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Semantic distance norms computed from an
electronic dictionary (WordNet)
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WordNet, an electronic dictionary (or lexical database), is a valuable resource for computational
and cognitive scientists. Recent work on the computing of semantic distances among nodes (synsets)
in WordNet has made it possible to build a large database of semantic distances for use in selecting
word pairs for psychological research. The database now contains nearly 50,000 pairs of words that
have values for semantic distance, associative strength, and similarity based on co-occurrence. Se-
mantic distance was found to correlate weakly with these other measures but to correlate more
strongly with another measure of semantic relatedness, featural similarity. Hierarchical clustering
analysis suggested that the knowledge structure underlying semantic distance is similar in gross form
to that underlying featural similarity. In experiments in which semantic similarity ratings were used,
human participants were able to discriminate semantic distance. Thus, semantic distance as derived
from WordNet appears distinct from other measures of word pair relatedness and is psychologically
functional. This database may be downloaded from www.psychonomic.org/archive/.

The modern study of word association and the devel-
opment of association norms was begun in the 1880s by
Galton, Trautscholdt, and Cattell (Esper, 1973; Wood-
worth, 1938). Trautscholdt, working in Wundt’s Leipzig
laboratory, distinguished between two kinds of associa-
tions: Quter associations were formed by repetition and
contiguity; inner associations were based on “semantic
or logical relationships, among which were listed super-
ordination, subordination, coordination, and causality”
(Esper, 1973, p. 98). Esper deemed the distinction be-
tween inner and outer associations “unfortunate,” per-
haps because it could be taken to imply a nonempirical
basis for semantic relations. But that aside, Trautscholdt’s
classification anticipated current research and theory on
associative and semantic influences on priming (Lucas,
2000). About 20 years after Trautscholdt’s work, Wresch-
ner suggested that “a lexicon of associatively connected
words could be the basis for many interesting studies, es-
pecially the psychology of language” (Esper, 1973, p. 97).
These two ideas lay the groundwork for the research to be
reported in this article—that word associations and se-
mantic relations are separable and that large-scale data-
bases have much to contribute to the understanding of as-
sociative and semantic relations between words.

The database, in the form of a comma-separated-value file (usfjcnlsa.
csv) is available for downloading from ftp://ftp.ttu.edu/pub/maki. We
are deeply indebted to several people for their generous sharing of their
own computational resources, experimental results, and technical in-
formation; in alphabetical order, they are Tom Landauer, Ken McRae,
Doug Nelson, Ted Pedersen, José Quesada, Mark Steyvers, and Randi
Tengee. We thank Doug Nelson and two anonymous reviewers for in-
sightful comments on an earlier version of this article. Correspondence
concerning this article should be addressed to W. Maki, Department of
Psychology, Texas Tech University, Lubbock, TX 79409 (e-mail:
bill. maki@ttu.edu).
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Most of the subsequent work on normative informa-
tion about relations among words followed in the tradi-
tion of associationism, focusing on word associations.
The most ambitious project was begun in 1973 by Nelson
and McEvoy and spanned 30 years. This effort resulted in
the most comprehensive set of association norms ever pro-
duced (Nelson, McEvoy, & Schreiber, 1998). Their word
association database contains 5,019 normed words and
72,176 responses (i.e., associative values for 72,176 pairs).
These norms were collected using the method of free as-
sociation, in which participants are instructed to respond
to a stimulus word with the first word that comes to mind.
The associative values (strengths) are then obtained by
computing the relative response frequencies (i.e., proba-
bilities that a particular response will be evoked by a given
stimulus).

What are the origins of word associations? One an-
swer, again following in the associationist tradition, is
that word associations arise from repetition and contigu-
ity as manifested in the frequency with which the words
co-occur (e.g., Fischler, 1977). Lexical co-occurrence is
correlated with associative strength (Spence & Owens,
1990) and has been proposed as a less costly and more
reliable source of association norms (Church & Hanks,
1989). The advent of very large corpora of computer-
readable text has made it possible to build large seman-
tic spaces derived from co-occurrence statistics (e.g.,
Landauer & Dumais, 1997; Lund & Burgess, 1996).

In contrast to the availability of association and co-
occurrence databases, normative information about se-
mantic relations has been slow to develop. There has been
atendency to select first and norm second (e.g., Fischler,
1977) and then for subsequent investigations to rely on
those materials (e.g., Fischler, 1977, via Seidenberg, Wa-
ters, Sanders, & Langer, 1984, to Thompson-Schill, Kurtz,
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& Gabrieli, 1998). McRae, de Sa, and Seidenberg (1997)
highlighted the problems inherent in relying on intuition
for the selection of semantically related pairs of words.
To be sure, several sets of semantic norms have been ob-
tained since (see the review by McRae, Cree, Seidenberg,
& McNorgan, in press). But these norms are not readily
available and consist of a few dozen to, at most, a couple
of hundred words. The lack of semantic norms is an im-
pediment to research on semantic relationships; notably,
the absence of normative resources has made it difficult
to sort out the contributions of associative and semantic
relations to priming effects (Lucas, 2000). Perhaps the
development of norms for semantic relations has been de-
layed because of the high cost of obtaining them (as has
been observed by Budanitsky & Hirst, 2000, and Church
& Hanks, 1989).

