
Memory & Cognition
2004, 32 (1), 107-124

In the past decade, the debate between causal model and
associative learning theorists has centered on whether or
not human inferences are sensitive to the causal structure
of contingentevents (see Waldmann, 2000, for a review).
Whereas causal models code events in terms of causes
and effects, associative models disregard the causal de-
scription of the events, instead coding them solely in
terms of their temporal order, in which antecedent events
are referred to as cues and subsequent events as out-
comes. The disagreement has concerned the nature of the
processes involved in making causal inferences. Accord-
ing to causal model theory, expectations of causal struc-
ture guide learning about the relevant causal events in a
top-down fashion. In contrast, an associative account
maintains that causal learning is modeled by the bottom-
up acquisition of associative weights guided by simple
event pairings. In this article, the extent to which and the
circumstances in which these two factors influence
causal assessments are examined, and the conditions
under which they operate are described.

As researchers started applying the principles of asso-
ciative learning theories to humans (e.g., Shanks & Dick-
inson, 1987), Waldmann and Holyoak (1992) argued that
humans are capable of more sophisticated forms of
causal learning than simply reacting to contingencies in

their environment.They argued that people conceptualize
the asymmetry of causal relationships. Causes influence
effects, but effects do not influence causes. “In addition
to using perceived or imagined causes to predict future
events, people can use perceived or imagined effects as
cues to diagnose their unseen causes” (Waldmann &
Holyoak, 1997, p. 125). Our knowledge of causal asym-
metry provides us with the capacity to ignore the order in
which events are presented, thereby transforming them
into causal model representations that reflect their asym-
metry (Waldmann, 2000). The Rescorla–Wagner model
(which embodies the essential and salient characteristics
of associative models) neglects the causal status among
events by simply encoding their temporal order. Events
that occur f irst are encoded as cues, and subsequent
events are encoded as outcomes. It follows from causal
model theory that causes interact and effects do not. That
is, we judge one cause in light of another, but judge two
effects independently. According to the Rescorla–Wagner
model, cues compete, and outcomes do not. The term cue
interaction refers broadly to the relative assessment of two
events, without reference to the mechanism of interaction.

Causal model and associative theories have often been
pitted against one another in the context of cue inter-
action paradigms, such as blocking (e.g., Waldmann,
2000; Waldmann & Holyoak, 1992), relative cue validity
(e.g., Matute, Arcediano, & Miller, 1996; Van Hamme,
Kao, & Wasserman, 1993), and overshadowing (e.g.,
Waldmann, 2001). Of interest in each of these paradigms
is the extent to which participants regard one cue in light
of another or consider each cue independently. In the
present series of experiments, the one-phase simultane-
ous blocking task (Baker, Mercier, Vallée-Tourangeau,
Frank, & Pan, 1993) was used to provide a novel test of
causal model theory by means of the conditional DP ac-
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In four experiments, the predictions made by causal model theory and the Rescorla–Wagner model
were tested by using a cue interaction paradigm that measures the relative response to a given event
based on the influence or salience of an alternative event. Experiments 1 and 2 uncorrelated two vari-
ables that have typically been confounded in the literature (causal order and the number of cues and
outcomes) and demonstrated that overall contingency judgments are influenced by the causal struc-
ture of the events. Experiment 3 showed that trial-by-trial prediction responses, a second measure of
causal assessment, were not influenced by the causal structure of the described events. Experiment 4
revealed that participants became less sensitive to the influence of the causal structure in both their
ratings and their predictions as trials progressed. Thus, two experiments provided evidence for high-
level (causal reasoning) processes, and two experiments provided evidence for low-level (associative)
processes. We argue that both factors influence causal assessment, depending on what is being asked
about the events and participants’ experience with those events.
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count (Spellman, 1996a, 1996b). According to causal
model theory, when two causes produce one effect, one
should consider each cause as conditional upon the
other, because causes interact. When one cause produces
two effects, one should consider each effect indepen-
dently of the other, because effects do not interact. The
one-phase simultaneous blocking design provides a
strong test of the model’s predictions because it enables
participants to conditionalize on two differentially pre-
dictive causes, either one upon the other. When two causes
produce one effect, a conditional DP account applied to
causal model theory predicts that participants should
rate the influence of each cause in accordance with con-
ditional DP. When one cause produces two effects, par-
ticipants should rate the influence of the cause on each
effect in accordance with unconditional DP.

In a task involving two cues and a single outcome, one
of four cue combinations is possible on a given trial: Both
cues may be present (AB), one cue may be present and the
other absent (A~B or ~AB), or both cues may be absent
(~A~B). For each cue combination, the outcome either
occurs (O) or does not occur (~O), resulting in eight pos-
sible cue–outcome combinations, as is illustrated in Fig-
ure 1. Thus, each cue can be expressed in terms of its re-
spective unconditional DP value, defined as

(1)

and

(2)

where each equation corresponds to the difference be-
tween the proportion of times the outcome occurs given
the cue and the proportion of times the outcome occurs
not given the cue (Allan, 1980). Alternatively, Cues A
and B can be expressed in terms of their respective con-
ditional DP values, defined as

(3)

(4)

(5)

and

(6)

The conditional DP values in Equations 3–6 allow one to
assess the influence of each cue in both the presence and
the absence of the other cue. For example, to assess the
influence of Cue A, Equation 3 describes only the cases
in which Cue B is present by taking the difference be-
tween the proportion of times the outcome occurs given
A and the proportion of times the outcome occurs not
given A. Moreover, Equation 4 describes only the cases
in which Cue B is absent, by taking the difference be-
tween the proportion of times the outcome occurs given
A and the proportion of times the outcome occurs not
given A.

Therefore, when two causes produce one effect, a con-
ditional DP account applied to causal model theory pre-
dicts that, because each cause should be assessed in light
of the other, participants should rate the influence of each
cause in accordance with conditionalDP (Equations3–6).
When one cause produces two effects, because each ef-
fect should be assessed independently, participants
should rate the influence of the cause on each effect in
accordance with unconditional DP (Equations 1 and 2).
Under these circumstances, with only one cause and two
effects, one must rotate the 4 3 2 contingency matrix
shown in Figure 1 to form a 2 3 4 matrix in which the
two rows represent the presence and the absence of the
cause and the columns represent the four combinations
of the two effects. By doing so, it is impossible to calcu-
late the conditional contingencies for A and B defined in
Equations 3–6.

Experiments designed to test causal model theory
have typically compared two causal scenarios in which
two (or more) causes precede a single effect or in which
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Figure 1. Summary 4 3 2 contingency matrix illustrating each
of the possible cause–effect combinations for two cues. Each cell
represents the frequency of each event type.



CUE INTERACTION AND JUDGMENTS OF CAUSALITY 109

two (or more) effects precede a single cause, thereby
confounding causal order (CE vs. EC) and the number of
causes and effects (2–1 vs. 1–2; see, e.g., Matute et al.,
1996; Van Hamme & Wasserman, 1993; Waldmann,
2000; Waldmann & Holyoak, 1992). As is illustrated in
Figure 2, four cause–effect scenarios are possible by
crossing the two variables: Two cues can be followed by
one outcome and can be described as two causes pro-
ducing an effect (2C–1E) or as two effects resulting from
a cause (2E–1C), and one cue can be followed by two
outcomes and can be described as a cause producing two
effects (1C–2E) or as an effect resulting from two causes
(1E–2C). According to causal model theory, participants
should be sensitive to the interaction between causal
order and the number of the causes and effects, which is
defined as the structure of the causal relationship (Wald-
mann, 2000, 2001; Waldmann & Holyoak, 1992, 1997).
The model predicts that pairs of causes will interact in
the 2C–1E and 1E–2C scenarios (i.e., the negative diag-
onal of Figure 2) and predicts that pairs of effects will
not interact in the 2E–1C and 1C–2E scenarios (i.e., the
positive diagonal of Figure 2). In contrast, according to
the Rescorla–Wagner model, participants should be sen-
sitive only to the number of the cues and outcomes in
which cues interact regardless of their causal order. The
model therefore predicts that pairs of cues will interact
in the 2C–1E and 2E–1C scenarios (i.e., the left column
of Figure 2) and predicts that pairs of outcomes will not
interact in the 1C–2E and 1E–2C scenarios (i.e., the right
column of Figure 2).

