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Ordered categorical variables play an important role
in psychologicalstudies in which precise measurement is
not always possible. For example, in a sensory experi-
ment on the bitter taste of wine, the subject is asked to
give his or her rating on a 5-point scale ranging from
least to most bitter. A more exact measurement of the
bitterness of wine may not be meaningful or necessary.
It is commonly assumed that the subject can employ the
same rating scale consistently from one trial to another.
Less plausible is the assumption that all subjects have the
same discriminability for the bitter taste of wine or that
subjects use the same criteria for responding. What is
most bitter for one subject may be only moderately so for
another.

A within-subjects design in which subjects are asked to
provide responses across several experimental conditions
offers the investigatorthe opportunityto examine between-
subjects variation in setting response thresholds. For ex-
ample, the thresholds of each subject for the bitterness of
the wine can be modeled by adding a subject-specific
term into a model that relates the ordinal scale of mea-
surement to the treatment factors. These subject-specific
terms can be conceptualized as fixed effects or as ran-
dom effects. In fixed-effects models, each subject is al-
lowed to have a constant but unknown amount of shift in
thresholds with respect to the reference subject. By con-
trast, random-effects models account for the between-
subjects variation in thresholds by assuming that these
unobserved subject-specific terms vary randomly among
a sample of subjects. In other words, one assumes that

the subjects are a random sample out of a certain popu-
lation, and the scope of the inferences is about the over-
all characteristics of this population.

Owing to the flexibility of the normal distribution, the
use of random effects in linear mixed models for contin-
uous responses is well established (Ware, 1985)—for ex-
ample, random-effects analyses of variance. For categor-
ical response data, the heterogeneous subject effects are
often ignored, because introducing random effects greatly
complicates model fitting. If the subject gives only a sin-
gle response or the number of subjects is small, one can ei-
ther ignore the subject effect or consider it as a fixed ef-
fect. However, when the subjects are nested within clusters
or are repeatedly measured in a within-subjects design, a
random-effects approach may be more appropriate.

For continuous normal responses, it is increasingly
popular to use models incorporating cluster-specific or
subject-specific heterogeneous effects in the form of
hierarchical linear models (Bryk & Raudenbusch, 1992).
For dichotomous or ordinal responses, such approaches
to random-effects models are newer and have only re-
cently seen much use in the social sciences (Fielding,
1999; Guo & Zhao, 2000). Specialized computer pro-
grams—notably, MIXOR (Hedeker & Gibbons, 1996),
BUGS (Spiegelhalter, Thomas, Best, & Gilks, 1997),
MLwiN (Yang, Rashbash,& Goldstein, 1998), and HLM5
(Raudenbusch, Bryk, Cheong, & Congdon, 2000)—have
been developed to permit analyses of ordered categorical
outcomes from either a clustered or a longitudinal de-
sign. Unfortunately, learning to use a specialized soft-
ware often takes time and effort and may not appeal to
users who do not encounter repeated categorical data on
a routine basis but want to become familiar with the po-
tential application of mixed-effects models. This paper
advocates the use of a new SAS procedure, NLMIXED,
to fit these models. The purpose is to facilitate the use of
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This paper presents an analysis of repeated ordinal outcomes arising from two psychological stud-
ies. The first case is a repeated measures analysis of variance; the second is a mixed-effects regression
in a longitudinal design. In both, the subject-specific variation is modeled by including random effects
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in SAS is used to fit the mixed-effects models for the categorical response data. The presentation em-
phasizes the parallel between the model specifications and the SAS statements. The purpose of this
paper is to facilitate the use of mixed-effects models in the analysis of repeated ordinal outcomes.



152 SHEU

mixed-effects ordinal regression models through the
wide availability of SAS in both academic and industrial
computing environments.