Some recent progress has been made toward develop-
ing a more comprehensive set of semantic norms by
McRae and colleagues (Cree & McRae, 2003; McRae
etal., in press; McRae et al., 1997). McRae used a feature-
norming procedure in which participants listed features
of a word’s referent, including physical, functional, and
categorical properties, as well as encyclopedic facts. The
result, for each word, is a vector of frequencies for each
of the many features present in the norms. Featural sim-
ilarity between words can then be determined by com-
puting the cosine between the vectors for each pair of
words. Feature norms are important for investigating
claims about semantic representation made by distributed
memory models (such as in Moss, Hare, Day, & Tyler,
1994). However, even after 12 years of norming efforts,
feature norms are available for only 541 words (McRae
et al., in press). So semantic resources still lag way be-
hind the thousands of words present in associative and co-
occurrence databases.

In this article, we propose another source of semantic
information that may greatly enhance our ability to select
large numbers of pairs of words, a priori, on the basis of
semantic relations. We have used an electronic dictionary,
WordNet (Fellbaum, 1998), to build a relatively large
scale database of semantic distances. We have combined
these semantic distances with existing co-occurrence, se-
mantic, and associative norms (Landauer & Dumais, 1997,
McRae et al., in press; Nelson et al., 1998). The resulting
database has been successfully used to select stimuli for
experiments on similarity ratings and memory. In the re-
mainder of this article, we will describe the methods and
materials used in constructing our semantic distance
database. Then we will highlight some results pertinent
to our claims about the utility of this resource and its
psychological properties.

METHODS AND MATERIALS

WordNet

The electronic dictionary, WordNet, was conceived in
the 1980s by George Miller. Miller has described the
motivation for and history of the development of Word-

Net in the forward to a book of chapters describing its
structure and uses (Fellbaum, 1998; see also Miller,
1999). However, in the same book, Miller (1998) also
observed that, although WordNet has been popular
among computational linguists, it has been mostly ig-
nored by psychologists. The WordNet Web site contains
a link to a bibliography (http://www.cogsci.princeton.
edu/~wn/papers.shtml) that lists over 300 articles ger-
mane to WordNet. In contrast, an electronic search of the
PsycINFO database for “WordNet” returned only five
articles—a chapter by Miller, a sociological article, and
three papers on applications of artificial intelligence. The
bibliography lists numerous papers using WordNet for
studies of word sense disambiguation, but WordNet ap-
parently has had no impact on psychological studies of
disambiguation (or anything else). One possible and sim-
ple reason for this neglect may be that it has not been ob-
vious how to extract (potentially) useful information
from WordNet. Only recently have computational tools
been made available that allow WordNet to be mined for
semantic distances (Patwardhan & Pedersen, 2003).

WordNet is a lexical database consisting of (at this writ-
ing) 115,424 nodes. Each node contains one or more syn-
onymous words (synsets). The largest group of nodes
(69%) contain nouns; the remaining synsets contain ad-
jectives (16%), verbs (12%), and adverbs (3%). The noun
synsets are linked by relationships, notably hypernymy—
hyponymy (super- and subordinates; is-a) and meronymy—
holonymy (has-a and is-part-of’). Figure 1 shows a part
of the WordNet taxonomy linking mouse, rat, and cat.
Mouse and rat are both rodents; the feline cat is a carni-
vore. The more general taxonomy, beginning with pla-
cental mammal, is common to both rodent and carnivore
categories. The root node, entity, subsumes all other
things in the taxonomy.

Different Approaches to Semantic Distance

The structure in Figure 1 squares with our intuitions
that mouse and rat are more similar than are mouse and
cat (even though in the association norms, mouse and cat
are more highly associated). The question is how to mea-
sure that similarity. Several measures were proposed and
investigated by computational linguists in the late 1990s.
There are three kinds of such measures (Jiang & Con-
rath, 1997). The edge-based approach (e.g., Leacock &
Chodorow, 1998) computes some transform of the num-
ber of edges (links) between concepts in a graph such as
that in Figure 1. The node-based approach (Resnik,
1995) begins with the observation that the information
content of a concept depends on its location within the
graph. More precisely, the lower the probability of en-
countering a concept, the higher is its information value.
The concept entity is associated with all things, so its in-
formation value is zero. The concept rodent is infre-
quently encountered in the taxonomy, so its information
value is higher (than entity, higher than mammal, and
higher than placental mammal). In this approach, fre-
quency is estimated from available frequency counts of
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Figure 1. A portion of the WordNet taxonomy showing hypernym
and hyponym (is-a) relations for mouse, rat, and cat.

words in English text (such as the Brown corpus; Francis
& Kucera, 1982). These frequencies are then used to com-
pute the probability for each concept.! The information
content (IC) for concept ¢ is quantified as IC(c) = —log
p(c). Because entity occurs in each pathway in the taxon-
omy, its probability is 1, and its IC is 0. Mammal’s 1C
would be considerably higher, and rodent’s IC higher still.
The node-based measure of similarity between two con-
cepts, ¢; and ¢,, is the maximum IC of all the nodes sub-
suming c, and c, in the taxonomy.

