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Having expectations about the behavior of living things
and about the use of nonliving things is essential in daily
life. Because experiences never recur exactly, a record of
encountered experiences alone would be of little help to
us in dealing with new problems or in anticipating the fu-
ture. This is why categorization—the process that allows
us to partition animals, plants, objects, experiences, and
so on into groups—forms the essence of memory orga-
nization. It is also basic to all of our intellectual activi-
ties (Estes, 1994).

In recent years, a large number of formal models of cat-
egorization have been proposed. Many of these (e.g., Jo-
hansen & Palmeri, 2002; Kruschke, 1992; Lee & Navarro,
2002; Love, Medin, & Gureckis, 2004; Nosofsky, 1984;
Nosofsky & Palmeri, 1997; Rosseel, 2002; J. D. Smith &
Minda, 2000) derive from the exemplar model described
by Medin and Schaffer (1978). Essentially, all these mod-
els construe categorization as a two-step process. First, the
similarity of a newly presented stimulus to a number of
stored exemplars is computed. (For clarity, from now on
we will refer to the internally stored reference stimuli as

exemplars, although in some of these models prototypes
are used rather than exemplars.) Second, on the basis of
these similarities, a decision is made as to which category
the new stimulus belongs to. Op de Beeck, Wagemans,
and Vogels (2001) recently advanced neurophysiological
evidence for such a two-step procedure of categorization.

The similarity measure that is used in most of the formal
categorization models is based on a geometric distance be-
tween the stimulus and the exemplar, in a D-dimensional
coordinate space. Several criticisms have been raised
against such spatial representations in the literature on sim-
ilarity judgments (e.g., Sattath & Tversky, 1987; Tversky,
1977; Tversky & Gati, 1982). Tversky (1977) presented
the well-known contrast model of similarity. In the contrast
model, similarity is an additive function of the common
and distinctive features of the two stimuli under investiga-
tion. Tversky also described the less well-known ratio
model, in which similarity equals a function of the number
of common features divided by a function of all features
(both common and distinctive). This way of conceptualiz-
ing similarity as a feature-matching process has distinct ad-
vantages over the traditional geometric distance approach
in many categorization situations. For the present purposes,
the geometric distance approach contends with two prob-
lematic aspects. First, the geometric distance approach as-
sumes that for all stimuli in a categorization context, all rel-
evant dimension values are known; otherwise, the distance
function cannot be calculated. However, unknown dimen-
sion values are rather common in real-life situations in
which, for instance, perceptually presented stimuli can be
seen from only one particular angle, or when limited infor-
mation is given about verbally described stimuli. This will
be called the missing features problem.
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Second, if the feature values of two stimuli under
comparison are equal, the difference in feature values is
zero and, hence, does not influence the (additive) dis-
tance function that forms the basis of geometric similar-
ity. Young and Wasserman (2002) have shown that this
assumption is problematic. They showed that in a dis-
crimination task, a simple discrimination (A– vs. B�) is
easier than a discrimination with one common feature
added to the two stimuli (XA– vs. XB�). The authors
concluded that common features add to similarity and
hence to categorization. This could be called the match-
ing features problem. To handle both problems, we will
present a model of categorization that is based on a fea-
ture-matching approach to similarity, akin to the ratio
model of similarity mentioned above. Due to this fea-
ture-matching assumption, the two problems—of miss-
ing and matching features, respectively—disappear in a
natural fashion.

The outline of this paper is as follows: First, we de-
scribe ALCOVE in detail because the new model we will
propose is inspired by ALCOVE. However, our discussion
of missing and matching features applies more broadly to
all categorization models incorporating the critical geo-
metric distance assumption (see, e.g., Nosofsky, 1984).
Second, the two problematic implications of the geomet-
ric distance assumption are outlined in more detail. In the
same section, a slight extension of ALCOVE is proposed,
which deals with the first problem (but not the second).
Then, a new model called “ADDCOVE” is described,
which dispenses with the geometric distance assumption
and avoids both problems in a straightforward manner. We
discuss two experiments in which the problematic aspects
of ALCOVE are highlighted and the validity of ADD-
COVE is illustrated. Finally, we show that the new model
also performs well with a more traditional category-
learning experiment (Nosofsky, Kruschke, & McKinley,
1992, their Experiment 2).

ALCOVE

ALCOVE is a three-layer connectionist network model
with input (i.e., feature) nodes, exemplar nodes, and out-
put (i.e., category) nodes. Suppose a stimulus is pre-
sented in a categorization situation. The distance between
this stimulus and a set of stored exemplars is then calcu-
lated. The stimulus is coded as x � (x1, . . ., xD), which is
represented in the input layer. An exemplar indexed by j
is coded as hj � (hj1, . . . , hjD), and

(1)

where dis is the distance between the stimulus and the
exemplar and the values αd are attention weights and
represent the amount of attention that is assigned to di-
mension d (or feature d: The terms feature and dimen-
sion will be used interchangeably). Furthermore, the pa-
rameter r determines the metric used in the distance

calculation (e.g., r � 1: city-block metric; r � 2: Eu-
clidean metric). The similarity between stimulus and ex-
emplar is a decreasing function of this distance. Specif-
ically, the similarity is equal to exp(�p � dis), where p
is a scaling parameter. These similarities constitute a pat-
tern of activation in the exemplar layer.

Once the relevant stimulus–exemplar similarities have
been calculated, a category response is chosen on the
basis of these similarities in the following way. Suppose
there are two relevant categories of choice, A and B. If
we denote the similarity between the stimulus and the ex-
emplar j by Aj

ex(x) , then the evidence in favor of Cate-
gory A is a linear function of activations Aj

ex:

(2)

where it is assumed that there are J exemplars. The pa-
rameter wjA is the connection between exemplar j and
Category A � response node in the output layer. These
weights are adapted with the Widrow–Hoff learning rule.
An equation analogous to Equation 2 holds for Cate-
gory B, resulting in an output activation value AB

cat. Fi-
nally, the probability of choosing Category A is obtained
from a weighting of these two output values:

(3)

The parameter ϕ scales the effect of the difference be-
tween the two category activation values AA

cat and AB
cat: If

ϕ is close to zero, probability P(A) will be close to .5;
larger values of ϕ bring P(A) closer to one or to zero, de-
pending on whether AA

cat or AB
cat is larger.