The NLMIXED procedure is designed to fit nonlinear
mixed models in which both fixed and random effects
(parameters) are allowed to relate nonlinearly to the re-
sponse variable. The mixed-effects ordinal regression
models discussed here belong to the class of generalized
linear mixed models (McCulloch & Searle, 2001). A re-
cent survey of random-effects modeling of dichotomous
and count data is given by Agresti, Booth, Hobert, and
Caffo (2000). Supplementing their discussion, this paper
presents two examples of mixed-effects regression mod-
els for repeated ordinal outcomes that are of substantive
interest to psychologists. It is hoped that the examples
will stimulate further application of mixed-effects mod-
eling in psychological research.

The paper is organized as follows. In the next section,
the standard fixed-effects models are reviewed, and the
mixed-effects ordinal regression models are introduced,
using a wine-tasting data set reported by Randall (1989).
In the succeeding section, model fits of the wine-tasting
example are presented, using the cumulative logistic re-
gression model and the mixed-effects logit-normal ordi-
nal regression model. Some of the primary features of
the NLMIXED procedure are presented, and the results
of the two model fits are compared. In the final section,
an application of the mixed-effects probit-normal re-
gression model for a set of longitudinalordinal data from
the NIMH Schizophrenia Collaborative Study (Hedeker
& Gibbons, 1996) is considered. The partial data, SAS
code segments, and parameter estimates of the two exam-
ples are provided in tables and listings.

EXAMPLE 1
Bitterness of Wine

Randall (1989) has reported results from a within-
subjects experiment in which 9 judges were asked to de-
termine the bitterness of white wines. The experiment
was a 2 3 2 3 2 factorial design. The three factors were
bottle (first or second), contact (yes or no), and temper-
ature (cold or warm). Two bottles of the same wine were
used. Contact referred to whether there was contact of
the juice with the skins when the grapes were crushed.
Temperature referred to the controlled temperature dur-
ing crushing. Each bottle of wine was presented in ran-
dom order to each of the 9 judges for tasting. The judges
were asked to determine the bitterness of the wine on a
5-point rating scale ranging from least to most bitter.
Listing 1 shows the data from the 1st and 9th judges. The
variables are, in order, judge identification number, bot-
tle (bottle 1 = 1, bottle 2 = 21), contact (no = 1, yes =
21), temperature (cold = 1, warm = 21), and bitterness
rating (1 = least bitter and 5 = most bitter). There were
two research questions: which of the experimental fac-
tors determine the bitterness of wines and whether or not
the judges have varying scales of bitterness.

The Cumulative Logit Model
We start with a simple model in which all the judges

in the example have the same sensitivity for the bitter
taste of wine and use the same criteria (thresholds) for
responding.Let Y denote the response variable for an ob-
servation of a judge on a 5-point rating scale. The cu-
mulative probability P{Y # k} is the probability that a
response variable will take on a value less than or equal
to a particular value k = 1, . . . 5. Because P{Y # 5} must
equal one, there are only four uniquely defined cumula-
tive probabilities. The probability of a particular ordered
categorical response is defined through the cumulative
probabilities—for example, P{Y = 4} = P{Y # 4} 2
P{Y # 3}. For all the judges in the study, the level of re-
sponse is determined by the three treatment factors: bot-
tle, contact, and temperature. The linear predictor of the
model is

h = b1 bottle + b2 contact + b3 temperature,

where b1, b2, and b3 are the regression coefficients and
the variable h can be thought of as taking its value on a
continuous latent scale that determines each judge’s per-
ception of bitterness. McCullagh (1980) has proposed a
cumulative logit model in which the conditional proba-
bilities of the ordered responses are related to the linear
predictor by the following representation:

for k = 2, 3, 4,
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Listing 1
The Data of the First and Last Judges

in the Wine-Tasting Experiment

1 21 21 21 2
1 21 21 21 3
1 21 21 21 3
1 21 21 21 4
1 21 21 21 4
1 21 21 21 4
1 21 21 21 5
1 21 21 21 5
9 21 21 21 1
9 21 21 21 2
9 21 21 21 3
9 21 21 21 2
9 21 21 21 3
9 21 21 21 2
9 21 21 21 4
9 21 21 21 4