The third approach is the one developed and investi-
gated by Jiang and Conrath (1997) and involves a com-
bination of edge- and node-based approaches. Three IC
values are required to compute the Jiang and Conrath
measure of semantic distance between two concepts, ¢,
and c,. One needs the IC values for ¢, and ¢, and also the
IC value for the lowest superordinate of both ¢, and ¢,
co- The distance (here abbreviated as JCN) is given by
JCN = IC(¢;) — IC(¢y) + IC(c,) — IC(cy). This is the
sum of the informational difference between each of the
two concepts and their lowest superordinate.

Which of these approaches should be implemented?
There are two kinds of evidence, one psychological and
one computational, that combine to indicate that the
node-based approach is superior to the edge-based ap-
proach and that, in turn, the combined measure (JCN) is
superior to the node-based approach. Miller and Charles
(1991) have provided a set of semantic similarity ratings
for 30 pairs of nouns obtained from human observers;
this data set has been used as the benchmark for assess-
ing the various computational measures of semantic dis-

tance. Resnik (1995) compared the node-based distance
measures against the Miller and Charles ratings. Resnik
replicated the Miller and Charles study with 10 human
subjects. He reported that the correlation with the origi-
nal Miller and Charles data was » = .90. The correlation
of the edge-based measure of similarity was » = .66, but
the correlation of the node-based measure was » = .79. It
appears from these results that the node-based informa-
tion content measure is a better predictor of the human
data.? Jiang and Conrath (1997) correlated edge-based,
node-based, and their own combination measures with
the Miller and Charles ratings. Consistent with Resnik,
they reported that the node-based measure correlated
more highly (# = .819) than did the edge-based measure
(r = .604); however, the combination measure (expressed
as semantic similarity) correlated more highly yet (» =
.865). (Later in this article, we will report additional evi-
dence supporting the superiority of the JCN measure.)

The second kind of evidence bearing on the “best”
measure of semantic distance comes from a study of au-
tomatic spell checking by Budanitsky and Hirst (2001).
They were interested in a problem that afflicts the cur-
rent generation of spell checkers (such as those imple-
mented in word-processing systems). Spell checkers do
not flag malapropisms—properly spelled words that ap-
pear in the wrong contexts. For example, in an essay on
dairy farming, misspelling dairy as diary would be a ma-
lapropism. These errors are ubiquitous and, hence, a sig-
nificant problem for automatic detection. The belief that
our national defense should include a strong detergent
has been attributed to a popular television comedian. A
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front-page article in a newspaper reported that “there
was some descent among current and former regents.”
And a politician has been reported to mention, for exam-
ple, the reduction of “greenhouse gas admissions.” Bu-
danitsky and Hirst compared five measures of semantic
distance computed from WordNet (including the three
mentioned above) with respect to their ability to (accu-
rately) nominate words as malapropisms. The combina-
tion (JCN) measure was significantly more accurate at
detecting malapropisms than any of the other measures.
Thus, the available evidence combines to nominate the
JCN measure as the one with the most potential as a mea-
sure of semantic distance in WordNet.

Computing Semantic Distance for a Database

The various measures studied by Budanitsky and Hirst
(2001) have been programmed by Patwardhan and Ped-
ersen (WordNet-Similarity; 2003) and distributed as a
collection of Perl modules. (See Schwartz, 1998, for an
introduction to the Perl language.?) These modules in
turn make use of QueryData, a Perl module for access-
ing WordNet data (Rennie, 2000). The computations in-
cluded in the semantic distance database reported here
were performed at the Texas Tech University High Per-
formance Computing Center, using an SGI Origin 2000
with 56 nodes. Each node has a MIPS R1200 processor
running at 300 MHz. The time in seconds (¢) taken by
WordNet-Similarity-0.05 to compute N distances was
found to be estimated by # = 30.63 + 0.373 N. Comput-
ing 63,000 distances took 37 CPU hours; computing dis-
tances for all unique pairings of 4,150 words took 37
CPU days. The actual computational time was shortened
considerably by parallel processing of sublists of pair-
ings. Only the JCN measure was computed. The Brown
corpus (Francis & Kucera, 1982) was used to estimate
frequencies.* At the time the computations were per-
formed (summer, 2003), the current version of WordNet
was 1.7.1.

The semantic distance database reported here contains
semantic distances for 49,559 noun—-noun and verb—verb
pairs. These pairings are based on 4,150 nouns and verbs
that appear in the Nelson et al. (1998) word association
norms. The database only includes pairs for which se-
mantic distance could be computed. The JCN values in
the database average 11.5, with a standard deviation of
6.6. The median JCN value is 12.3; the values range
from 0 to 30.5.5