To summarize, a conditional DP account applied to
causal model theory predicts that judgments of a pair of
differentially predictive causes should elicit a cue inter-
action effect, whereas judgments of a pair of differen-
tially diagnostic effects should not. In contrast, the

Rescorla–Wagner model predicts that judgments of a
pair of differentially contingent cues should elicit a cue
interaction effect, whereas judgments of a pair of differ-
entially contingent outcomes should not.

EXPERIMENT 1

Experiment 1 was designed to test the predictions
made by causal model theory and the Rescorla–Wagner
model by independently manipulating causal order and
the number of cues and outcomes. Thus, four causal sce-
narios were presented to participants, using the one-
phase simultaneous blocking task described above. Two
cues were described either as causes of an effect
(2C–1E) or as effects of a cause (2E–1C), or one cue was
described either as a cause of two effects (1C–2E) or as
an effect of two causes (1E–2C), as is shown in Figure 2.
In each of the four scenarios, the two events that were
presented simultaneously were either differentially pre-
dictive or diagnostic of the single event. Event A had a
moderately positive unconditional DP of .5 and was
paired with B, which had an unconditional DP of 0 or 1.
Causal model theory predicts that participants will
demonstrate a cue interaction effect in the 2C–1E and
1E–2C scenarios (and not in the other two), and the
Rescorla–Wagner model predicts that participants will
demonstrate a cue interaction effect in the 2C–1E and
2E–1C scenarios (and not in the other two).

Method

Participants and Design
Forty-eight undergraduate students at McMaster University par-

ticipated for course credit. The experiment was designed to test how
ratings of a moderately positive contingency varied in the presence
of a zero or a perfect contingency as a function of causal order and

Figure 2. Four possible causal scenarios generated by crossing causal order
(CE vs. EC) with the number of cues and outcomes (2–1 vs. 1–2).
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the number of cues and outcomes. A four-factor mixed design was
used, with causal order as a between factor with two levels (CE and
EC) and the number of cues and outcomes as a within factor with
two levels (2–1 and 1–2). Thus, half of the participants were as-
signed to the CE group and were presented with the 2C–1E and
1C–2E scenarios, and half were assigned to the EC group and re-
ceived the 2E–1C and 1E–2C scenarios. Within each group, the
order in which the scenarios were presented was counterbalanced.
A third within factor was the contingency of Event B (DPB 5 0 and
DPB 5 1), in which the order of presentation was also counterbalance d.
The fourth factor was a within factor representing the number of tri-
als prior to the participants’ ratings (32 and 48). Table 1 illustrates
the trial frequencies obtained by combining an unconditional con-
tingency for A (DPA 5 .5) with one of two unconditional contin-
gencies for B: a zero contingency (DPB 5 0) or a perfect con-
tingency (DPB 5 1). We use the notation introduced by Baker et al.
(1993) to represent the unconditional contingencies of the two
events, DPA/DPB. The designation for the two examples in Table 1
are .5/0 and .5/1, in which the value on the left of the solidus repre-
sents DPA and the value on the right represents DPB.

Procedure and Materials
The design and procedure for Experiment 1 were adapted from

Mehta (2000). The participants received instructions on a computer
screen, where they were informed about four strains of bacteria that
have been discovered in the mammalian digestive system. In the
2C–1E and 1E–2C scenarios, they were told that scientists were
testing whether a pair of chemicals affected the strain’s survival,
whereas in the 2E–1C and 1C–2E scenarios, the scientists were test-
ing whether the bacteria affected the production of a pair of chemicals.

Up to 4 participants at a time performed the experiment on Power
Macintosh computers located in separate rooms. The entire exper-
iment was programmed in MetaCard 2.3.1. In the instructions, the
four causal scenarios were identified as separate “experiments” de-
signed to test the influence of the chemicals on the bacterial strain
or vice versa. Within each scenario, 48 trials were presented in ran-
dom order, according to the frequencies presented in Table 1. The
addition or production of a chemical was indicated by a computer-
rendered movie of a colored three-dimensional chemical spinning
along its axis, and actual footage of moving bacteria was displayed
when the bacterial strain survived or was added. Faded, unmoving
grayscale images of the same chemicals and bacteria were dis-

played to indicate their absence on a given trial. The names of the
chemicals and bacteria were displayed only when the events oc-
curred. Each of the movies and images was randomly assigned a
fictitious name from a set of eight chemicals and four bacteria.
Chemical A was always presented on the left-hand side of the dis-
play, and Chemical B was always presented on the right. The ob-
server initiated a condition by clicking the Begin button on the com-
puter screen and initiated each subsequent trial by clicking the Next
Trial button.

The materials for the four causal scenarios are described as follows.
2C–1E. The participants were instructed that each of the two

chemicals would either be added to the bacterial strain or not, re-
sulting in the survival or death of the bacterial strain. They were
then presented with a series of trials in which one, both, or neither
chemical was added, followed by the survival or death of the bac-
terial strain.

1C–2E. The participants were instructed that the bacterial strain
would either be added to a human digestive environment or not, re-
sulting in the production of each of a pair of chemicals or not. They
were then presented with a series of trials in which the bacterial
strain was either added or not, followed by the production of one,
both, or neither chemical.

2E–1C. The participants were instructed that the bacterial strain
would either be added to a human digestive environment or not, re-
sulting in the production of each of a pair of chemicals or not. They
were then presented with a series of trials in which one, both, or
neither chemical was produced, followed by the addition of the bac-
terial strain or not.

1E–2C . The participants were instructed that each of the two
chemicals would either be added to the bacterial strain or not, re-
sulting in the survival or death of the bacterial strain. They were then
presented with a series of trials in which the bacterial strain survived
or not, followed by the addition of one, both, or neither chemical.

After passively viewing a series of 32 trials, the participants in
the 2C–1E and the 1E–2C scenarios were asked to rate how strongly
each chemical affected the survival of the bacteria, and those in the
2E–1C and 1C–2E scenarios were asked to rate how strongly the
bacteria affected the production of each chemical. Ratings were
made on a scale ranging from 2100 to 100 by using a mouse to
move a horizontal scroll bar from 2100 at the leftmost position to
100 at the rightmost position, anchored at 0 at the center. After they
had rated A, they were prompted to rate B, followed by another 16
trials in which they would repeat the rating process. After observ-
ing two “experiments” in which DPB was either 0 or 1, a second set
of instructions was presented, nearly identical to the first, differing
only in the number of cues and outcomes, as has been described
above. Again, DPB was either 0 or 1 for the latter two “experiments,”
comprising a total of four conditions.

Results and Discussion
Mean ratings of Event A after 48 trials are illustrated

in Figure 3A (error bars represent standard errors of the
means). Ratings for each of the four scenarios are plot-
ted as a function of the two DPB values. According to
causal model theory, when two causes produce a single
effect (2C–1E and 1E–2C), ratings of A, which was al-
ways moderately positive, should remain moderately
positive in the presence of a zero contingencyand should
be much less positive in the presence of a perfect con-
tingency (tracking the conditional DP values in Table 1).
When two effects result from a single cause (2E–1C and
1C–2E), A should be rated as moderately positive in the
presence of both a zero and a perfect contingency(track-
ing the unconditional DP values in Table 1). According

Table 1
Frequency of Events in Experiment 1

DPA/DPB

Trial Type .5/0 .5/1

ABO 9 18
A~BO 9 0
~ABO 3 6
~A~BO 3 0
AB~O 3 0
A~B~O 3 6
~AB~O 9 0
~A~B~O 9 18
Total trials 48 48

DPA .5 .5
DPA |B .5 .0
DPA |~B .5 .0
DPB .0 .1
DPB |A .0 .1
DPB |~A .0 .1

Note—The unconditionalDP values were calculated using Equations 1
and 2. The conditional DP values were calculated using Equations 3–6.
A and B are cues, O represents outcome. For further explanation, see text.
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to the Rescorla–Wagner model, cue interaction should
be present only in the 2C–1E and 2E–1C scenarios. The
pattern of results presented in Figure 3A is consistent
with causal model theory. Only in the 2C–1E and 1E–2C
scenarios are ratings of the moderately positive contin-
gency noticeably lower in the presence of a perfect con-
tingency (DPB 5 1) than in the presence of a zero contin-
gency (DPB 5 0). Although noticeably lower here refers
to a sizeable negative rating of A, what is relevant is that
the trend in the participants’ ratings of A demonstrate
conditionalization (see also Spellman, 1996a).