Note—The variables are, from left to right by column, judge identifica-
tion number, bottle (first = 1, second = 21), contact (no = 1, yes = 21),
temperature (cold = 1, warm = 21), bitterness rating (1 = least bitter
and 5 = most bitter).
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where

is the standard logistic cumulative distribution function,
x stands for the three treatment factors, and the cutpoints
(thresholds) c1 . . . , c4 are unknown parameters satisfy-
ing the condition c1 # c2 # . . . # c4. Equivalently, we
can define the thresholds by setting c1 = c, c2 = c + d1,
c3 = c + d1 + d2, and c4 = c + d1 + d2 + d3, with d1 $ 0,
d2 $ 0, and d3 $ 0. The latter constraints can be imple-
mented in SAS with a BOUNDS statement. Fitting the
fixed-effects cumulative logit models to ordinal data can
be performed in SAS or S-PLUS (for examples, see Ben-
der & Benner, 2000; Sheu & Heathcote, 2001). Sheu and
Heathcote have discussed an extension of the cumulative
logit model and the connection between this class of
models and models of signal detectability (Green &
Swets, 1974).

Mixed-Effects Cumulative Logit-Normal Models
The model described above assumes that all the judges

in the study adopted a constant set of thresholds in pro-
ducing the ratings. This assumption is often unrealistic
and can be removed in two different ways. The first ap-
proach is to treat the judges as a blocking factor and to
introduce eight subject-specif ic parameters for the 9
judges in the study. In this approach, a judge’s initial
threshold (first cutpoint) can be set as the baseline
against which the thresholds of the other judges will be
compared. A potential problem with this approach is that
with a large number of subjects, the number of param-
eters to be estimated also becomes large. A second ap-
proach is to allow the thresholds to vary across judges
by adding a subject-specific random variable U to the
thresholds of each judge. In other words, for judge j, the
original (fixed) thresholds c1, . . . , c4 are simultaneously
shifted (at random) to yield c1 + Uj, c2 + Uj, . . . , c4 + Uj
for j = 1, 2, . . . , 9. For simplicity, the random effects Uj are
assumed to be independent and identically distributed
normal distributions with a mean of zero and a standard
deviation of s. In this formulation, the fixed thresholds
are interpreted as the average thresholds across judges.
From judge to judge, however, the thresholds are shifted
simultaneouslyand randomly, with the amount of variation
determined by the parameter s. Unlike the fixed-effects
approach, the number of parameters in a random-effects
analysis does not grow linearly with the number of sub-
jects in the sample. Thus, the random effects may behave
like parameters; formally, they are just another level of
random variation in the model.

For the wine example, the conditional probability of
the ordered response, given the experimental factors and
the random judge-specific effects, has the same repre-
sentation as the equations defining the cumulative logit
model, except for the linear predictor terms:

hj = b1 bottle + b2 contact + b3 temperature + Uj,

for j = 1, . . . , 9. This is a mixed-effects cumulative logit-
normal model for ordinal responses. In general, the like-
lihood function is the marginal density function of the
observed data, viewed as a function of the parameters.
Here, the parameters to be investigated are the three re-
gression coefficients, b1, b2, b3; the first threshold pa-
rameter c; the nonnegative increment parameters d1, d2,
d3; and the random-effect parameter s. In a mixed-
effects analysis, estimating parameters requires maxi-
mizing the likelihood, which, in turn, requires integrat-
ing the joint probability function of the responses with
respect to the random-effects distributions. Unfortu-
nately, the likelihood nearly always involves intractable
integrals. For cumulative logit and probit models, ap-
proximate integrated likelihoods can be found by using
numerical integration methods, such as Gaussian quad-
rature (Abramowitz & Stegun, 1972). The SAS proce-
dure NLMIXED (SAS Institute, 2000, chap. 46; Wolf-
inger, 1999) and the computer program MIXOR (Hedeker
& Gibbons, 1996) directly fit the specified model by
maximizing an approximation to the likelihood inte-
grated over the random effects. In NLMIXED, an adap-
tive version of Gauss–Hermite quadrature is used to ap-
proximate the likelihood, and the default maximization
routine is a dual quasi-Newton algorithm (Pinheiro &
Bates, 1995).