The semantic distance database was motivated by the
desire to select word pairs on the basis of semantic or as-
sociative relations while measuring (if not also control-
ling) other aspects of word relatedness. Thus, the database
also contains several measures in addition to the JCN val-
ues. Forward and backward associative strengths were ob-
tained from the Nelson et al. (1998) association norms.
These strengths are the probabilities of a word’s being
given as a response to a cue word in free association tests.
For example, the probability that mouse will elicit a re-
sponse of cat is .543, but the probability that cat will elicit
mouse is .256. The forward strength (FSG) for mouse—cat

is .543, and the backward strength (BSG) for that pair is
.256. We included word frequencies (based on the Brown
corpus, as supplied by Nelson et al., 1998). Similarity val-
ues (cosines) based on latent semantic analyses (LSAs;
Landauer & Dumais, 1997) provide another measure of
semantic organization based on lexical co-occurrence.
The LSA cosines included in our database were computed
from a large word X document co-occurrence matrix (the
“General Reading up to 1st Year College” corpus).°

SOME CHARACTERISTICS OF
SEMANTIC DISTANCE

In the remainder of this article, we will report on a se-
ries of studies that bear on the utility of using semantic dis-
tance and on two important questions. (1) Is semantic
distance, as computed from a dictionary, psychologically
functional? (2) If so, is it distinct from other measures of
word relatedness?

Correlations Between Distance and Other
Measures

We computed several correlations between the JCN dis-
tance and other measures previously reported in the com-
putational linguistics literature on semantic distance. In the
first set, the present computations were compared with
those of Resnik (1995) and Jiang and Conrath (1997). The
correlations of the JCN distance measure’ with the human
similarity ratings obtained by Miller and Charles (1991)
and by Resnik were » = —.876 (N = 30) and » = —.891
(N = 28), respectively. (Two of the pairs were not included
in Resnik’s analyses.) These pairs of words were selected
by Miller and Charles from a larger set of 65 pairs origi-
nally created by Rubinstein and Goodenough (1965). The
correlation between the JCN distance measure and the
full set of ratings obtained by Rubenstein and Good-
enough was » = —.842 (N = 65). The correlation with the
original similarity measure reported by Jiang and Conrath
was r = —.935 (N = 30). That correlation is not perfect
because of variations in the version of WordNet and the
corpus used to estimate frequency; nevertheless, the high
correlations show that the computations reported here
correspond nicely to those previously reported. (The cor-
relations are all significant at better than p < .05, the
significance to be used in reporting results throughout
the remainder of this article.)

If distance measures contain information different
from co-occurrence statistics (Niwa & Nitta, 1998), we
should not expect particularly high correlations between
the distance and the LSA measures, because they may
measure different aspects of semantic relatedness. Using
all 49,559 pairs from the full database, we computed the
correlations between the JCN distance measure, (for-
ward) associative strength, and the LSA cosine measure.
The correlations between the JCN and the other two
measures were ¥ = .146 (N = 49,559) and r = —.158
(N = 49,362) for the strength and the LSA values, re-
spectively. The correlation between the strength and the
LSA measures was r = .267 (N = 49,362). Although



these correlations are all highly significant, their magni-
tudes indicate a substantial amount (over 90%) of un-
shared variance among the three measures.

Collins and Loftus (1975) have distinguished between
semantic distance (as the shortest path between nodes in
a semantic network) and semantic relatedness (as the ag-
gregate of all paths). Thus, it is possible that the two mea-
sures for which there are now substantial norms may not
be measuring the same thing. The JCN distance measure
has some of the flavor of a pathway measure (as indeed it
should, being a composite of edge- and node-based ap-
proaches). The featural similarity measure based on se-
mantic feature norms (McRae et al., in press) has no such
pathway component. Thus, the relationship of semantic
distance and featural similarity is an interesting empirical
and theoretical question. We created 132,355 pairs of
words based on 515 of the 541 concepts in the McRae
et al. (in press) feature norms (25 homographs were ex-
cluded from the analysis, and one concept was not found
in WordNet). For each pair of words, the JCN values were
computed, and feature vector cosines were obtained.8 The
correlation was » = —.345 (N = 132,355). Although sta-
tistically significant, that correlation still leaves about
88% unshared variance.

The conclusion we draw from these correlations is that
the measures considered here are intercorrelated, but
weakly so. The strongest correlation was between se-
mantic distance and semantic featural similarity. Al-
though even that relationship left considerable variance
unexplained, the correlation is still over twice those
found between JCN and the strength and co-occurrence
measures. Apparently, as we will confirm next, seman-
tic distance and featural similarity both reflect some of
the same aspects of semantic organization.

Hierarchical Cluster Analyses of Knowledge
Types

McRae et al. (in press) obtained frequencies with which
human raters assigned semantic features to 541 words.
Cree and McRae (2003) used these feature norms to
study the structure of 34 common categories (such as
mammal, fish, automobile, tool, weapon, vegetable, and
fruit). Each category was represented as a frequency dis-
tribution in which each entry corresponded to the fre-
quency with which the exemplars of that category ex-
hibited one of 22 feature types. The resulting 34 X 22
matrix was subjected to a hierarchical cluster analysis
(see below). The resulting dendrogram revealed three
main subclusters—creatures, nonliving things, and
fruits/vegetables. Fruits/vegetables clustered with non-
living things prior to being linked at the top level to the
creature cluster. This structure is interesting because it is
congruent with trends identified by Cree and McRae in
the neuropsychological literature concerning category-
specific semantic deficits.