Two different versions of ALCOVE can be distin-
guished, depending on how exemplars are added to the net-
work (Kruschke, 1992). In the first approach, a number of
exemplars is chosen a priori that cover the input space (the
covering map version). In the second approach, each new
stimulus that is presented is added as a new exemplar. We
will concentrate on the second version because, in the case
in which participants do not practice the task (which is
what usually happens in real life, as well as in our experi-
ments), the covering map version seems implausible.

MISSING FEATURES, MATCHING
FEATURES, AND GEOMETRIC DISTANCE

We consider the case of additive features (Tversky,
1977). These are binary-valued features of which the two
values indicate presence or absence of a property—for
example, presence or absence of headache in a medical
context. The opposite of additive features are substitu-
tive features, in which case there are at least two possi-
ble feature values (e.g., feature “length,” with values
short and long). As will be discussed later, substitutive
binary features and continuous features can be recoded
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as additive features, so there is no loss of generality if
we restrict attention to the latter.

In addition to being present or absent, a feature can
also be missing, in the sense that the value of that feature
is not known. Consequently, there are three possible cor-
respondences for the values of a particular feature in the
comparison of two stimuli: (1)Two values are matching if
both stimuli have the same feature value; (2) two values
are nonmatching if the feature value is different for the
two stimuli; and (3) one of the two values may be missing.
Note that the term missing refers both to the value of one
feature and to a correspondence between two features.

As was noted in the introduction, a first problem with
the geometric distance measure is that it assumes that the
values on all relevant dimensions are known, so there is no
mechanism for handling missing features (in which case
one or both of the feature values are unknown). This prob-
lem has already been ascertained by Estes, Campbell, Hat-
sopoulis, and Hurwitz (1989) and by Nosofsky et al.
(1992) in the context of the ALCOVE model. These au-
thors suggested that a dimension in Equation 1 should sim-
ply be dropped if values are missing on either the stimulus
or the exemplar for that dimension. Since this is the only
version of ALCOVE that has been described in the litera-
ture that can in principle cope with missing dimensions,
we will focus on this version of the model in the following.

Ignoring a missing dimension is equivalent to assum-
ing that a best possible match occurs on that dimension,1

since then the term αd | xd � hjd |r in Equation 1 is zero
for the dropped dimension, or xd � hjd. However, this
leads to a problematic implication. Suppose there are
two categories and we abbreviate the values of presence,
absence, and missing as 1, 0, and ?, respectively. With
features X1 and X2, stimuli such as (X1 � 1, X2 � ?),
(X1 � ?, X2 � 1), and (X1 � 1, X2 � 1) cannot then be
discriminated. This is because, on each dimension, each
pair of stimuli either matches or has a missing value for
one of the stimuli, and a missing value is equivalent to a
match (xd � hd) when missing dimensions are dropped.
Therefore, if at least one of the three stimuli belongs to
a different category, high accuracy cannot be achieved
on all three stimuli. In Experiment 1, we show that this
prediction is contrary to empirical data. Therefore, Estes
et al.’s (1989) and Nosofsky et al.’s (1992) solution to the
problem of missing dimensions introduces new prob-
lems and so this solution is not optimal.

Instead of dropping a dimension when one or more
features is missing, one could assume that a missingness
parameter s is inserted if either the stimulus or the exem-
plar (but not both) have a missing value on a dimension.2

The ALCOVE model extended with this assumption will
be called “AlcoveMD” (i.e., ALCOVE with missing di-
mensions). It can be shown that AlcoveMD adequately
solves the problem of lack of discriminability between
the stimuli outlined in the previous paragraph.

The second problem to be discussed here is that, with
a geometric-distance-based similarity measure, match-

ing features are not taken into account. Indeed, from
Equation 1 it is clear that matching features do not in-
fluence distance and, hence, do not influence the simi-
larity between two stimuli. For example, if the stimulus
and the stored exemplar match on dimension i, then xd �
hjd and so | xd – hjd | � 0, and the dimension might just as
well be removed from the equation.

In a way, missing and matching dimensions are han-
dled very similarly in ALCOVE (but not in AlcoveMD),
since neither influences the similarity between stimulus
and exemplar. In this sense, geometric distance deals only
with nonmatching features. Recently, Lee and Navarro
(2002) also criticized the geometric distance assumption
in ALCOVE. They proposed changing the distance as
calculated in Equation 1 with a distance based on binary
features that are obtained from an independent additive
clustering algorithm. Although this algorithm uses a
common-features-based similarity, the relevant features
were then used in a distinctive-feature distance measure
and plugged into the standard ALCOVE model (see Lee
& Navarro, 2002, for the rationale of this approach).
Their nonspatial version of ALCOVE has its distinct mer-
its, but from the present point of view, it also focuses on
nonmatching features in categorization only.

To sum up, the assumption of existing models is that
categorization works with nonmatching dimensions only
(exceptions are addressed in the General Discussion).
Whereas ALCOVE can be patched up to deal with miss-
ing dimensions (the resulting model being AlcoveMD),
taking matching dimensions into account is less straight-
forward. In the next section, a new model is described
that deals with all three feature correspondences (match-
ing, nonmatching, and missing) in a natural fashion.
Since the new model is inspired by ALCOVE, it is called
“ADDCOVE.”