Fitting Mixed-Effects Logit-Normal Models with
NLMIXED

Listing 2 illustrates the use of PROC NLMIXED in Ver-
sion 8 of SAS to fit the mixed-effects cumulative logistic-
normal model to the wine data. The program takes about
3 sec to complete on a Pentium III 600-MHz personal
computer with 128 MB of RAM running on the Win-
dows 98 operating system. The PROC NLMIXED statement
invokes the procedure and inputs the wine data set. The
QPOINTS option specifies the number of quadrature
points to use in approximating the likelihood with
Gauss–Hermite quadrature. It is recommended that the
number of quadrature points be increased until the re-
sults of the parameter estimates are stabilized. This often
requires using about 10 quadrature points for each ran-
dom effect in the model. Using a larger number of quad-
rature points requires longer computing time. The PARMS

statement defines parameters and sets initial values for
them. Starting values can be obtained from estimates of
the corresponding fixed-effects model. Accurate start-
ing values speed up convergence.

Within the NLMIXED procedure, we define the con-
ditional probabilities for ordered responses as a function
of the linear predictor eta. The categorical response
probabilities are then specified according to the cumu-
lative logit model. The BOUNDS statement provides the
appropriate constraints on the increment variables for the
thresholds. The MODEL statement defines the response
variable and its conditional distribution, given the ran-
dom effects. The multinomial distribution is not directly
supported by the MODEL statement in the NLMIXED pro-
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cedure. Instead, a general likelihoodfunction is specified,
using SAS statements. The likelihood (z) is checked to
see whether it is numerically too close to zero and then
is converted to the log likelihood (llkhd). The log likeli-
hood is set to a large negative value (21E100) if the like-
lihood is close to zero. The RANDOM statement defines u
to be the random effect and specifies that it follows a
normal distribution with mean zero and variance s 2.
Agresti et al. (2000) recommended specifying the vari-
ance component in terms of the standard deviation in the
program code. This improves the stability of numerical
solutions in cases in which the estimated variance com-
ponents are very close to zero. The SUBJECT argument is
set to the variable judge, indicating that the random ef-
fect changes according to the value of the subject vari-
able judge. The OUT option in the RANDOM statement re-
quests the predicted values of the random effect to be
stored in a SAS data set named new. These are the esti-
mates of judge effects for the bitterness of wine. The
PRINT procedure sends the predicted values of the judge
effects to the output file. The ESTIMATE statements re-

quest the threshold estimates to be computed from the
first cutpoint and the increment variables.

Table 1 shows the results of both the fixed-effects and
the mixed-effects models. The standard errors of the esti-
mates are given in parentheses. Irrespective of constant or
varying thresholds across judges, both models support the
conclusions that the two experimental factors, contact and
temperature, are significant in determining the bitterness
of white wines, whereas the two bottles of the same wine
elicit the same level of bitterness from the judges. Notice,
however, that the random-effects parameter s is statisti-
cally different from zero, since the estimated value of s is
about 2.86 times its estimated standard error. This sug-
gests that the judges did not use a common set of constant
thresholds to evaluate the wines. Also, according to the
predicted values of the judge effects of the mixed-effects
model displayed in Table 2, the approximate z values for
estimates of Judges 1 and 7 are 22.262 and 2.364, re-
spectively, supporting the heterogeneityof the judges.The
intrajudge correlations are estimated by

where p2/3 is the variance of the standard logistic distri-
bution.

