found the
viewer updating advantage to be independent of active
movement control (Experiments 2 and 4). These studies
provide direct evidence that self-movement plays a key
role in spatial updating tasks involving rotation move-
ment within a full perceptual context.

Elsewhere, we and others have interpreted the viewer
updating advantage from an evolutionary perspective
(Farrell & Robertson, 1998; Simons & Wang, 1998; Wraga
et al., 2000). Human beings have evolved as moving or-
ganisms in an environment that is mostly stable and that
rarely rotates, if ever. Thus, updating the world with re-
spect to the self appears to be the more natural ability.
This view is consistent with recent studies demonstrat-
ing a viewer updating advantage when optical informa-
tion specifying viewer and display movement was either

available (Chance et al., 1998; Christou & Bülthoff,
1999; Klatzky et al., 1998; Pausch et al., 1997) or un-
available (e.g., Presson, 1982; Simons & Wang, 1998;
Wraga et al., 2000) to the participant. Collectively, these
findings suggest that the mechanisms underlying spatial
updating operate similarly within perceptual and repre-
sentational contexts.

The present findings also lend support to the notion
that updating during viewer and object movement may
be subserved by multiple mechanisms. We previously
have proposed that such mechanisms may be differenti-
ated on the basis of variations in the way the human cog-
nitive system transforms representations of the egocen-
tric and object-relative reference frames, respectively.
Representations of the self appear to be rotated in a co-
hesive fashion, whereas representations of displays ap-
pear to be rotated somewhat piecemeal (Wraga et al.,
2000). The present findings lend support to the notion
that proprioceptive and vestibular information activated
during viewer movement may also contribute to the viewer
advantage. When the participants rotated themselves in
place during the viewer task, changes in optical flow were
accompanied by the appropriate concomitant activation
of inputs from the feet, legs, and body. In contrast, when
the participants turned the display via the hand-held joy-
stick, only haptic information was available, which was
somewhat decoupled from room movement. In accor-
dance with the findings of Chance et al. (1998), the self-
movement condition led to superior updating perfor-
mance. Although the present study cannot distinguish
precisely what sources of information contributed to per-
formance differences across viewer and display move-
ment, it is likely that the relative availability of proprio-
ceptive and vestibular information is at least partly
responsible for the findings. Future studies designed to
address this question could equate viewer and display
tasks by including a viewer rotation task in which the
participant causes his or her body to move via a hand-
held joystick.

Stronger conclusions can be drawn about the contri-
bution of efference copy to the viewer updating advan-
tage. The results of Experiments 2 and 4 indicated that
updating performance during passive self-rotation was
more or less equivalent to that during active self-rotation.
Thus, under some circumstances, efference copies of
motor commands elicited during self-initiated move-
ment may be less critical to spatial updating than other
sources, such as vestibular and proprioceptive informa-
tion. These findings are consistent with some spatial
cognition studies (Wang & Simons, 1999; Yardley &
Higgins, 1998), but not others (e.g., Gugerty, 1997; Lar-
ish & Andersen, 1995; Péruch et al., 1995). One possi-
ble explanation for this discrepancy is the complexity of
the self-movement tested. All of the studies showing a
negligible active-movement effect have involved uni-
directional whole-body rotations; those showing an active-
movement advantage have involved multidirectional
combinations of whole-body rotations and translations. As
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was demonstrated by Yardley and Higgins (1998), active
movement plays a more prominent role in spatial updat-
ing when participants are rotated in multiple directions.
This issue warrants further empirical investigation.

The differences in updating automaticity that we found
are also noteworthy. As in previous studies (e.g., Farrell
& Robertson, 1998; Rieser, 1989), updating RTs during
self-movement were found to be independent of the mag-
nitude of search rotation, which suggests that they oc-
curred on line with self-movement (Rieser, 1989). This
finding held for active and passive self-movement as
well as for updating of symmetrical and asymmetrical
displays. In contrast, updating automaticity during dis-
play movement varied as a function of the complexity of
the display. Updating was automatic for the symmetrical
display. However, as was reflected in RTs that increased
beyond 0º, updating during rotation of the asymmetrical
array required more cognitive effort. Taken together,
these findings suggest that updating automaticity during
viewer movement generalizes to multiple situations,
whereas updating automaticity during display movement
may be limited to simple displays. The requirement of
additional cognitive processing as a function of com-
plexity in the latter case is consistent with studies on ob-
ject recognition. Recognition of objects with visually
distinctive parts has been shown to be viewpoint invari-
ant (see, e.g., Biederman & Gerhardstein, 1993, 1995).
However, the recognition of visually similar objects ap-
pears to involve an additional transformational step to
reconcile initial and current views (see, e.g., Bülthoff &
Edelman, 1992; Tarr, 1995; Tarr & Bülthoff, 1995; Tarr
& Pinker, 1989).

In summary, our study indicates that spatial updating
during viewer rotation is superior to that during rotation
of the display about the self, even within a full percep-
tual context. Superior updating during self-movement
may benefit predominantly from vestibular and proprio-
ceptive inputs, which are not usually available during
display movement.
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NOTES

1. The participant could use the joystick’s pitch function only during
the exploration phase; it was turned off during the testing phase and was
thus unavailable.

2. RTs and errors were grouped by either initial rotation degree or
angular distance between alcoves before outliers were replaced. Out-
liers for values that exceeded 3 SDs above the group condition mean
were replaced by that mean. Thus, effects that differ slightly in initial ro-
tation versus angular distance analyses are a result of the different out-
lier replacement methods.

3. During pilot testing, we determined that this speed eliminated the
onset of motion sickness.

4. During pilot testing, we determined that this increase in speed in-
troduced only a minimal risk of motion sickness.

5. Pointing data were collapsed over five angular distances, as in Ex-
periment 3.
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