A four-way mixed analysis of variance (ANOVA; ef-
fects were assessed for significance at the a 5 .05 level),
with ratings of A as the dependent variable, revealed sig-
nificant main effects of contingency for Event B [DPB 5

0 vs. DPB 5 1; F(1,46) 5 40.12, MSe 5 3,112.23]and the
number of cues and outcomes [2–1 vs. 1–2; F(1,46) 5
4.55, MSe 5 1,388.45]. The trial main effect (rating after
32 vs. 48 trials) was not significant [F(1,46) 5 0.28,
MSe 5 609.23], nor did it interact with any of the other
factors. The main effect of causal order (CE vs. EC), al-
though not significant [F(1,46) 5 0.04, MSe 5 2,573.04],
did interact with the number of cues and outcomes and
the contingency for Event B [F(1,46) 5 17.78, MSe 5
2,635.78]. This significant three-way interaction was
further examined using the Tukey test. When DPB 5 0,
the ratings were not significantly different among the
four scenarios. Moreover, these ratings did not differ
from the ratings in the two scenarios in which one cause
produced two effects (1C–2E and 2E–1C) when DPB 5 1.

Figure 3. Mean ratings in Experiment 1 after 48 trials of (A) Event A and (B)
Event B. For each event, the ratings are shown as a function of DPB separately
for each of the four scenarios. Error bars represent standard errors of the
means.
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In contrast, ratings in the two scenarios in which two
causes produced one effect (2C–1E and 1E–2C) when
DPB 5 1 were significantly lower than the other ratings
and did not differ from each other.

Mean ratings of Event B are shown in Figure 3B.
Table 1 indicates that for both .5/0 and .5/1, the condi-
tional probabilities are the same as the unconditional
probabilities. Therefore, ratings of B should be the same
for the four scenarios and should be lower for .5/0 than
for .5/1. It is clear from Figure 3B that the ratings for B
are consistent with causal model theory. With ratings of
Event B as the dependent variable, a four-way ANOVA
revealed that the only main effect that was significant
was DPB [F(1,46) 5 628.13, MSe 5 1,394.64]. None of
the interactions involving DPB were significant, con-
f irming that ratings for a constant DPB did not differ
across causal order or number of cues and outcomes. The
only other significant outcome was the interaction be-
tween causal order and trial [F(1,46) 5 4.14, MSe 5
474.94]. The Tukey test revealed that this interaction re-
flected higher ratings for the CE order than for the EC
order after 32 trials, but not after 48 trials.

In summary, Experiment 1 resulted in a significant
interaction between causal order and the number of cues
and outcomes. When two causes resulted in one effect
(2C–1E and 1E–2C), the participants rated the moder-
ately contingent Cause A as less predictive when it was
paired with a perfect predictor (DPB 5 1) than when it
was paired with a nonpredictor (DPB 5 0). When one
cause resulted in two effects (2E–1C and 1C–2E), the
participants rated the moderately contingent Effect A as
equally diagnostic, both when the effect it had been
paired with was perfectly diagnostic (DPB 5 1) and when
it was nondiagnostic (DPB 5 0). These results indicate
that cue interaction occurs when two causes produce one
effect, regardless of whether the causes are presented be-
fore or after the effect, thus providing clear support for
causal model theory. The participants’ overall ratings
seem to be sensitive to the causal structure of contingent
events.

Both causal model theory and the Rescorla–Wagner
model predict a cue interaction effect when two causes
precede a single effect (2C–1E) and no cue interaction
when one cause precedes two effects (1C–2E). However,
only causal model theory predicts the pattern of results
obtained in Experiment 1, in which a cue interaction ef-
fect occurs when one effect precedes two causes (1E–2C)
and no cue interaction occurs when two effects precede
one cause (2E–1C). Note, however, that ratings of A in
the presence of a perfect predictor are lower in the 2E–1C
scenario than in the 1C–2E scenario. Similarly, ratings of
A in the presence of a perfect predictor are lower in the
2C–1E scenario than in the 1E–2C scenario. According
to causal model theory, when two effects precede a single
cause (2E–1C), there should be no difference between
ratings of A when B is perfectly predictive or nonpredic-
tive, and these ratings should not differ from those in the
1C–2E scenario. In contrast, when one effect precedes

two causes (1E–2C), there shouldbe a difference between
ratings of A when B is perfectly predictive or nonpredic-
tive, and these ratings should not differ from those in the
2C–1E scenario. The data indicate, however, that when
the effects come first, the influence of the causal model
seems to lessen, or perhaps, the influence of an associa-
tive mechanism may increase. We will revisit this point in
the Discussion section of Experiment 2.

EXPERIMENT 2

The data provided in Experiment 1 indicate that par-
ticipants’ overall ratings are sensitive to the causal struc-
ture of events. Following the suggestion that causal order
and the number of cues and outcomes had been con-
founded in previous investigations of cue interaction,
four causal scenarios were tested in Experiment 1, in
which a moderately positive contingency (DPA 5 .5) was
paired with either a zero contingency (DPB 5 0) or a per-
fect contingency (DPB 5 1). Experiment 2 was designed
to replicate the results from Experiment 1 and to gener-
alize from the extreme contingencies used to less ex-
treme values, by including three intermediate DPB values
(.25, .5, .75). The DPB values chosen for the three inter-
mediate contingency pairs were selected to best contrast
the predictions made by the Rescorla–Wagner model and
causal model theory through participants’ ratings of A
and were not chosen for their intrinsic value. To clarify,
several different frequencies can be selected to fill the
eight cells of the 4 3 2 matrix, each resulting in various
combinations of unconditional and conditional DP val-
ues. The frequencies for Experiment 2 (shown in
Table 2) were selected to produce a descending pattern
of conditionalDPA values while maintaining identical un-
conditional DPA values. As well, they were selected so
that the unconditional and the conditional DPB values
would be as closely matched as possible. The DPB values
were, therefore, selected only for their influence on the
conditional DPA values. The frequencies were also se-
lected so that the respective conditional contingencies
for A and B would be identical,where DPA|B 5 DPA|~B and
DPB|A 5 DPB|~A, resulting in the symmetry observed in
the two columns of the 4 3 2 contingencymatrix for each
of the five conditions (see Spellman, 1996b, Property 4).

In addition, Experiment 2 was designed to indepen-
dently test each of the four causal scenarios. In Experi-
ment 1, half of the participants were presented with both
the 2C–1E and the 1C–2E scenarios, and the other half
were presented with the 2E–1C and the 1E–2C scenar-
ios. In Experiment 2, however, each group was presented
with only one causal scenario (2C–1E, 2E–1C, 1C–2E,
or 1E–2E).

Method

Participants and Design
Sixty undergraduate students at McMaster University partici-

pated for course credit. The experiment was designed as a replica-
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tion of Experiment 1, using five contingency pairs rather than two,
casual scenario as a between factor, and a total of 32, rather than 48,
trials with a single overall rating. The 60 participants were ran-
domly assigned to one of the four causal scenarios (i.e., 2C–1E,
1C–2E, 2E–1C, or 1E–2C). Within each group, the presentation
order of the five DPB values was randomized. Table 2 illustrates the
trial frequencies obtained by combining DPA 5 .5, with each of the
five DPB values.

Procedure and Materials
The procedure and materials in Experiment 2 were very similar

to those in Experiment 1. The difference was in the total number of
trials and the number of DPB values. The participants were pre-
sented with 32 trials before rating Events A and B, where they
would repeat the process after observing each of the five “experi-
ments.” Two more fictitious chemicals and one more bacterial strain
were added among those to be presented.