ADDCOVE: ADDITIVE ALCOVE

Basic Principles
Like ALCOVE, the ADDCOVE model can be described

as a three-layer connectionist network model with an
input layer, an exemplar layer, and an output layer. In this
model, a stimulus is processed as follows: The stimulus
is first encoded as a list of additive (present /absent) fea-
tures. In many categorization experiments, this assump-
tion is quite natural, since the stimuli are shown to the
participant in this format. If a feature appears that was not
mentioned earlier, two extra input nodes (in the input
layer) are created in the model: The first node becomes
activated if the feature is present, and the second if it is
absent (Gluck & Bower, 1988). If a particular feature is
missing but nodes were already constructed earlier for
that feature, neither of the two nodes is activated. Alter-
natively, an extra node could be created that codes for
missingness of the feature. This approach is not pursued
here, because it would lead to the implausible prediction
that if two stimuli have a missing value on the same di-
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mension, this would count as a match and hence increase
similarity between the two stimuli.

The stimulus is thus coded as a pattern of binary val-
ues in the input layer. This pattern is then compared in
parallel with all feature patterns that were already pre-
sented earlier. These earlier feature patterns are stored as
separate nodes in the second, or exemplar layer of the
model. If the new stimulus pattern is “sufficiently dif-
ferent” from all previous patterns, a new node is created
in the exemplar layer that codes for this new pattern.
That is, this new node becomes maximally activated
when the new stimulus pattern is presented at the input
layer. In any case, whether a new node is created or not,
the stimulus at hand leads to a pattern of activation over
the nodes in the exemplar layer. The activation value of
each exemplar node indicates the similarity of the new
stimulus to the exemplar (feature pattern) corresponding
to that node. Here, the feature-matching approach to
similarity that was referred to earlier is used. After this
comparison process, the values in the exemplar layer are
transformed such that the highest values (those indicat-
ing highest similarity to the stimulus) are relatively en-
hanced and the others are relatively diminished. This
transformation could be considered a high-level descrip-
tion of a competition process between the different ex-
emplar nodes (Love et al., 2004). Then this pattern of ac-
tivation over the exemplar nodes is sent to the output layer
in the same way as in ALCOVE (see Equation 2), and, fi-
nally, the probability of choosing one of the categories is
determined in the same way as in ALCOVE (Equation 3).

The description in the previous paragraph shows that
the model is an on-line model in the sense that nothing
is assumed to be known prior to exposure to the task ex-
cept, of course, the relevant categories. The input di-
mensions and exemplars are built from the ground up
during the task. This is yet another advantage that is
made possible through the use of a feature-matching pro-
cedure; indeed, with a geometric distance approach, di-
mensions cannot be added during the task because the
distance function requires all relevant input dimensions
for the calculation of similarity.

Model Equations
We now describe the activation equations in more de-

tail. Let a stimulus be coded by a pattern of activation
xin � (x in

1 , . . ., x in
I ) over the input layer, where I refers to

the number of input nodes. Activation Aex
j of an exem-

plar node is then equal to

(4)

where j � 1, . . ., J and J denotes the number of exem-
plar nodes. The set of parameters wj

in � (wj
in, . . ., wIj

in ) is
comprised of the weights of nodes feeding into exemplar
node j. Input connections to an exemplar node are nor-
malized in the sense that ||wj

in|| � 1, where ||.|| denotes
the (Euclidean) length function (see Equation 5 below).

The normalization ||wj
in|| � 1 ensures that exemplar

node j with vector wj
in closest to the input pattern, rela-

tive to other exemplar nodes, reacts most strongly. Equa-
tion 4 is the reason that the model is called “additive AL-
COVE,” because similarity is computed from a sum
rather than being based on a distance measure, as in
Equation 1.

Learning in the input-to-exemplar mapping proceeds
as follows: A newly created exemplar node j receives
connections

(5)

Hence, the length of wj
in (i.e., ||wj

in||) equals 1, as was
claimed above. Furthermore, it follows that this exem-
plar node j will respond most strongly (over all exemplar
nodes) to pattern xin in the future, and its response will
be equal to ||xin||.

There is an additional node in the exemplar layer (in-
dicated as node J � 1) with activation according to

(6)

The node J � 1 functions as a novelty detector: If the pa-
rameter G is close to 1, the activation of this node will be
stronger than all other nodes for novel patterns. Indeed,
the maximal response of an exemplar node is ||xin ||, and
this occurs only if an earlier stimulus is shown again.
Hence, if the activation of the novelty detector is larger
than the activation of all exemplar nodes (Nodes 1, . . ., J ),
the pattern is judged to be a new one. For old patterns, its
activation will be weaker than at least one of the other
nodes. If G decreases toward zero, the model becomes
“sloppy” and mistakenly judges new stimuli to be equal
to old ones (which were already coded as exemplars).

The novelty detector can be thought of as expressing
the amount of “surprise” experienced by the network. If
the amount of surprise is sufficiently large, a new exem-
plar node is added. Specifically, a new exemplar node is
added if AJ�1

ex � Aj
ex for j � 1, . . ., J. Hence, the number

of exemplars increases throughout learning in an adap-
tive manner—that is, the number of nodes only increases
if it is judged necessary (see also Love et al., 2004): Only
“sufficiently different” patterns (depending on the value
of G, the input pattern, and the old patterns) receive their
own exemplar node. New input patterns that are close to
old patterns will not receive a new exemplar node.

In the present study, the parameter G was set quite
large (close to 1), so that a new exemplar is added for
each distinct stimulus. In this way, the procedure may be
considered a network implementation of the principle
used in ALCOVE, in which a new exemplar node is re-
cruited for each different stimulus. At the same time, it
can be used as a generalization of the ALCOVE proce-
dure if G is not very close to 1. Since G was set very
large in the present study, it may be asked why it cannot
be removed altogether and why we did not simply add a
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new exemplar for each different stimulus. However, the
inclusion of the novelty detector has an extra advantage,
which will be described in the Implications section below.