The question we ask here is whether the JCN seman-
tic distance measure will exhibit similar structural prop-
erties. We computed JCN measures for all pairs of 31 of
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the 34 categories studies by Cree and McRae (2003).
The three categories that contained more than one term
were dropped (e.g., fashion accessory). The root/tuber
category was represented as just tuber. These values
were cast as a symmetrical 31 X 31 matrix. Thus, each
category’s row vector represented its similarity to and
dissimilarity from each of the other categories. Other-
wise, the clustering method was performed exactly like
that reported by Cree and McRae. SPSS was used to per-
form the average-linkage between-groups hierarchical
cluster analysis. The cosine for each pair of category
vectors was used as the measure of similarity. The re-
sulting dendrogram is shown in Figure 2.

Like the dendrograms reported by Cree and McRae
(2003, Figures 2 and 4), Figure 2 shows three clusters of
creatures, nonliving things, and fruits/vegetables. Also
like the Cree and McRae results, nonliving things and
fruits/vegetables cluster at a high level. However, at a
finer grain, the dendrograms show substantial differ-
ences. For example, gun and weapon clustered together
before being combined with too/ and utensil, which clus-
tered together. In Cree and McRae’s results, weapon and
clothing clustered together before being combined with
gun; tool clustered with machine, and utensil clustered
with container. We are not sure of the reasons for these
differences. But a coarse-grain/fine-grain view of the
dendrograms suggests a correspondence with the corre-
lational results. At the top level, semantic distance and
featural similarity measures appear to measure the same
things, but at a finer grain level, there are many differ-
ences (showing up in the correlational analyses as un-
shared variance).

Experiments on Human Ratings of Semantic
Distance

The pairs of nouns studied by Miller and Charles
(1991), by Resnik (1995), and then by Jiang and Conrath
(1997) were specially selected by Rubinstein and Good-
enough (1965) so as to include both synonymous and
nonsynonymous pairs. Inspection of the pairs reveals
that the nonsynonymous pairs were created by explicitly
unpairing words from the synonymous pairs. That raised
a concern that the correlations reported so far might be
forced by the specific pairs created by Rubinstein and
Goodenough. Consequently we conducted our own rat-
ing studies to confirm that semantic distance extracted
from WordNet could be discriminated by human ob-
servers. We performed two experiments that were nearly
identical, except for the category boundaries and range
of JCN values used to select pairs.

Method. Each experiment included 225 pairs of words
from the semantic distance database. In each experiment,
the pairs were selected on the basis of both forward asso-
ciative strength (FSG) and semantic distance (JCN).
Strengths were classified as high (FSG = .6), medium
(.35 = FSG = .5), or low (.10 = FSG = .25) in both ex-
periments. Backward strengths were minimized (<<.10).
In Experiment 1, upper and lower boundaries of five se-
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category

animal
mammal
insect
reptile
rodent

carnivore
bird
fish
herbivore

scavenger
pet

predator
automobile
vehicle
machine
container
furniture

tool
utensil
gun
weapon
appliance

clothing
building

shelter
house

fruit
tuber
food
vegetable

plant

Figure 2. Dendrogram from hierarchical cluster analysis based on semantic dis-
tances between categories (cf. Figure 2 in Cree & McRae, 2003).

mantic distance categories were separated by five JCN
units (0-5, 5-10, . .. > 20). In Experiment 2, the bound-
aries were separated by four JCN units (0—4, 4-8, . .
. 16-20). In each experiment, 15 pairs were randomly se-
lected from each of the 15 combinations of strength (3) X
distance (5). The averages and ranges for strengths and
distances within each of the strength—distance combina-
tions are presented as tables in the Appendix.

The participants were instructed to rate the pairs on the
basis of similarity of meanings. The pairs of words were
presented one at a time, with the two words in each pair
appearing side by side on a computer screen. A 7-point
scale appeared below the words. A rating of 1 on the scale
meant that the words were completely different in mean-
ing; a rating of 7 meant that the words were identical in
meaning. The participants responded by typing their nu-
merical ratings on the computer keyboard.

The pairs of words were presented in a different ran-
dom order for each participant in the experiments. The
participants were recruited from the Texas Tech Univer-

sity psychology participant pool and were compensated
for course credit. N = 42 for Experiment 1, and N = 45
for Experiment 2.

Results. In both experiments, human ratings of simi-
larity declined with increasing distance. Also, in both ex-
periments, similarity ratings were affected by associative
strength, with higher ratings given to more strongly as-
sociated pairs. But the two variables had independent in-
fluences on ratings; the interactions were not reliable.
Figure 3 shows the mean similarity ratings for each com-
bination of distance and strength in each experiment.
These plots show the effects of computed distance on
similarity ratings and provide evidence for our further
contention that the associative effect was due mainly to
the high ratings given to highly associated pairs.

Analyses of variance (using interactions with items as
error terms) showed that the effects of distance were re-
liable in both Experiments 1 and 2 [F(4,210) = 18.73
and F(4,210) = 19.03, respectively]. The effects of as-
sociative strength were also reliable in both experiments
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Figure 3. Average rated similarity as a function of computed semantic distance and associative strength. Strengths were
selected to have high, medium, or low associative values; see text for the details. Confidence limits of 95% are shown for

each mean.