Results and Discussion
Mean ratings of Event A are illustrated in Figure 4A.

Ratings for each of the four causal scenarios are plotted
as a function of the five DPB values. According to causal
model theory, ratings of A in the 2C–1E and 1E–2C sce-
narios should track the pattern of conditional DPA values
presented in Table 2. The conditional DPA values de-
crease as DPB increases, and therefore, ratings of A
should also decrease. Causal model theory also predicts
that the ratings of A in the 1C–2E and 2E–1C scenarios
should track the pattern of unconditional DPA values pre-
sented in Table 2. The unconditional DPA values are con-
stant, and therefore, the ratings of A should not change
across the five DPB values. The Rescorla–Wagner model
makes similar predictions, but for different scenarios:
Ratings of A should be a decreasing function of DPB for
the 2C–1E and 2E–1C scenarios and should be indepen-
dent of DPB for the 1C–2E and 1E–2C scenarios. As we
noted above, the predictions for both models are ordinal.
Thus, we are examining not only the presence or absence

of cue interaction, but also the ordinal level of cue inter-
action among the four causal scenarios.

The ratings of A appear to support the predictions
made by causal model theory. In the 2C–1E and 1E–2C
scenarios, ratings of A decline as DPB increases, tracking
the pattern of conditional DPA values presented in
Table 2. In the 2E–1C and 1C–2E scenarios, ratings of A
remain relatively constant regardless of the contingency
for Event B, tracking the pattern of unconditional DPA
values presented in Table 2.

With four causal scenarios (2C–1E, 1C–2E, 2E–1C,
and 1E–2C) as a between factor and five DPB values (0, .25,
.5, .75, and 1) as a within factor, a mixed ANOVA was
conductedon the ratings of A. As was expected, the analy-
sis revealed main effects of causal scenario [F(3,56) 5
14.83, MSe 5 2,098.34] and DPB [F(4,224) 5 13.32,
MSe 5 1,348.32], as well as a significant interaction be-
tween them [F(12,224) 5 3.98, MSe 5 1,348.32]. The
Tukey test was used to examine this significant inter-
action in order to see whether the results replicated those
found in Experiment 1. The ratings of A for the two DPB
values used in Experiment 1 (DPB 5 0 and DPB 5 1) were
compared, and the ratings were not significantly differ-
ent among the four causal scenarios when DPB 5 0. Also,
these ratings did not differ from the ratings when DPB 5
1 if one cause produced two effects (1C–2E and 2E–1C).
In contrast, when two causes produced a single effect
(2C–1E and 1E–2C) and DPB 5 1, the ratings were sig-
nificantly lower than the other ratings and did not differ
from each other. Thus, the ratings of A in Experiment 2
provide a replication of the Experiment 1 results. Cue
interaction occurs when two causes result in one effect,
regardless of whether the causes precede or follow the ef-
fect, and cue interaction does not occur when a single
cause results in two effects, regardless of their causal order.

According to causal model theory, ratings of A should
decrease as DPB increases when two causes produce one
effect (2C–1E and 1E–2C) and should remain constant
when one cause produces two effects (1C–2E and
2E–1C). A linear trend analysis was conducted on the A
ratings, separately for each scenario, across the five DPB
values.1 As is predicted by causal model theory, the lin-
ear trend was significant for the 2C–1E [F(1,56) 5
40.10] and the 1E–2C [F(1,56) 5 29.60] scenarios and
was not significant for the 1C–2E [F(1,56) 5 0.09] and
2E–1C [F(1,56) 5 0.74] scenarios (MSe 5 1,751.69 for
each comparison).

Mean ratings of Event B are illustrated in Figure 4B.
The ratings of B clearly increase with DPB. Table 2 indi-
cates that for .5/.25, .5/.5, and .5/.75, the conditional val-
ues of DPB are less than the unconditional values. Thus,
according to causal model theory, ratings of B when two
causes produce one effect (2C–1E and 1E–2C) should be
less than when one cause produces two effects (1C–2E
and 2E–1C). Although the data tend in that direction, the
statistical analysis indicated that the scenario effect was
not significant. With ratings of B as the dependent mea-
sure, a mixed ANOVA revealed only a significant main

Table 2
Frequency of Events in Experiments 2 and 3

DPA/DPB

Trial Type .5/0 .5/.25 .5/.5 .5/.75 .5/1

ABO 6 8 10 11 12
A~BO 6 4 2 1 0
~ABO 2 2 2 3 4
~A~BO 2 2 2 1 0
AB~O 2 2 2 1 0
A~B~O 2 2 2 3 4
~AB~O 6 4 2 1 0
~A~B~O 6 8 10 11 12
Total trials 32 32 32 32 32

DPA .5 .50 .50 .50 .5
DPA |B .5 .47 .33 .17 .0
DPA |~B .5 .47 .33 .17 .0
DPB .0 .25 .50 .75 .1
DPB |A .0 .13 .33 .67 .1
DPB |~A .0 .13 .33 .67 .1

Note—UnconditionalDP values were calculated using Equations1 and
2. ConditionalDP values were calculated using Equations 3–6. For fur-
ther explanation, see text.
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effect of DPB [F(4,224) 5 107.84, MSe 5 1,047.12].The
main effect of causal scenario was not significant
[F(3,56) 5 1.16, MSe 5 2,296.1], nor was the interaction
between causal scenario and DPB [F(12,224) 5 0.89,
MSe 5 1,047.13]. To evaluate whether the absence of a
significant scenario effect was attributable to the cases in
which the conditional and the unconditional values of
DPB were the same (.5/0 and .5/1), an ANOVA was con-
ducted on the three other pairings (.5/.25, .5/.5, and
.5/.75). Again, only the main effect of DPB was signifi-
cant [F(2,112) 5 50.51, MSe 5 1,223.04].

In summary, the ratings of A in Experiment 2 provide
a direct replication of the ratings in Experiment 1 and

generalize the results to less extreme DPB values. When
two causes produced one effect, the participants rated the
moderately positive cause as less predictive when it was
paired with a strong predictor than when it was paired
with a weak predictor. When a single cause produced
two effects, the participants rated the moderately posi-
tive effect as equally diagnostic, regardless of the diag-
nosticity of the effect that it was paired with. This inter-
action between causal order and the number of cues and
outcomes is consistent with the predictions of causal
model theory. Although not statistically significant, the
ratings of B were also consistent with causal model the-
ory. It must be emphasized that the B ratings do not pro-

Figure 4. Mean ratings in Experiment 2 after 32 trials of (A) Event A and (B) Event
B. For each event, the ratings are shown as a function of DPB (0, .25, .5, .75, or 1) sepa-
rately for each of the four scenarios. Error bars represent standard errors of the means.
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vide a strong assessment of the models, because the DPB
values were selected only for their influence on the con-
ditional DPA values.

As in Experiment 1, the causal model effect was not as
strong when the effect(s) preceded the cause(s). In Ex-
periment 2, we see that ratings of A were consistently
lower in the 2E–1C scenario than in the 1C–2E scenario.
Similarly, ratings of A tended to be lower in the 2C–1E
scenario than in the 1E–2C scenario. Again, although the
differences are not significant, when the effect(s) pre-
cede the cause(s), participants’ ratings seem to be influ-
enced less by the causal description of the events and
more by their associative strength. Although the data
from Experiments 1 and 2 provide conclusive evidence
that participants’ judgments are driven primarily by the
structure of the causal relationship, we will demonstrate
the significant role of associative processes in the fol-
lowing two experiments.

EXPERIMENT 3

A conditionalDP account applied to causal model the-
ory allows one to generate dichotomous predictions in
which cue interaction should occur or not (as has been
done in previous investigations), but in addition, it al-
lows for ordinal predictions where the relative effective-
ness of each event determines the degree to which they
interact. The data from Experiments 1 and 2 provide
solid evidence for the influence of causal expectation on
human inference. In Experiment 3, we demonstrate that
these high-level processes may not occur independently
of basic low-level (associative) processes, by exploring
a different measure of causal assessment.