The responses of the exemplar nodes (Aj
ex) are then

normalized as follows:

(7)

for exemplar nodes j � 1, . . ., J � 1. This is the trans-
formation in the exemplar layer referred to above. These
values xex represent the calculated similarities in ADD-
COVE.

The parameter ϕ1 has a positive value, and it either in-
creases or decreases the differences between activations
of the different exemplar nodes. In a sense, this param-
eter is similar to the specificity parameter (c) in AL-
COVE (see Equation 2). In the limiting case, if ϕ1 � 0,
all exemplar node activations equal 1/(J � 1), so the dif-
ferences are reduced to 0. At the other extreme, if ϕ1
tends to infinity, the activation xex of the strongest node
tends to 1 and the activation of all other nodes tends to
0, so the differences between exemplar node activations
are increased. In this sense, the parameter ϕ1 controls the
amount of differentiation between (normalized) exem-
plar node activation values.

Once the similarities xex of Equation 7 are calculated,
ADDCOVE is identical to the original ALCOVE model.
The activations of category layer nodes AA

cat or AB
cat are a

linear combination of the normalized exemplar responses
xj

ex as in Equation 2 above, resulting in activation values
Acat. These are normalized to yield response probabilities
as follows:

(8)

The parameter ϕ2 works similarly to ϕ1 and corresponds
to the parameter ϕ in ALCOVE. Learning in the exemplar-
to-category mapping proceeds by the standard Widrow–
Hoff (delta) rule, by which the weight change is propor-
tional to the difference between the target (or required)
value on an output node and the actual output value. The
target values, representing the feedback provided by the
experimenter, are of the “humble teacher” type described
by Kruschke (1992). This means that activation values
“better than necessary” are considered correct. For ex-
ample, with targets 0 or 1, activation 1.2 is better than
necessary when the target is 1.

In total, the model has four parameters: G, ϕ1, and ϕ2,
described above, and β, which is a learning parameter for
the exemplar-to-category weights used in the Widrow–
Hoff rule. The parameter G is in all applications set to
the constant G � 0.9999. This ensures, at least in the ex-
periments reported in this paper, that for each distinct
stimulus a new exemplar is created, as in ALCOVE.
Therefore, there are only three effective parameters here:

the two normalization parameters ϕ1 and ϕ2, and the
learning rate parameter β.

Implications
We now consider the implications of the model equa-

tions of the previous paragraphs. Consider what happens
with exemplar node hj if a pattern xin is presented. If we
plug Equation 5 into Equation 4 (and replace xin in Equa-
tion 5 with h), the result is

where the numerator is the number of matches between
xin and hj and the denominator is the square root of the
number of features in hj . When this is plugged into
Equation 7, activation of the exemplar node j becomes

(9)

Equation 9 shows that the new model is akin to Tversky’s
(1977) ratio model described above, since similarity is a
function of the number of common features (n match)
divided by a function of all features. Three properties are
of interest here. First, matching features contribute to
similarity in the model, due to the n match terms in Equa-
tion 9. Second, suppose that, in an existing configuration
of stimulus, dimensions, and exemplars, a nonmatching
feature is added to an exemplar hj and the current stimu-
lus x. This will increase both the terms G √(n features in x)
and √(n features in hj), and all other terms are unaf-
fected. Therefore, the overall similarity defined by Equa-
tion 9 will decrease. Third, consider what happens if the
same particular feature is added to both the stimulus x
and the exemplar hj , and a missing value for that partic-
ular feature is inserted for either the stimulus or the ex-
emplar, but not for both. This will cause an increase in
either the term G √(n features in x) or the term √(n fea-
tures in hj ), and again similarity will decrease. Note that
the novelty detector is needed for this to occur, which re-
veals the extra advantage of this node referred to above.
If the value of this feature is missing for both stimulus and
exemplar, no terms will change and similarity is then, of
course, also unchanged. Note that missing values do not
require an extra parameter in ADDCOVE (in contrast to
AlcoveMD), but simply follow from the conceptualiza-
tion of similarity as a feature-matching process. Hence,
matching, nonmatching, and missing dimensions are
dealt with in a unified manner in ADDCOVE.
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From Equation 9, it also follows that if the stimulus
and the exemplar are equal (x � h), x ex can be brought
arbitrarily close to 1 (the maximum value) by choosing
a sufficiently high value of ϕ1. This simple observation
solves a problem with which earlier “additive” models
of categorization have been confronted (e.g., Hayes-
Roth & Hayes-Roth, 1977; Reed, 1972). In these models,
an additive calculation of similarity was problematic in
that if a Category A was required on presentation of fea-
tures x and y together but not on presentation of one of the
features separately, feature values fx and fy were required
to be high in order to evoke the Category A response on
simultaneous presentation (Medin & Schaffer, 1978).
However, in a simple additive scheme this would also
evoke a strong response on presentation of only one of the
features. In Medin and Schaffer's seminal paper, the addi-
tive form was replaced by a multiplicative form, which
solved the problem, and the multiplicative form is still the
form chosen for most current models of categorization
(e.g., ALCOVE). However, the problem confronted by ad-
ditive similarity does not necessitate a multiplicative ap-
proach to similarity: The model expressed in Equation 9,
in which exemplar strengths are normalized and multiplied
by a factor ϕ1, yields another solution. Other recent mod-
els that work with an additive similarity but avoid the prob-
lem of earlier additive models appear in the SUSTAIN
model (Love et al., 2004) and the APPLE model (Kruschke,
1993).