[F(2,210) = 6.41 and F(2,210) = 20.90]. In both exper-
iments, Tukey HSD tests showed that the high-strength
pairs were rated significantly higher than either the
medium- or the low-strength pairs, which did not differ
significantly. Neither of the interactions between dis-
tance and strength was significant [F(8,210) = 1.44 and
F(8,210) = 1.31].

The effects of semantic distance, averaged across asso-
ciative strengths, are shown in Figure 4. Similarity ratings
from the human observers have been transformed into dis-
tance ratings by reverse scoring. Also shown are best-
fitting linear regression plots for low- and high-distance
pairs. In both experiments, ratings linearly increase for the
low-distance pairs and then show little variation for the
high-distance pairs. The two linear plots intersect at
JCN = 11.9, a point near the median of all the JCN values
in the database (12.3).

Although we selected word pairs categorically, the ac-
tual JCN and FSG values appeared nearly continuous
(see the ranges in the Appendix). Thus, we conducted
additional multiple regression and correlation analyses.
Because the selection of word pairs was done indepen-
dently in each experiment, 48 pairs appeared in both ex-
periments. Mean ratings were computed for each pair (as
in the item analyses above) for each experiment. The
correlation between experiments (» = .95, N = 48) indi-
cated a high degree of reliability in the ratings.

The ratings for the 402 unique pairs were then aver-
aged across experiments and entered into multiple re-
gression analyses. These analyses included the two main
variables of interest (JCN and FSG), as well as their
interaction. Also included were two other strength vari-
ables from the Nelson et al. (1998) norms—BSG and

MSG (mediated strength, a measure of strength of indi-
rect associations)—and LSA. A simultaneous multiple
regression showed that only the JCN and FSG variables
were significant predictors of rated similarity (§ =
—.331 and .331, respectively). A stepwise multiple re-
gression showed that JCN and FSG accounted for 24.7%
of the variance in ratings (18.1% and 6.6%, respectively);
the remaining variables accounted for only 0.8% of the
variance. These results provide additional statistical sup-
port for the contention that associative strength and se-
mantic distance were main (and independent) contribu-
tors to rated semantic similarity in these experiments.

One other set of analyses were performed on the
mean ratings from the 402 pairs. We used the WordNet-
Similarity software (Patwardhan & Pedersen, 2003) to
compute the edge-based (Leacock & Chodorow, 1998)
and node-based (Resnik, 1995) measures of semantic re-
latedness among the pairs. The simultaneous multiple re-
gression showed that only the JCN measure was a sig-
nificant predictor of rated similarity (f = —.292). A
subsequent stepwise regression showed that, although
the JCN measure accounted for 18.1% of the variance in
ratings, the other computed measures accounted for only
0.1%. This is converging evidence supporting our earlier
nomination of JCN as the best available measure of se-
mantic distance within WordNet (see also Budanitsky &
Hirst, 2001; Jiang & Conrath, 1997).

Discussion. These experiments help answer the two
questions we asked about computed semantic distances.
First, these experiments show that semantic distance is
psychologically functional, in that humans are sensitive
to semantic distance computed from WordNet. Second,
these experiments suggest that semantic distance and as-
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Figure 4. Mean rated semantic distance as a function of computed semantic
distance. The semantic distance was computed from WordNet 1.7.1, using the
Jiang and Conrath (1997) combination method. Filled symbols represent av-
erage ratings obtained in Experiment 1; open symbols represent average rat-
ings obtained in Experiment 2. Confidence intervals (95%) are included for
each data point. The regression equations (and linear plots) are based on the
first three (low) and last three (high) data points for each experiment (six points

per plot). The plots intersect at a computed distance of 11.9.

sociative strength exert independent influences on se-
mantic similarity judgments. However, the fact that
strongly associated pairs were judged more semantically
similar raises other questions that need exploration.
Under what circumstances does associative strength in-
fluence semantic judgments? How general is the addi-
tivity observed in these experiments?

The experiments reported here also provide some
guidance for researchers who would use the semantic
distance norms for selection of stimulus materials. There
appeared to be little influence of associative strength on
semantic similarity ratings for low to medium strengths.
Semantic distance was discriminable only for the lowest
half of the distribution of JCN values. Thus, confining
selection of materials to these ranges seems advisable.

CONCLUSIONS, IMPLICATIONS, AND
FUTURE DIRECTIONS

In this article, we have reported on the need for, imple-
mentation of, and psychological properties of a database
composed of semantic distances. The semantic distances
were obtained from computations performed on an elec-
tronic dictionary, WordNet (Fellbaum, 1998). We identi-
fied a particularly promising measure of semantic distance
(Jiang & Conrath, 1997) and used recently developed soft-

ware (Patwardhan & Pedersen, 2003) to create the database
of distances. Included in the database are other measures
of word relatedness: associative strength (Nelson et al.,
1998) and similarity based on LSA (Landauer & Dumais,
1997). We showed that it is possible to select pairs of words
on the basis of the orthogonal combination of associative
strength and semantic distance. Experiments on the rating
of semantic similarity showed that human participants
can discriminate semantic distances; semantic distance,
then, although obtained computationally, is psychologi-
cally functional. Moreover, semantic distance is not well
correlated with measures of associative strength and co-
occurrence, which, along with the observed additive ef-
fects of strength and distance on human ratings, suggests
that semantic distance is separable from other measures
of semantic and associative relatedness.