In Experiments 1 and 2, the participants passively
viewed a series of trials before providing an overall rat-
ing of the relationship between the events. Our method-
ology differs from that reported by others (e.g., Cobos,
López, Caño, Almaraz, & Shanks, 2002; Price & Yates,
1995; Shanks & López, 1996; Waldmann & Holyoak,
1992), who required participants to predict the outcome
of each trial and provided corrective feedback on their
predictions. For example, on each trial, the participants
in Experiment 1 of Waldmann and Holyoak (1992)
would see descriptions of people on a computer screen
and were to use those descriptions to predict whether
they thought a person had the described disease (by
pressing a Yes key) or did not have the disease (by press-
ing a No key). After indicating their response, they re-
ceived correct or incorrect as feedback. If participants
are presented with four types of event combinations (AB,
A~B, ~AB, ~A~B) and are asked to predict the outcome
of each trial (Yes or No), a 4 3 2 matrix, such as the one
presented in Figure 1, can be constructed in which the
columns represent the two prediction responses (Yes or
No), rather than the actual outcomes. These predictions
can then be used as an indirect measure of their condi-
tional DP estimates (López, Shanks, Almaraz, & Fernan-
dez, 1998; Tangen & Allan, 2003).

We have shown in Experiments 1 and 2 that participants
demonstrate a sensitivity to the structure of causal relation-
ships that is consistentwith the predictionsmade by causal
model theory. To further investigate the participants’
sensitivity to causal structure, we required participants
in Experiment 3 to predict the outcome of each trial, in
addition to providing an overall rating of the relationship
between the events. Thus, we obtained both a measure of
causal assessment derived from prediction responses and
explicit overall judgments between the events, to deter-
mine whether the two measures were congruent as we
varied the structure of the causal relationship.

Among the four causal scenarios described earlier
(2C–1E, 1C–2E, 2E–1C, and 1E–2C), the results from
Experiments 1 and 2 revealed that neither causal order
nor the number of cues and outcomes were significant
factors independently. Instead, the important variable
was the interaction between the two factors—that is, the
structure of the causal relationship. Therefore, to avoid
the potential confound of the number of predictions the
participants were making on each trial, we eliminated the
right-hand column of Figure 2 and presented them with
only two cues and one outcome (2C–1E and 2E–1C).
Each group was shown identical stimuli, but the causal
description of the stimuli differed between the two
groups. According to causal model theory, judgments
should vary depending on whether the events are de-
scribed as two causes resulting in an effect or as two ef-
fects resulting from one cause. In contrast, the Rescorla–
Wagner model does not make a distinction between the
causal description of the events and codes the two sce-
narios identically as two cues followed by one outcome.
On each trial, a participant was presented with one of
four event combinations (AB, A~B, ~AB, ~A~B) and then
predicted whether the effect /cause occurred, given the
information from the preceding pair of events and from
previous trials. Corrective feedback (correct or incorrect)
was provided immediately after their decisions had been
made. After 32 trials, they were asked to provide an over-
all rating of the relationship between the events, as in the
previous experiments. The same five contingency pairs
were used as those in Experiment 2.

Method

Participants and Design
Thirty undergraduate students at McMaster University took part

in this experiment for course credit. The design of Experiment 3
was identical to that in Experiment 2, except that the 1C–2E and
1E–2C causal scenarios were eliminated and the participants were
asked to predict the outcome of each trial and were provided feed-
back on their decisions. The frequency of events in Experiment 3
are shown in Table 2.

Procedure and Materials
The same procedure and materials as those in Experiment 2 were

used, with the addition of predictions on each trial. The participants
were presented with two cues consisting of the presence or absence
of two chemicals (2C or 2E) and were then asked to predict whether
they thought the bacterial strain survived/was added or not by click-
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ing one of two buttons on the computer screen. Once they had made
their selection, they were presented with the outcome (1E or 1C) along
with correct or incorrect as feedback. The prediction responses for
each event combination were recorded and used to calculate estimated
conditional DP values by counting the number of yes and no responses
for each event combination (AB, A~B, ~AB, or ~A~B) after 16, 32, 48,
and 64 trials and substituting these frequencies into Equations 3–6.

Results
In this experiment there were two dependent mea-

sures, ratings and predictions.

Ratings
Figures 5A and 5B depict the mean ratings for Cues A

and B, respectively. The pattern of results for both cues
was similar to that observed in Experiment 2. Ratings of

A, in the 2C–1E scenario, decline as DPB increases,
tracking the pattern of conditional DPA values presented
in Table 2. Ratings of A, in the 2E–1C scenario, remain
relatively constant as DPB increases, tracking the pattern
of unconditional DPA values presented in Table 2. With
ratings of A as the dependent variable, a mixed ANOVA,
with causal scenario (2C–1E vs. 2E–1C) as a between
factor and DPB (0, .25, .5, .75, and 1) as a within factor,
revealed significant main effects for scenario [F(1,28) 5
8.03, MSe 5 4,048.77] and DPB [F(4,112) 5 5.21, MSe 5
1,845.58],as well as a significant interaction [F(4,112) 5
2.95, MSe 5 1,845.58]. As in Experiment 2, the linear
trend was significant for the 2C–1E scenario [F(1,28) 5
23.80], but not for the 2E–1C scenario [F(1,28) 5 0.66
(MSe 5 2,338.93 for both comparisons)].

Figure 5. Mean ratings in Experiment 3 after 32 trials of (A) Cue A and (B)
Cue B. For each cue, the ratings are shown as a function of DPB (0, .25, .5, .75,
or 1) separately for each of the two scenarios. Error bars represent standard
errors of the means.
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Figure 5B indicates that the ratings of B increase with
DPB and do not appear to depend on causal scenario.
With ratings of B as the dependent measure, a mixed
ANOVA revealed a significant main effect of DPB
[F(4,112) 5 18.59, MSe 5 2,069.06].The main effect of
causal scenario was not significant [F(1,28) 5 0.001,
MSe 5 3,001.04], nor was the interaction between con-
tingency and causal scenario [F(4,112) 5 1.26, MSe 5
2,069.06].

Predictions
Figures 6A and 6B plot the estimated DP values for

Cue A conditional on the presence and absence of B, re-
spectively. It is clear from these two figures that the par-
ticipants’ prediction responses are at variance with their
ratings. A comparison of the two figures also indicates
that the estimates of DPA |B are different from the esti-
mates of DPA|~B. A 2 (scenario: 2C–1E or 2E–1C) 3 2
(Cue B status: present or absent) 3 5 (DPB: 0, .25, .5, .75,
or 1) mixed ANOVA on the estimated conditional DP
values for A confirms these observations. The main ef-
fect of causal scenario was not significant [F(1,28) 5
1.25, MSe 5 1,201.76], nor did it interact with DPB
[F(4,112) 5 1.00, MSe 5 1,088.09], Cue B status
[F(1,28) 5 2.54, MSe 5 1,357.18], or both [F(4,112) 5
0.9, MSe 5 603.56]. The main effect of DPB was signifi-
cant [F(4,112) 5 3.46, MSe 5 1,088.09]. The main ef-

fect of Cue B status was also significant [F(1,28) 5 9.91,
MSe 5 1,357.18], indicating that estimated conditional
DP for A was lower when B was present (estDPA|B 5 .24)
than when it was absent (estDPA |~B 5 .38). The inter-
action between DPB and Cue B status was not significant
[F(4,112) 5 .54, MSe 5 603.56].

Figures 6C and 6D illustrate the estimated DP values
for B, conditional on the presence and absence of A, re-
spectively. A 2 (scenario: 2C–1E or 2E–1C) 3 2 (Cue A
status: present or absent) 3 5 (DPB: 0, .25, .5, .75, or 1)
mixed ANOVA on the estimated conditional DP values
for B revealed a main effect of DPB [F(4,112) 5 31.26,
MSe 5 1,137.41]. The main effect of Cue A status was
also significant [F(1,28) 5 10.06, MSe 5 1,349.84], in-
dicating that estimated conditional DP for B was lower
when A was present (estDPB|A 5 .31) than when it was
absent (estDPB |~A 5 .44). No other effects or interactions
reached significance.