EXPERIMENT 1

Experiment 1 provides a straightforward test of the
missing-dimensions coding scheme proposed by Estes
et al. (1989) and Nosofsky et al. (1992) for ALCOVE.
Recall that they proposed that missing features are sim-
ply ignored in similarity calculation. This implies that
stimuli such as (X1 � 1, X2 � ?), (X1 � ?, X2 � 1), and
(X1 � 1, X2 � 1) will not be discriminated, since for each
pair of stimuli each dimension is either matched or ig-
nored, which amounts to the same thing in this coding
scheme. It follows that if at least one of the three stimuli
is assigned to a different category than the other two,
high accuracy cannot be achieved on all three stimuli.
This implication does not follow for either AlcoveMD or
ADDCOVE: Both models can predict high accuracy on
all three stimuli with appropriate parameter settings.

Method
Participants. Twenty-seven students from the University of Leu-

ven participated for course credit.
Procedure. The experiment was set up as a medical patient di-

agnosis task, and on each trial the name of a fictitious patient was
shown together with his/her symptom pattern, which could be
(X1 � 1, X2 � ?), (X1 � ?, X2 � 1), or (X1 � 1, X2 � 1). The first
two patterns belonged to the first category, and the third to the sec-
ond. The symptoms earache and dizziness were used. For example,
in one trial the stimulus could be “Mr. Jones has an earache and it
is not known whether he feels dizzy,” which corresponds to (X1 �
1, X2 � ?). Missing dimensions were mentioned explicitly because
otherwise a missing symptom could be confused with absence of

the symptom. A list of 24 patients (and their symptoms) was pre-
sented in a random order, but the order was the same for all the par-
ticipants. The categories were two fictitious diseases called “agi-
lentia” and “bogumitis,” which were randomized over the two
categories. The randomization factor had no effect and will not be
discussed. The experiment lasted about 5 min for each participant.

Results and Discussion
Already in the first part of the test (Items 1–12), accu-

racy was high (probability correct � .74), and in the sec-
ond part (Items 13–24) it was almost perfect (probability
correct � .96). This high accuracy cannot be explained
by ALCOVE, which cannot distinguish the three patterns,
but it can be captured by AlcoveMD and ADDCOVE
with appropriate parameter settings. Hence, it cannot be
claimed that missing features were simply ignored.

EXPERIMENT 2

In Experiment 2, we intended to investigate how well
the three models can cope with items of different di-
mensionality. A set of nine stimuli, each belonging to
one of two categories, was shown repeatedly in the ex-
periment, but the number of features shown on each trial
varied from one to four. In a first block, only the first
feature of each stimulus was shown, in a second block
only the first two features were shown, and similarly for
Blocks 3 and 4, in which three and four features were
shown, respectively. The blocked presentation of dimen-
sions (first one dimension, then two dimensions, and so
on) was used to ensure that the low-dimensional stimuli
were actually treated as such. Indeed, suppose items of
different dimensionalities were presented in a random
order and a four-dimensional item is presented before a
particular one-dimensional item. Since the participants
already know the four relevant dimensions at the point at
which they are confronted with the one-dimensional
item, one cannot be sure how the one-dimensional item is
encoded. For example, the dimensions that are not shown
for this item could be treated as missing, absent, or sim-
ply ignored. This ambiguity does not arise if all relevant
dimensions are not yet known while the one-dimensional
item is being classified.

To check the validity of the respective models, a cross-
validation approach was taken. This allows the com-
plexity of each model to be taken into account (Pitt,
Myung, & Zhang, 2002). Parameters were estimated on
the data of the first part of the test, and on the basis of
these parameters categorization probabilities were pre-
dicted on the second part. Conversely, parameters were
estimated on the second part and used for predicting
probabilities in the first part. Pitt et al. have shown that
cross-validation works very well in empirically distin-
guishing between different models with data sets as large
as those in the present experiment (see their Table 5).

Method
Stimuli. We used the 5–4 stimulus structure, which has often

been used in the categorization literature (e.g., Medin & Schaffer,
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1978; J. D. Smith & Minda, 2000). The different possible data pat-
terns of this structure with four binary-valued features are shown in
Table 1. Patterns 1–5 belong to Category A, and Patterns 6–9 be-
long to Category B (hence the name “5–4 stimulus structure”).
There is usually also a set of transfer patterns, but none was used
here.

We introduced some changes relative to previous studies of the
5–4 structure. First, additive features were used rather than substitu-
tive features. The second and more important change was that a dif-
ferent number of features was shown in different blocks of the ex-
periment: In the first block, only the first feature was presented; in the
second block the first two features; in the third block the first three;
and in the last block all four features were shown. Hence, the first
part of the experiment (Blocks 1 and 2) consisted of low-dimensional
stimuli only (one or two dimensions), whereas the second part
(Blocks 3 and 4) consisted of high-dimensional stimuli only (three or
four dimensions). Following the optimal strategy, the expected prob-
ability of success is 78% (7 out of 9 items correct) in Blocks 1, 2, and
3 and 100% in Block 4.

The entire stimulus sequence consists of 252 items. Each of the
four blocks contained 63 items; in each block, each of the nine stim-
uli (see Table 1) was presented seven times. Each participant re-
ceived the same stimulus sequence. A similar procedure was used
by Nosofsky et al. (1992, their Experiment 2). In fact, the abstract
stimulus sequence that we used was equal to theirs, except for the
two differences mentioned in the previous paragraph. As in Exper-
iment 1, the category labels were the two fictitious diseases “agi-
lentia” and “bogumitis,” and the feature names were four familiar
symptoms (stomachache, headache, earache, and muscular pain).

Participants. Twenty-three students of the University of Leuven
(at Kortrijk) participated for course credit.

Procedure. The test was administered collectively with each par-
ticipant seated in front of his or her own computer. All 252 stimu-
lus patterns [e.g., (stomachache, no headache) in Block 2] were
shown consecutively without breaks. However, the participants
were allowed to rest between stimuli.