The results of the regression analyses comparing var-
ious computational measures of semantic distance in
WordNet add to the evidence favoring the Jiang and
Conrath (1997) informational distance measure over
purely edge- or node-based measures. Previous evidence
included the superiority of their measure in detecting
malapropisms in a spell-checking application (Budanit-
sky & Hirst, 2001) and the correlations between the
computational measures and the human ratings reported
by Jiang and Conrath. In support of Jiang and Conrath’s



correlations, we showed in the analyses of our own data
that their measure was the best predictor of human rat-
ings of semantic similarity. Exactly why this is so re-
mains an open question (a question also raised by Bu-
danitsky & Hirst, 2001).

Our combination of a semantic distance measure with
preexisting word association statistics into a common
database should support new lines of research and theory
on associative and semantic memory. Armed with the se-
mantic distance database, we have launched a program
of research examining the relations between semantic
distance, featural similarity, associative strength, and
similarity based on LSAs. These studies confirm the
conclusion drawn here—namely, that semantic distance
does influence human judgments (and memory) and
does so mostly independently of associative strength,
lexical co-occurrence, and featural similarity.

Our work on semantic distance computed from Word-
Net may spur further cognitive psychological research in
which WordNet is used as a resource. For example, it may
be possible to automatically mine WordNet for those se-
mantic features nominated by human observers (as in
Cree & McRae, 2003) and, thus, greatly expand the cor-
pus of words and categories for which semantic feature
norms are available.

The semantic distance database may prove useful for
the continuing effort to resolve theoretical issues con-
cerning the associative and semantic aspects of word re-
latedness. We perceive two general lines of thought about
the relations between word associations and semantics.
One was articulated by Deese in his concept of associa-
tive meaning: “The distribution of responses evoked by a
particular word as stimulus defines the meaning of that
word” (Deese, 1965, p. 43). Thus, semantics are derived
from word associations. The recent derivation of word as-
sociation spaces by Steyvers, Shiffrin, and Nelson (in
press) follows in that tradition; in their work, semantic
similarity between pairs of words was quantified by com-
puting the distance along the shortest path between those
words through a network of associative links based on
free association norms (Nelson et al., 1998).

The other line of thought is traceable to Trautscholdt’s
distinction between associative and semantic relations
(Esper, 1973). On this view, co-occurrence gives rise to
separate associative and semantic relations (perhaps cor-
responding to the lexical and semantic networks con-
ceived by Collins & Loftus, 1975). Garskof and Forrester
(1966) obtained ratings of both associative strength and
semantic similarity and found that there was a low corre-
lation between the two; they concluded that association
strength and semantic similarity are “distinct types of
word relatedness.” More recently, Lund, Burgess, and
Audet (1996) likened the distinction between associative
and semantic information to the distinction between local
and global co-occurrence, where the latter is computed
from dimensional reductions, as in their hyperspace ana-
logue to language model or in LSA (Landauer & Dumais,
1997). This separation of associative and semantic infor-
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mation suggests that measurements based on word asso-
ciations are likely to be only weakly (if at all) related to
measures of semantic relatedness, such as distance (as in
this article) or feature overlap (as in Cree & McRae, 2003).
That suggestion is consistent with the low correlation we
found between semantic distance and associative strength.

The theoretical picture is likely to become further com-
plicated by another of our observations. We computed se-
mantic distances on the basis of an electronic dictionary
and found that people were sensitive, in their ratings of se-
mantic similarity, to those distances. Cree and McCrae
(2003) computed cosines between pairs of feature vectors.
The cosine measures the distance in hyperspace between
vectors. Yet we found that these two measures of distance
were only weakly correlated. One conclusion from this ob-
servation is that these two measures are tapping different
kinds of semantic information. These observations rein-
force one of our opening conjectures: Large-scale data-
bases of the sort presented here will help refine our under-
standing of associative and semantic information in human
memory and cognition.
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NOTES

1. As in Resnik (1995), the frequency of each concept in the taxon-
omy is the sum of the frequency of that concept and the frequencies of
all its children. For example, each occurrence of mouse counts toward
the frequency of mouse and all subsuming concepts in the taxonomy

(rodent, placental mammal, . . . , entity). Probabilities are based on the
total frequency (of the root concept, entity). Information content files
based on frequency counts from various corpora, including the Brown
corpus, are available at http://www.d.umn.edu/~tpederse/similarity.
html.

2. Although Resnik (1995) reported that the information content
measure was “significantly better” than edge counting, the significance
level was not reported.

3. The Perl language is available for download without charge from
http://www.ActiveState.com and is routinely distributed with the Unix
operating system.

4. The Brown corpus is based on 1,014,232 words contained in fic-
tion and nonfiction texts printed in 1961 in the United States. An anony-
mous reviewer of the previous version of this article questioned the use
of the Brown corpus, given its age. Moreover, it might be argued that the
Brown corpus is small relative to newer corpora, such as the British Na-
tional Corpus (BNC; http://www.natcorp.ox.ac.uk) that contains over
100 million words. Most of the BNC text is more recent than the Brown
corpus, with about 90% of the text printed during 1975-1993. So do the
age and/or size of the corpus matter? We recomputed JCN values for all
the word pairs in our database, using the BNC information content file
(see note 1). The correlation between JCNg, .., and JCNgyc was r =
994 (N = 49,559). Apparently, the corpus used to estimate frequency
(and thus information content) does not play a large role in computing
the JCN measure of semantic distance.