EXAMPLE 2
The NIMH Schizophrenia Collaborative Study

In this section, a longitudinal data set in which 437
psychiatricpatientswere rated repeatedlyup to seven times
as to the severity of their illness is examined (Hedeker &
Gibbons, 1996). The data were collected in the NIMH
Schizophrenia Collaborative Study on treatment-related
changes in overall severity of illness. The response vari-
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Listing 2
SAS Code to Fit the Mixed-Effects Cumulative Logit-Normal Model

for Wine Bitterness Rating Data

PROC NLMIXED DATA = wine QPOINTS = 10;
PARMS c=24 d1=1 d2=1 d3=1 beta1=0 beta2=1 beta3=1.5 sigma=1;
BOUNDS d1 > 0, d2 > 0, d3 > 0;
eta = beta1*bottle+beta2*contact+beta3*temper+u;
IF (resp=1) THEN z = 1/(1+exp(2c2eta));
ELSE IF(resp=2) THEN z=1/(1+exp(2c2d12eta))21/(1+exp(2c2eta));
ELSE IF(resp=3) THEN z=1/(1+exp(2c2d12d22eta))21/(1+exp(2c2d12eta));
ELSE IF(resp=4) THEN z=1/(1+exp(2c2d12d22d32eta))21/(1+exp(2c2d12d22eta));
ELSE z = 1 2 1/(1+exp(2c2d12d22d32eta));
IF ( z > 1E28) THEN llkhd = log(z);
ELSE llkhd = 21E100;
MODEL resp ~ GENERAL(llkhd);
RANDOM u ~ NORMAL(0, sigma*sigma) SUBJECT=judge OUT=new;
ESTIMATE ’thresh2’ c+d1;
ESTIMATE ’thresh3’ c+d1+d2;
ESTIMATE ’thresh4’ c+d1+d2+d3;
PROC PRINT DATA=new;

RUN;

Note—The input file wine.dat contains the ratings of 9 judges and the values of covariates in
the format of Listing 1.

Table 1
Parameter Estimates of the Two Models for the Bitterness

of Wine Example (With Standard Errors)

Fixed Model Mixed Model

Parameter Estimate SE Estimate SE

c 23.3588 0.5255 24.0823 0.7595
c+d1 20.7617 0.2940 20.9300 0.5035
c+d1+d2 21.4558 0.3310 21.7970 0.5525
c+d1+d2+d3 22.9934 0.4707 23.6570 0.6924
b1 20.0476 0.2209 20.1219 0.2321
b2 20.7624 0.2368 20.9164 0.2561
b3 21.2506 0.2660 21.5357 0.2982
s – – 21.1453 0.4010
Log-likelihood 286.469 281.4
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able is Item 79 of the Inpatient Multidimensional Psy-
chiatric Scale (IMPS; Lorr & Klett, 1966). For this item,
“Severity of Illness” was scored as 1 = normal, not at all
ill, 2 = borderline mentally ill, 3 = mildly ill, 4 = moder-
ately ill, 5 = markedly ill, 6 = severely ill, and 7 = among
the most extremely ill. The authors recoded these seven
ordered categories into four by collapsing Categories 1
and 2, 3 and 4, and 6 and 7. Patients were randomly
assigned to receive either a placebo medication or one of
the three antipsychotic drugs (Chloropromazine, Flu-
phenazine, or Thioridazine), which were combined as
one treatment group in this analysis. Moreover, a square
root transformation of time (week) was chosen to lin-
earize the relationship of the IMPS Item 79 scores over
time. The main research question is whether there was
differential improvement for the treatment group relative
to the control group. Listing 3 shows the data from the
first and last subjects. The original version of the data
can be found at the Web address http://tigger.uic.edu/
~hedeker/ long.html.Notice that neither of the 2 subjects
has complete observations on all seven occasions. In ad-
dition to the outcome severity measure’s being ordinal,
the varying numbers of observations per subject and
the need to account for the within-subjects variability
(over time) pose difficulties for the traditional multi-
variate techniques.