Three parameters were estimated for ALCOVE: the specificity pa-
rameter c, the learning rate for the weights λw, and the normalization
constant ϕ. A previous analysis had shown that the learning rate pa-
rameter for the attention values λα should be restricted in order to ob-
tain an identifiable model (Verguts & Storms, 2004) and without loss
of generality we set this parameter to 1. For AlcoveMD, the missing-
ness parameter s was also estimated. For ADDCOVE, the relevant pa-
rameters were ϕ1, ϕ2, and β. These parameters were estimated by the
maximum likelihood method. Specifically, each trial was treated as a
binomial experiment with 23 observations (the number of partici-
pants) with the two probabilities of choosing either of the two diseases.
These probabilities were a function of the parameters of the model
that was estimated. Note that this procedure makes abstraction of pos-
sible individual differences. To obtain the overall likelihood function,
the product was taken over the binomial likelihoods for the 252 indi-
vidual trials. As was noted earlier, the parameter G was set to 0.9999,

so a new exemplar was created for each distinct feature pattern in
ADDCOVE. To ensure comparability, also in ALCOVE and Alcov-
eMD a new exemplar was created on each trial in which a new feature
pattern was shown.

The parameters of the three models were estimated on the first
part (Blocks 1 and 2, Items 1–126) and the second part (Blocks 3
and 4, Items 127–252) separately, resulting in six sets of param-
eters. We calculated the root mean squared error (RMSE), which is
the square root of the mean squared deviation between observed
and predicted data (Pitt et al., 2002). This measure was computed
over observed and expected response probabilities on the nine dif-
ferent stimuli in each part separately. Predicted response probabil-
ities were calculated on the basis of the parameters estimated on the
other part of the test. For example, when investigating how well AL-
COVE accounted for the data in Part 1, we calculated RMSE over
the probabilities on the nine stimuli in Part 1 but used the param-
eters obtained from Part 2 for that purpose. In addition to the cross-
validation procedure, we also estimated parameters on the complete
data set (Blocks 1–4) for each model and calculated RMSE for the
complete data set on the basis of these parameters.

Results and Discussion
The overall mean accuracy over persons and items

equaled .70, with a standard deviation of 0.09. For the
different blocks, the accuracies were .63, .69, .71, and
.76, respectively.

When calculated on the complete data set, RMSE val-
ues are about equal for the three models (.050, .045, and
.048 for ALCOVE, AlcoveMD, and ADDCOVE, respec-
tively). However, these values should be interpreted with
caution because the complexity of models (e.g., number
of parameters) is not taken into account.

The top panel of Figure 1 shows observed and (cross-
validated) predicted probabilities of success over partic-
ipants in the first two blocks for the three models sepa-
rately. Table 2 shows the corresponding RMSE measures
and parameter estimates. The probability of success is
above .5 for Stimuli 1, 2, 3, 4, 7, 8, and 9, because they
have the prototypical (i.e., modal) values of their cate-
gories on the first dimension (as can be seen in Table 1),
and this is the only dimension that is shown in Items 1–63
and one of the two dimensions that is shown in Items
64–126. On the other hand, Stimuli 5 and 6 have a non-
prototypical value on the first dimension (see Table 1),
so their probability of success is below .5. As can be seen
in the top panel of Figure 1, ALCOVE and AlcoveMD
underestimate the amount of differentiation in Blocks 1

Table 1
The 5–4 Data Structure

Pattern Category Dimension 1 Dimension 2 Dimension 3 Dimension 4

1 A 0 0 0 1
2 A 0 1 0 1
3 A 0 1 0 0
4 A 0 0 1 0
5 A 1 0 0 0
6 B 0 0 1 1
7 B 1 0 0 1
8 B 1 1 1 0
9 B 1 1 1 1
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and 2, whereas ADDCOVE does not. Correspondingly,
the RMSE of ADDCOVE is almost half as small as that
for the other two models (see Table 2). Also, both AL-
COVE and AlcoveMD have very high values of the
specificity parameter c, so only exemplars (feature pat-
terns) that exactly match the current stimulus influence
the response probability. Hence, both models produce an
almost degenerate solution, in the sense that an essential
aspect of ALCOVE—the influence of partly matching
exemplars on the stimulus—does not play a role. In
Blocks 3 and 4, the three models perform more or less
the same (bottom panel of Figure 1); RMSEs for the
three models are approximately equal (see Table 2).

All three models are able to account for the catego-
rization of the high-dimensional stimuli (i.e., those with
three or four features). However, ALCOVE and Alcove-
MD can do so only at the cost of losing an essential as-
pect of that model, which is the fact that categorization
is the result of a balance between different partly match-
ing exemplars. For the low-dimensional stimuli (with
one or two features), on the other hand, only ADDCOVE
appears to account well for the data. The fact that the
global RMSE (without cross-validation) is satisfactory
and about equal for the three models shows that AL-
COVE and AlcoveMD can be successful in finding a
“compromise” in parameter settings between low- and
high-dimensional stimuli. However, parameters esti-
mated on high-dimensional items are not satisfactory for
low-dimensional items.

ANALYSIS OF THE 5–4 DATA OF
NOSOFSKY ET AL. (1992)

In the previous experiments, many of the stimuli had
missing values on at least one dimension. It might be
suspected that ADDCOVE shows an advantage in this
regard because it has been constructed with these situa-
tions in mind, and that ADDCOVE might not account for
more traditional data showing all features. In the last ex-
periment, we investigate the behavior of ALCOVE and
ADDCOVE in such a situation. Note that AlcoveMD re-
duces to ALCOVE in this case and will therefore not be
discussed.

We used the data of the learning phase in Study 2 of
Nosofsky et al. (1992). Forty participants categorized the
252 items, consisting of Patterns 2–9 shown in Table 1.
In this case, substitutive (e.g., “color of hair”) features
were used, whereas ADDCOVE is designed to handle
additive features (e.g., presence or absence of symp-
toms; Tversky, 1977). However, it is easy to recode sub-
stitutive features as additive features if, for each value of
a substitutive feature, an input node is created in the net-
work. For example, if the feature is “color of hair” with
possible values red and black, a first node is active if hair
color is red, and a second node is active if hair color is
black.