5. The file is not 100% complete. Many instances of plural nouns do
not appear because the semantic distance computation returns the base
form of the nouns; this should be corrected in a future version of the
file.

6. The LSA computations were performed by Jose Quesada at the
University of Colorado. The LSA cosines correspond only approxi-
mately to those that can be computed on the LSA Web site. The values
used here are based on 419 factors; the values computed on the Web
site are based on 300 factors.

7. Semantic distance is the complement (or inverse) of semantic sim-
ilarity. The correlations reported by Jiang and Conrath (1997) were
based on the JCN measure expressed as similarity (maximum possible
distance minus computed distance), so the correlations they report are
positive. Our database contains the actual computed distances, so the
correlations with measures of similarity are negative.

8. The feature norms, courtesy of Ken McRae, were obtained from
http://amdrae.ssc.uwo.ca/downloads.html.

ARCHIVED MATERIALS

The following materials and links may be accessed through the Psy-
chonomic Society’s Norms, Stimuli, and Data archive, http://www.psy-
chonomic.org/archive/.

To access these files or links, search the archive for this article using
the journal (Behavior Research Methods, Instruments, & Computers),
the first author’s name (Maki), and the publication year (2004).

FiLE: Maki-BRMIC-2004.zip.

DEscripTION: The compressed archive file contains two files:

usfjenlsa.csv, containing the norms developed by Maki et al. (2004),
as a 3.1-MB comma-delimited text file generated by Excel 2003 for the
PC. Each row represents one of 49,559 pairs of words. Listed within
each row are the cue and target words and nine dependent measures.
Forward (FSG), backward (BSG), and mediated (MSG) associative
strength taken were taken from the Nelson et al. (1998) word associa-
tion norms, as were cue and target concreteness and cue and target fre-
quency values. The last two variables are the semantic distance (JCN)
and the latent semantic analysis (LSA cosine) measures.

notes_on_usfjcnlsa.txt, a full description of the content of usfjc-
nlsa.csv, including definitions of the columns of the document and links
to previous norms and related papers (a 5K plain text file).

The database and notes files, usfjcnlsa.csv and notes_on_usf jen_
Isa.txt, also may be downloaded from ftp:/ftp.ttu.edu/pub/maki.

AUTHOR’S E-MAIL ADDRESS: bill.maki@ttu.edu
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APPENDIX
Characteristics of Word Pairs Used in Rating Experiments
JCN FSG
FSG JCN Mean Min Max Mean Min Max
Experiment 1
High 0-5 1.57 0.00 3.93 0.70 0.62 0.83
5-10 7.58 5.11 9.66 0.71 0.60 0.84

10-15 13.40 10.11 15.00 0.70 0.62 0.84
15-20 17.77 15.72 20.00 0.72 0.60 0.96
>20 21.95 20.08 26.49 0.69 0.60 0.84

Medium 0-5 1.83 0.00 4.17 0.41 0.35 0.50
5-10 7.62 5.50 9.84 0.41 0.35 0.49
10-15 13.07 11.44 14.68 0.41 0.35 0.49
15-20 17.87 1533 19.89 0.42 0.36 0.49
>20 21.23 20.02 22.92 0.42 0.35 0.50

Low 0-5 1.77 0.00 4.66 0.15 0.10 0.24
5-10 8.06 5.33 9.90 0.14 0.11 0.23
10-15 13.09 10.77 14.90 0.14 0.10 0.24
15-20 17.27 15.49 19.60 0.15 0.11 0.21
>20 21.67 20.02 24.53 0.16 0.11 0.24

Experiment 2

High 0-4 1.58 0.00 3.49 0.72 0.61 0.91
4-8 6.12 4.65 7.00 0.70 0.60 0.82
8-12 9.58 8.53 11.66 0.69 0.60 0.84
12-16 14.51 12.37 15.72 0.70 0.61 0.84
16-20 17.88 16.01 20.00 0.70 0.60 0.88
Medium 0-4 1.59 0.00 3.57 0.42 0.35 0.49
4-8 5.40 4.03 7.92 0.42 0.36 0.49
8-12 10.01 8.16 11.93 0.42 0.37 0.49
12-16 14.21 12.16 15.67 0.41 0.36 0.48
16-20 18.55 16.94 19.82 0.43 0.36 0.50
Low 0-4 1.41 0.00 3.54 0.17 0.12 0.24
4-8 5.38 4.01 7.71 0.14 0.11 0.22
8-12 10.17 8.43 11.73 0.18 0.10 0.25

12-16 14.63 12.23 15.89 0.15 0.11 0.22
16-20 17.39 16.15 19.96 0.14 0.11 0.17

Note—IJCN is the semantic distance measure; FSG is forward associative strength.

(Manuscript received December 18, 2003;
revision accepted for publication July 12, 2004.)
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