Discussion
The results from Experiment 3 provide a direct repli-

cation of the rating data obtained in Experiments 1 and
2. The participants rated identical contingencies quite
differently dependingon whether the events had been de-
scribed as causes or effects. In the 2C–1E scenario, the
participants gave lower ratings to the moderately predic-
tive Cause A when it was paired with a highly predictive

Figure 6. Mean estimated conditional DP values in Experiment 3 for Cues A and B as a function of DPB separately for
the two causal scenarios: (A) estDPA |B , (B) estDPA |~B , (C) estDPB |A , and (D) estDPB |~A . Error bars represent standard er-
rors of the means.
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Cause B than when it was paired with a less predictive
Cause B, indicating that causes interact. In contrast, in
the 2E–1C scenario, the ratings of Effect A did not de-
pend on the contingency of Effect B, indicating that ef-
fects do not interact

In contrast to the ratings, a causal scenario effect was
not seen with the prediction responses. For both 2C–1E
and 2E–1C, the estimated conditional DP values for A
decreased as unconditional DPB increased, indicating
that cue interaction occurred in both scenarios. There ap-
pears to be a dissociation between the ratings and the
prediction responses. Table 2 shows that for each cue,
the two conditional DP values were always the same—
that is, DPA|B 5 DPA|~B and DPB|A 5 DPB|~A. This was not
the case, however, for the estimates based on the partic-
ipants’ predictions, where estDPA|B , estDPA |~B and est-
DPB |A , estDPB |~A. That is, the estimated conditional DP
value was smaller when the cue conditionalized upon
was present than when it was absent. This pattern of re-
sults was also found by Tangen and Allan (2003).

In summary, identical stimuli were presented to the
participants, which were described either as two causes
of an effect (2C–1E) or as two effects of a cause (2E–
1C). The participants’ overall judgments of these rela-
tionships varied systematically depending on their
causal labels. In addition to making an overall judgment
of the relationship, they were asked to make a prediction
as to the whether the outcome would occur or not on each
trial. Their prediction responses did not vary according
to the causal description of the events.

We have revealed a dissociationbetween two means of
assessing judgments of causality. Trial-by-trial predic-
tion responses require participants to estimate the pres-
ence or absence of the outcome. The results suggest that
participants manage this task by simply basing their
judgmentson the current level of associative strength, iden-
tifying cues as generic events without any deeper recog-
nition of their causal status. Overall ratings, on the other
hand, require participants to not only consider the status
of a single outcome, but also take into account the causal
relationship among the events presented.

Thus, it seems either that participants can report the
current level of associative strength in their predictions
by basing their causal assessments on the number of cues
and outcomes, rather than on the causal structure of the
events, or that their assessments can reflect the causal
status of the events by taking into considerationhow they
are structured. It depends on the nature of the question
being asked.

EXPERIMENT 4

The results from Experiment 3 revealed that the par-
ticipants were sensitive to the causal description of the
cues and outcome in rating the overall relationship but
that the effect was absent in their trial-by-trial predic-
tions. Experiment 4 was designed to further investigate
this dissociation between ratings and prediction re-

sponses by increasing the total number of trials in each
condition from 32 to 64 and having the participants pro-
vide an overall rating after 16, 32, 48, and 64 trials. By
increasing the number of ratings, we could compare each
measure across trials as a functionof causal scenario. Per-
haps a greater number of trials would result in a greater
sensitivity to the associative processes at work and less
sensitivity to the causal description of the events. In-
creasing the total number of trials resulted in the elimi-
nation of the .5/.5 contingency pair in order to maintain
a 1-h experimental session.

Method

Participants and Design
Forty undergraduate students at McMaster University took part

in this experiment for course credit. The design of Experiment 4
was similar to that in Experiment 3, except that the total number of
trials was increased to 64, the participants were asked to rate each
cue after 16, 32, 48, and 64 trials, and the .5/.5 contingency pair
was eliminated. The event frequencies in Experiment 4 are shown
in Table 3.

Procedure and Materials
The procedure and materials for Experiment 4 were similar to

those in Experiment 3 apart from the total number of trials pre-
sented and the number of ratings provided by the participants. Four
contingency pairs were presented to the participants as separate
“experiments.”

Results
As in Experiment 3, there were two dependent mea-

sures, ratings and predictions.

Ratings
Figures 7A and 7B depict the mean ratings after 64 tri-

als for Cues A and B respectively, and Table 4 depicts the
mean and standard error of the ratings for Cue A after

Table 3
Frequency of Events in Experiment 4

DPA/DPB

Trial Type .5/0 .5/.25 .5/.75 .5/1

ABO 12 16 22 24
A~BO 12 8 2 0
~ABO 4 4 6 8
~A~BO 4 4 2 0
AB~O 4 4 2 0
A~B~O 4 4 6 8
~AB~O 12 8 2 0
~A~B~O 12 16 22 24
Total Trials 64 64 64 64

DPA .5 .50 .50 .5
DPA |B .5 .47 .17 .0
DPA |~B .5 .47 .17 .0
DPB .0 .25 .75 .1
DPB |A .0 .13 .67 .1
DPB |~A .0 .13 .67 .1

Note—UnconditionalDP values were calculated using Equations1 and
2. ConditionalDP values were calculated using Equations 3–6. For fur-
ther explanation, see text.
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32, 48, and 64 trials. The ratings and estimated DP val-
ues after 16 trials are not reported, since the participants’
prediction responses of the randomly presented events
occasionally resulted in 4 3 2 matrices with row fre-
quencies of zero. The pattern of results after 32 trials is
similar to that in Experiments 1, 2, and 3. In the 2C–1E
scenario, ratings of A roughly approximated the condi-
tional DP values presented in Table 3, whereas in the
2E–1C scenario the ratings were consistent with the un-
conditional DP values. After 48 and 64 trials, however, a
different pattern of results emerged. As is illustrated in
Figure 7A, ratings of A declined as DPB increased, re-
gardless of the causal scenario. The effect of the causal
model seems to have dissipated over trials, and cue inter-
action occurred for both scenarios. A 2 (scenario: 2C–1E

or 2E–1C) 3 4 (DPB: 0, .25, .75, or 1) 3 3 (trials: 32, 48,
or 64) mixed ANOVA on the ratings of A revealed only
a significant main effect for DPB [F(3,114) 5 21.27,
MSe 5 3,189.24], which contributed to significant inter-
actions with scenario [F(3,114) 5 3.33, MSe 5 3,189.24]
and trial [F(6,228) 5 2.60, MSe 5 1,397.89], and a three-
way interaction with trial and scenario [F(6,228) 5 3.13,
MSe 5 1,397.89]. A linear trend analysis2 was conducted
on the A ratings, separately for each scenario after 32,
48, and 64 trials. For the 2C–1E scenario, the linear trend
was significant after 32 trials [F(1,38) 5 13.59, MSe 5
2,715.31], 48 trials [F(1,38) 5 19.22, MSe 5 2,703.87],
and 64 trials [F(1,38) 5 37.95, MSe 5 2,482.45]. For the
2E–1C scenario, the linear trend was not significant after
32 trials [F(1,38) 5 2.87, MSe 5 2,715.31] but was sig-

Figure 7. Mean ratings in Experiment 4 after 64 trials of (A) Event A and (B)
Event B. For each event, the ratings are shown as a function of DPB (0, .25, .75,
or 1) separately for each of the two conditions. Error bars represent standard
errors of the means.
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nificant after 48 trials [F(1,38) 5 11.05,MSe 5 2,703.87]
and 64 trials [F(1,38) 5 4.70, MSe 5 2,482.45].Thus, by
48 trials, cue interaction was seen in both scenarios.