The same parameter estimation and model evaluation
methods were used as in Experiment 2. RMSE values
calculated on the complete data set were .076 and .094

Figure 1. Lines with error bars (
1 standard error of measurement) denote observed probabil-
ity of success for the different stimuli (abscissa) for the three models. Top panel, Blocks 1 and 2; bot-
tom panel, Blocks 3 and 4. Open circles denote predicted probabilities.
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for ALCOVE and ADDCOVE, respectively. However,
note again that model complexity is not taken into ac-
count in these measures. Cross-validated RMSEs and
parameter estimates are shown in Table 2. The evidence
here is not clearly in favor of either of the two models: In
Part 1, ADDCOVE performs better, but in Part 2 AL-
COVE performs better. Importantly, this shows that ADD-
COVE (and its new similarity measure) is also a worthy
competitor in accounting for data in which there is no
missing stimulus information.

GENERAL DISCUSSION

This paper is concerned with similarity measures used
in models of categorization. Although we have focused
on ALCOVE for definiteness, our general conclusion
that the geometric distance measure should not be taken
for granted applies more generally. The contributions
made in this paper are the following: First, it was shown
that ALCOVE and its adaptations by Estes et al. (1989)
and Nosofsky et al. (1992) are problematic with respect
to missing dimensions. These authors deal with missing
dimensions by ignoring them, and, hence, stimulus pat-
terns such as (X1 � 1, X2 � ?) and (X1 � 1, X2 � 1) can-
not be distinguished. Second, we have changed their as-
sumption of ignoring missing dimensions and introduced
a straightforward extension of ALCOVE (AlcoveMD).
This model avoids the problem of indiscriminability be-
tween stimuli. Third, a new model, ADDCOVE, was pre-
sented, which handles matching, nonmatching, and
missing features in a unified fashion. Finally, the empir-
ical validity of the ADDCOVE model was tested in two
new experiments and in Experiment 2 of Nosofsky et al.
In the remainder of this paper, we briefly discuss how
continuous dimensions can potentially be modeled in
ADDCOVE. Then, we relate our model to a number of
competing models in the literature. One original motiva-
tion for our work was to create a model that starts from
scratch and gradually builds relevant knowledge as it is
presented during a categorization experience. At the end
of the paper, we return to this issue.

Continuous Dimensions
One concern about the rationale spelled out in this paper

is that only additive features can be represented in ADD-
COVE. However, this is not as limited as it may appear
at first. Substitutive features can be recoded as additive
features simply by creating a sufficient number of input
units, one for each possible value of the (substitutive)
feature, as we did for the Nosofsky et al. (1992) data. If
this reasoning is taken to the extreme, continuous fea-
tures can be handled as well (see also E. E. Smith & Medin,
1981). For example, if length is to be coded, one feature
could code for the interval [0, 1), a second for the interval
[1, 2), and so on. This procedure is called place coding
(see, e.g., Kruschke, 1993), and it is used in some other
models for continuous-valued dimensions (Kruschke,
1993; Love et al., 2004). Another scheme for recoding

continuous features based on inclusion sets was sug-
gested by Tversky and Gati (1982).

Related Models
ADDCOVE has both matching features and non-

matching features with a number of other models pro-
posed in the literature. Another model that, like ADD-
COVE, computes similarity in an additive manner is
Kruschke’s (1993) APPLE. Nevertheless, this model
works very similarly to ALCOVE: In fact, weights be-
tween the input and exemplar layers are chosen such that
ALCOVE is mimicked as closely as possible. Hence, the
same problems as those discussed for the latter model
apply here. Another model with an additive similarity
function is SUSTAIN, developed by Love et al. (2004).
This model has many similarities with ADDCOVE: For
example, a competitive mechanism in the exemplar layer
enhances differences between exemplar nodes (cf. Equa-
tion 7). Also, exemplar nodes are added only to the ex-
tent that they are necessary. However, there are also im-
portant differences. The exemplar nodes are situated in
a multidimensional stimulus space, and their positions
are adjusted during learning by a Kohonen unsupervised
learning procedure. Hence, just as for other geometric
distance measures, extra assumptions are needed to deal
with missing dimensions or dimensions that are added
only in a later phase; it remains to be seen whether SUS-
TAIN can be extended to cope with this.

Yet another model that bears similarities to ADD-
COVE is the RULEX model of Nosofsky, Palmeri, and
McKinley (1994). The assumption behind this model is
that rules that selectively attend to just a single dimen-
sion are initially stored. For instance, a participant can
store the rule that a particular value (e.g., present) on a
particular dimension suggests membership in Cate-
gory A, regardless of the values on the other dimensions.
If one-dimensional rules prove unsuccessful, the model
continues to look for good two-dimensional rules. If this
is not successful either, complete or incomplete exem-
plars may be stored. This model has an obvious similar-
ity to ADDCOVE: It stores complete or incomplete pat-
terns and associates them with categories. There are also
differences, however. First, whereas in RULEX rules and
exemplars are treated as two different entities that are
learned in different phases, the distinction between rules
and exemplars is blurred in ADDCOVE. Indeed, sup-
pose stimuli are four-dimensional: In this case, an “ex-
emplar” node coding for a pattern such as (X1 � 1, X2 �
0, X3 � 0) could be called an incomplete exemplar node
because it represents an exemplar of which only three
features are specified. Alternatively, it could be called a
complex rule node because it specifies the values of
three features (rather than those of just one feature, as in
a simple rule such as “If X, then Y”). In this way, we feel
that ADDCOVE can propose a unified view on the stor-
age of rules and exemplars. Also, RULEX is formulated
as an elaborate hypothesis-testing process, whereas ADD-
COVE is formulated as a connectionist model. For this
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reason, ADDCOVE is more in the spirit of other catego-
rization models, such as ALCOVE and the generalized
context model, which apply not just to stimuli composed
of a small list of binary features, but also to stimuli that
consist of a possibly large number of integral or separa-
ble continuous dimensions. Hence, we feel that ADD-
COVE also holds more promise for a unifying process-
ing framework of these very different kinds of stimuli.

Finally, the model that arguably is most similar to ADD-
COVE is the configural cue model (CCM) of Pearce
(1994). In his article, Pearce describes a number of “ele-
mental” theories which hold that individual stimulus el-
ements become connected to a response (e.g., the stim-
ulus sampling theory, and the Rescorla–Wagner model)
and shows that these elemental theories cannot account
for a large number of findings in the (animal) condition-
ing literature. The most important problem is that these
theories do not have a mechanism for computing “simi-
larity” between different stimuli. He then proposes the
CCM, which holds that the cluster of features on a par-
ticular trial is stored separately and is connected to a re-
sponse. As in ADDCOVE, weights from the input layer
feeding into such a constellation are normalized, so stim-
uli (in this case, situations) of different dimensionalities
can be distinguished. There are also differences between
the two models, however. First, the CCM assumes that
the input is normalized, although this is not necessary.
Also, the model does not impose the normalization in the
exemplar layer (Equations 7 and 9), so it does not take
into account nonmatching features but only matching
features. Recently, Young and Wasserman (2002) have
criticized the similarity measures used in both ALCOVE
and CCM because that of the former uses only non-
matching features and that of CCM uses only matching
features, whereas Young and Wasserman showed that
both influence categorization performance. To account
for their results, Young and Wasserman proposed nor-

malizing attention in ALCOVE (cf. Kruschke & Jo-
hansen, 1999), so that if there are more dimensions, less
attention is assigned to each particular dimension and
the categorization task will become more difficult as a
result. If one wants also to account for missing features,
however, this option is not as straightforward as it may
seem. For example, if a two-dimensional exemplar and a
four-dimensional stimulus are compared (e.g., as in Ex-
periment 2), how should attention be normalized? Dif-
ferent, equally plausible possibilities are to normalize
over the common dimensions, over all dimensions, over
the dimensions of the stimulus, or over the dimensions of
the exemplar. In the context of Experiment 2, these re-
duce to only two possibilities, but in general they are dis-
tinct. Also, it is not clear whether the gradient descent
rule of attention learning (Kruschke, 1992; Kruschke &
Johansen, 1999) would still be valid. To sum up, we
think ADDCOVE fills an unexplored and interesting
niche in the space of categorization models that is wor-
thy of further attention.

On-line Learning
An important facet of ADDCOVE is that it is an on-

line model in the sense that both dimensions and exem-
plars are added during category learning. Most models
of categorization suppose that participants start out with
a great amount of information about the experiment. For
example, in ALCOVE all relevant dimensions are as-
sumed to be known; in the covering map version of AL-
COVE, the relevant parts of the input space are known
also because the input space is optimally covered with
exemplars that are used for categorization. In contrast,
ADDCOVE assumes only knowledge of the relevant cat-
egories. Input dimensions and exemplars are constructed
during the task. In the experiments described in this
paper, the novelty detector parameter G was set close to 1
to ensure that a new node was recruited for each different

Table 2
Cross-Validation Root Mean Squared Error (RMSE) Values and Parameter Estimates

Used for Each RMSE Measure

Source of Data Model RMSE Parameter Estimates Used in RMSE 

Experiment 2, Part 1
ALCOVE .097 c � 14.716, λw � 0.034, λα � 1, ϕ � 1.163
AlcoveMD .091 c � 5.527, λw � 0.035, λα � 1, ϕ � 1.242, s � 0.013
ADDCOVE .050 ϕ1 � 2.182, ϕ2 � 1.774, β � 0.680

Experiment 2, Part 2
ALCOVE .076 c � 8.213, λw � 0.093, λα � 1, ϕ � 1.234
AlcoveMD .082 c � 6.117, λw � 0.080, λα � 1, ϕ � 1.417, s � 0.030
ADDCOVE .084 ϕ1 � 2.728, ϕ2 � 1.325, β � 0.660

Nosofsky et al., Part 1
ALCOVE .196 c � 1.654, λw � 0.099, λα � 0.1, ϕ � 1.795
ADDCOVE .106 ϕ1 � 1.135, ϕ2 � 1.497, β � 3.589

Nosofsky et al., Part 2
ALCOVE .079 c � 4.098, λw � 0.198, λα � 0.1, ϕ � 0.880
ADDCOVE .113 ϕ1 � 3.923, ϕ2 � 0.695, β � 2.210

Note ⎯The parameter λα was always restricted. This parameter was fixed at a different value in the
two experiments, however. The fact that a parameter is unidentified does not imply that every value
of that parameter is suitable for each data set; in this case, solutions with λα � 1 did not converge for
the Nosofsky et al. (1992) data, so the parameter was set at 0.1.
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stimulus pattern. However, choosing different values of G
allows the model to add exemplars in an adaptive manner
(see also Love et al., 2004; Rosseel, 2002), in the sense
that exemplars are added only to the extent that they are
sufficiently different from old stimuli. Furthermore, the
stimuli that are added to the network are not always com-
plete exemplars (as in ALCOVE) but may correspond to
lower-dimensional stimuli if such stimuli are presented
by the experimenter. Modeling the process of category
learning with ADDCOVE remains an ambition to be fully
worked out. However, acknowledging the existence and
influence of matching, nonmatching, and missing fea-
tures is a first step in that direction.
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NOTES

1. The attentional value αd cannot be zero, since it would imply that
the dimension is ignored altogether, in other stimuli as well.

2. We thank an anonymous reviewer for this suggestion.
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