Figure 7B presents the mean and standard error of the
ratings for Cue B after 64 trials, and Table 5 presents the
mean and standard error of the ratings for Cue B after

32, 48, and 64 trials. Ratings of B seem fairly typical of
the results obtained in Experiments 1–3. Mean ratings
increased for both scenarios as a function of DPB. A 2
(scenario: 2C–1E or 2E–1C) 3 4 (DPB: 0, .25, .75, or
1) 3 3 (trials: 32, 48, or 64) mixed ANOVA on the rat-
ings of B confirmed this observation. The only signifi-

Table 4
Experiment 4 Overall Ratings and Estimated Conditional DP Values for Cue A

After 32, 48, and 64 Trials

DPA/DPB

No. .5/0 .5/.25 .5/.75 .5/1

Trials Measure M SEM M SEM M SEM M SEM

2C–1E
32 Rating 37.7 7.6 14.8 8.4 230.7 13.2 238.00 11.0

estDPA |B .41 .07 .27 .06 .17 .07 .18 .07
estDPA |~B .44 .10 .52 .06 .31 .08 .24 .06

48 Rating 29.1 9.6 24.0 8.6 210.8 10.7 232.90 12.3
estDPA |B .49 .06 .32 .07 .16 .06 .10 .04
estDPA |~B .47 .09 .51 .07 .26 .05 .11 .04

64 Rating 44.0 5.1 33.3 7.1 225.4 11.1 235.30 11.9
estDPA |B .51 .06 .35 .07 .17 .05 .08 .03
estDPA |~B .51 .07 .47 .06 .23 .04 .08 .02

2E–1C
32 Rating 33.6 9.5 26.0 10.30 25.7 11.7 211.30 14.0

estDPA |B .46 .06 .38 .07 .17 .09 .11 .05
estDPA |~B .55 .08 .56 .08 .35 .07 .30 .08

48 Rating 32.4 8.8 36.7 9.0 212.4 10.1 23.15 13.0
estDPA |B .47 .06 .45 .06 .14 .07 .09 .04
estDPA |~B .60 .07 .57 .06 .30 .06 .19 .05

64 Rating 37.7 8.4 12.1 10.70 26.8 10.3 21.50 12.9
estDPA |B .50 .05 .46 .06 .15 .06 .08 .04
estDPA |~B .58 .07 .59 .06 .31 .05 .17 .04

Table 5
Experiment 4 Overall Ratings and Estimated Conditional DP Values for Cue B

After 32, 48, and 64 Trials

DPA/DPB

No. .5/0 .5/.25 .5/.75 .5/1

Trials Measure M SEM M SEM M SEM M SEM

2C–1E
32 Rating 222.1 7.5 20.7 8.8 61.5 6.3 84.3 5.7

estDPB |A .12 .06 .08 .05 .44 .08 .68 .05
estDPB |~A .15 .07 .33 .08 .58 .09 .75 .07

48 Rating 210.5 11.2 29.3 9.5 46.1 10.7 90.7 4.0
estDPB |A .15 .04 .11 .04 .50 .06 .79 .02
estDPB |~A .12 .06 .30 .09 .60 .07 .80 .06

64 Rating 25.6 10.4 214.6 7.9 62.1 5.3 87.8 5.2
estDPB |A .12 .03 .14 .04 .56 .05 .83 .03
estDPB |~A .12 .05 .26 .07 .61 .07 .83 .05

2E–1C
32 Rating 25.6 9.2 23.8 10.20 49.9 11.1 81.1 8.6

estDPB |A .03 .06 .10 .06 .46 .08 .61 .07
estDPB |~A .12 .08 .28 .07 .63 .08 .80 .07

48 Rating 22.1 8.5 215.0 8.9 62.8 8.0 69.4 11.9
estDPB |A .01 .05 .10 .06 .54 .07 .73 .04
estDPB |~A .14 .07 .22 .06 .70 .06 .83 .07

64 Rating 28.8 9.5 213.6 9.4 58.9 8.1 73.0 1.9
estDPB |A .03 .04 .09 .05 .54 .06 .77 .04
estDPB |~A .11 .05 .22 .05 .70 .06 .85 .06



CUE INTERACTION AND JUDGMENTS OF CAUSALITY 121

cant main effect was for DP [F(3,114) 5 77.99, MSe 5
2,760.85]. The only other significant effect was a three-
way interactionbetween DPB, trial, and scenario [F(6,228)
5 3.55, MSe 5 747.98], resulting primarily from an ex-
ceptionally low mean rating in the 2C–1E scenario,
.5/.25 condition, after 64 trials.

Predictions
Figures 8A and 8B plot the estimated DP values for

Cue A conditional on the presence and absence of B, re-
spectively, computed after 64 trials. Table 4 also presents
the estimated DP values for Cue A conditional on the
presence and absence of B, and Table 5 also presents the
estimated DP values for Cue B conditionalon the presence
and absence of A. The data are presented for each of the
four contingencypairs after 32, 48, and 64 trials. The es-
timated DP data reported in Tables 4 and 5 correspond to
the cumulative values recorded after a given number of
trials, in that the 32-trial values are based on the first 32 tri-
als, the 48-trial values are based on the first 48 trials, and
the 64-trial values are based on all of the trials.

The mean estimated conditional DP values for A cal-
culated after 32, 48, and 64 trials closely track the con-
ditional DP values presented in Table 3 for both causal
scenarios. Also, the estimated DP values conditional on
the presence of B (estDPA |B) are lower than the estimated
DP values conditional on the absence of B (estDPA|~B).

A 2 (scenario: 2C–1E or 2E–1C) 3 4 (DPB: 0, .25, .75,
or 1) 3 3 (trials: 32, 48, or 64) 3 2 (Cue B status: pres-
ent or absent) mixed ANOVA on the estimated values for
A verifies these observations. The DPB main effect was
significant [F(3,114) 5 33.71, MSe 5 0.21] and con-
tributed to a significant interactionwith trial [F(6,228) 5
9.39, MSe 5 0.01]. The status of the Cue B main effect
was also significant [F(1,38) 5 19.57, MSe 5 0.14], in-
dicating that the estimated conditional DP for A was
lower when B was present (.28) than when it was absent
(.38), and the significant Cue B status 3 trial interaction
[F(2,76) 5 5.76, MSe 5 0.14] indicates that this differ-
ence became less evident across trials. Linear trend analy-
ses were conducted separately for the 2C–1E and the
2E–1C causal scenarios after 32, 48, and 64 trials, both
on the estimated DP values conditional on the presence
and absence of B. These analyses revealed a significant
linear trend for the prediction responses in both causal
scenarios after each of the three trial intervals (32, 48, or
64), regardless of the status of Cue B. Cue interaction is
evident in the prediction responses regardless of the cir-
cumstances.

Figures 8C and 8D illustrate the estimated DP values
for B conditional on the presence and absence of A, re-
spectively,computed after 64 trials. An identical ANOVA
was performed on the prediction response data for B,
substituting Cue A status (present or absent) for Cue B

Figure 8. Mean estimated conditional DP values in Experiment 4 for Events A and B as a function of DPB separately
for the two causal scenarios after 64 trials: (A) estDPA |B , (B) estDPA |~B , (C) estDPB |A , and (D) estDPB |~A . Error bars repre-
sent standard errors of the means.
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status. Resembling the data reported in Experiment 3,
significantmain effects were obtainedfor DPB [F(3,114)5
110.28, MSe 5 0.22] and Cue A status [F(1,38) 5 19.57,
MSe 5 0.15]. In addition, the trial factor introduced in
Experiment 4 was significant [F(2,76) 5 9.66,MSe 5 0.02]
and led to significant interactions with DPB [F(6,228) 5
6.93, MSe 5 0.01] and Cue A status [F(2,76) 5 5.76,
MSe 5 0.02]. As is indicated by the Cue A data, the esti-
mated conditional DP values for B were lower when A
was present (.36) than when it was absent (.46), and this
difference became less evident across trials.

Discussion
The rating data from Experiment 4 are similar to those

obtained in each of the previous experiments and have
extended these findings to reveal an interesting scenario 3
trial interaction. Experiment 4 has shown that cue inter-
action is evident across the entire span of 64 trials when
A and B are described as two causes of a single effect
(2C–1E). When the causal labels are reversed, however,
and A and B are described as two effects resulting from
a single cause (2E–1C), we see a very different pattern
of results across trials. As in each of the previous exper-
iments, ratings of A reveal that cue interaction is not ev-
ident in the 2E–1C scenario at 32 trials. After 48 and 64
trials, the cue interaction effect becomes increasingly ev-
ident. After 64 trials, ratings of A in the 2E–1C scenario
are clearly attenuated, as is indicated in Figure 7A. Al-
though the trial 3 scenario data in Experiment 1 tended
in the same direction as those in Experiment 4, the effect
was not significant. This trial 3 scenario interaction may
not have been evident in Experiment 1 between 32 and
48 trials because we compared the trend between two
trial points (32 and 48), as opposed to three (32, 48, and
64) in Experiment 4. Other data collected in our lab sug-
gest that the trial 3 scenario interaction is indeed robust
(Sadeghi, 2003).

The prediction response values are estimated by sep-
arately calculating DP conditional on the presence and
absence of the other cue. In both Experiments 3 and 4,
estimated DP conditional on the present cue was signif-
icantly lower than estimated DP conditional on the ab-
sent cue—that is, estDPA|B , estDPA |~B and estDPB |A ,
estDPB|~A. Although the conditional DP account has not
explicitly addressed the relationship between estimated
conditional DP and actual DP, one would expect them to
be congruent, as is indicated by the identical conditional
DP values presented in Table 3. Our data indicating that
the estimated values are not congruent with the actual
values might raise problems for the conditional DP ac-
count (see also Tangen & Allan, 2003).

In summary, Experiment 4 provides results similar to
those in Experiments1–3. Overall ratings were influenced
by the causal descriptionof the events after 32 trials. Trial-
by-trial prediction responses, however, were not influ-
enced by the causal description of the events. In addition,
Experiment 4 demonstrates that on later trials, the partic-

ipants become less sensitive to the difference in descrip-
tion of the two causal scenarios. These data support the
argument that causal assessments are not driven solely by
associative or causal model processes but, instead, seem
be sensitive to both, dependingon how and when they are
obtained. After repeatedly making trial-by-trial predic-
tions, participants may be disregarding the causal order of
the events, which may be reflected in their overall causal
ratings. By continuallypredicting the presence or absence
of the outcome, it is likely that participantsare treating the
events less like causes and effects and more like cues and
outcomes. As a consequence, on later trials, their causal
assessments are based on the same associative strength as
their trial-by-trial predictions.

GENERAL DISCUSSION

Price and Yates (1995) were among the first to sug-
gest that both high- and low-level processes are used in
causal assessments (see also Hagmayer & Waldmann,
2000, for a similar two-process position). There has been
little work since then to explain the conditions under
which these two processes are likely to be operating. In-
stead, there has been considerable debate between causal
model and associative learning theorists as to which of
the two theoretical interpretations is correct. The results
from our experiments revisit the arguments made by
Price and Yates as to the joint contribution of associative
and causal factors in judgments of causality.

A similar approach has been taken recently by Collins
and Shanks (2002) to account for primacy and recency
effects. They described two strategies involved in judg-
ments of causality: the momentary strategy, in which
judgments simply reflect the current associative strength
of the cue, and the integrative strategy, in which partici-
pants do not constrain their judgments on the current
perception of the relationship but, instead, integrate in-
formation across a number of trials. Although Collins
and Shanks were describing judgment strategies in pri-
macy and recency effects, we believe that the same tac-
tics are being used in judgments of causally asymmetric
events. Participants are required to estimate the presence
or absence of the outcome in their trial-by-trial predic-
tion responses. They likely manage this task by identify-
ing cues as generic events, without any deeper recogni-
tion of their causal status, thereby basing their judgments
on the current level of associative strength. Overall rat-
ings, on the other hand, require a more global (integra-
tive) strategy, in which participants not only consider the
status of a single outcome, but also take into account the
causal structure of the events presented.

We have demonstrated that the contribution of causal
and associative processes depends on what the partici-
pant is being asked about the events and on their experi-
ence with those events. Participants recognize that in
order to assess the influence of a given cause, they must
hold constant (conditionalize on) any alternative causes
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(2C–1E). Conversely, they understand that a single cause
can independently influence a number of effects
(1C–2E). In associative terms, two cues compete to be
associated with a single outcome. Conversely, one cue
can be associated with a number of outcomes. These re-
sults are not surprising to anyone. In fact, both causal
model theory and the Rescorla–Wagner model make
these predictions. The question, then, is whether the
events continue to interact or not when the order of the
causal labels are reversed (2E–1C and 1E–2C, respec-
tively). The Rescorla–Wagner model predicts that the
events should be treated identically in either instance,
and causal model theory predicts that the presence of a
cue interaction effect should be reversed along with the
causal labels.

Experiments 1 and 2 provide evidence that contin-
gency ratings are influenced by the interaction between
causal order (CE vs. EC) and the number of cues and
outcomes (2–1 vs. 1–2), indicating that participants are
sensitive to the structure of the causal relationship. In
Experiment 3, we see that predictions, a second measure
of causal assessment, are not so easily swayed by the
causal structure of the stimuli. Even though participants
assess the same causal relationship in either case, they
account for the causal description of the events in one in-
stance (i.e., ratings), but not in the other (i.e., predic-
tions). Finally, in Experiment 4, we see that the relative
weighting of causal and associative factors are influ-
enced not only by the means of assessing causal infer-
ence (ratings and predictions), but also by the repeated
exposure to the events. We cannot argue whether the re-
peated exposure to trial-by-trial predictions is influenc-
ing their causal judgments, or whether it is simply the re-
sult of additional trials, since these two factors were not
tested independently. Regardless, most experiments that
support an associative account use both a large number
of trials and trial-by-trial predictions,which may explain
the discrepant results. The relative contribution of each
of these factors remains an open question.

We would expect that if participants were asked to de-
scribe how the causal events were interconnected or were
required to use the causal model for some particular pur-
pose, they would likely be more sensitive to the structure
of the causal relationship than if they were asked to re-
port the probability, covariation, or frequency of the
events. Similarly, we might expect participants to con-
sider the causal nature of the events more carefully if
several types of causal relationshipsare presented, rather
than repeatedly presenting just one. As is indicated by
the results from Experiment 4, participants become less
sensitive to the influence of the causal model in both
their ratings and predictions as trials progress. One
might expect that participants will disregard the causal
order of the events if they are presented with a large
number of trials. In fact, several experiments supporting
an associative interpretation have shown just that. For
example, Cobos et al. (2002) required participants to

provide a single rating of each event after a learning
phase that consisted of as many as 240 trials. Our data
from Experiment 4 indicate that any causal model effect
would be largely eliminated by then. Although there is
no reason to expect the effect of the causal model to di-
minish over trials, it may be a step forward in under-
standing the circumstances with which we use them. We
suggest that the number of trials presented to the partic-
ipant is an important factor in determining their sensi-
tivity to the structure of the causal relationship. In fact,
many experiments that have provided support for causal
model theory have used a smaller number of trials (e.g.,
Waldmann, 2000, 2001), as compared with those sup-
porting an associative account (e.g., Cobos et al., 2002;
Shanks & López, 1996). This finding may help explain
much of the contradictory data in the literature.

Over the past decade, associativeand causal model the-
orists have continued to debate whether or not human in-
ferences are guided by causal interpretation. We have de-
scribed specific circumstances that allow one to find one
pattern of results or the other, and we provide evidence for
an account in which the two processes operate in con-
junction, rather than independently.
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NOTES

1. We are interested in whether there is a significant linear trend
among the A ratings across the five levels of DPB, tracking the condi-
tional DP values for Event A. The interval between the levels of the in-
dependent variable are unequal (i.e., .5, .47, .33, .17, and 0), whereby
the following coefficients were derived: 21, 17, 4, 213, and 229 (see
Howell, 1997, for the derivation).

2. With only four levels of DPB in Experiment 4, the following coef-
ficients were derived to test for a linear trend tracking the ordinal pat-
tern of the conditional DP values for A: 22, 18, 212, and 228.
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