Mixed-Effects Probit-Normal Model
Hedeker and Gibbons (1996) proposed mixed-effects

probit regression models to relate the ordinal responses
to the treatment and time variables. They implemented a
FORTRAN computer program, MIXOR, to fit the mod-
els to this data. Here, we replicate their analysis, using
the most general form of the models they discussed. For
this case, the repeated ordinal IMPS score is modeled in
terms of a dummy-coded treatment effect (placebo = 0
and treatment = 1), a time effect (square root of the week),
and a treatment 3 time interaction. For each individual
subject i on an occasion (week j) and belonging to a
treatment group, the linear predictor of the model is

This model allows the subjects to vary in terms of both
their intercepts and their trends over time (random inter-
cepts b0, i and random slopes b1, i). The treatment effect,
b2, and the treatment 3 time interaction,b3, are assumed
to be the same for all the subjects (fixed effects). For
each subject, the random-effects (b0, b1) component is
assumed to have a bivariate normal distribution with a
mean vector of (mb0

, mb1
) and a covariance matrix

where s 2
b0

and s 2
b1

are the variances of the intercept and
slope parameters, respectively, and r is the correlation
between the two parameters. With four response cate-
gories, three cutpoints (thresholds) are needed. For
model identifiability, the first cutpoint is set arbitrarily
to zero, since it cannot be distinguished from the mean
of the intercept parameter, mb0

. The third cutpoint is de-
fined as the second cutpoint c plus an increment variable
d (c > 0 and d $ 0). The categorical response probabili-
ties of subject i at week j, conditional on the mixed ef-
fects b and b (omitting the subscripts), are

P {Y = 1 | b, b} = F(2h),

P {Y = 2 | b, b} = F (c 2 h) 2 F (2h),

P {Y = 3 | b, b} = F (c + d 2 h) 2 F (c 2 h),

P {Y = 4 | b, b} = 1 2 F (c + d 2 h),

where F is the standard normal cumulative distribution
function. This is a mixed-effects probit-normal model
for repeated ordinal outcomes.

Fitting Mixed-Effects Probit-Normal Models
with NLMIXED

Listing 4 contains the SAS programming statements
in the NLMIXED procedure for fitting the mixed-effects
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Table 2
Predicted Values of Judge Effects of the

Mixed-Effects Logit-Normal Model for Bitterness of Wine Data
(With Standard Errors)

Judge Estimate SE

1 21.71674 0.75900
2 20.59808 0.71036
3 20.99176 0.72498
4 20.05435 0.69297
5 20.23442 0.68742
6 20.47293 0.68941
7 21.92946 0.81614
8 20.27335 0.65310
9 20.55228 0.67203

Listing 3
Data of the First and Last Subjects from the
NIMH Schizophrenia Collaborative Study on

Treatment-Related Changes in Overall Severity

1103 4 1 0.0000
1103 2 1 1.0000
1103 . 1 1.4142
1103 2 1 1.7321
1103 . 1 2.0000
1103 . 1 2.2361
1103 2 1 2.4495
9316 4 0 0.0000
9316 4 0 1.0000
9316 . 0 1.4142
9316 4 0 1.7321
9316 . 0 2.0000
9316 . 0 2.2361
9316 4 0 2.4495

Note—The variables are, in order, subject identification number, rating
of the severity of illness (1 = normal or borderline mentally ill, 2 =
mildly or moderately ill, 3 = markedly ill, 4 = severely or among the most
ill ), treatment group (0 = placebo, 1 = drug), and the square root of the
week. Both subjects have three missing values indicated by a period.
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regression model to the longitudinal data on the treat-
ment of schizophrenics. On the same personal computer
as that described previously, the program takes about
28 min to complete. In the following, we comment briefly
on the model specification in SAS statements.

We set the number of quadrature point, QPOINTS, to 20
in order to compare the results obtained from NLMIXED
with those of Hedeker and Gibbons (1996) using MIXOR.
The starting values for the parameters in the PARMS state-
ment are taken from a pilot run of the program using the
default number of quadrature points and reasonable
guesses of the parameter values. The SAS programming
statements begin by defining the linear predictor eta. The
next statements define the ordinal likelihood according
to the response variable resp, eta, the threshold variables
defined by the cutpoint c and the increment variable d,
and the standard normal cumulative distribution function
PROBNORM. A general log-likelihood is specified in the
MODEL statement. The bivariate normal random effects
(b0, b1) and the mean and covariance structure are spec-
ified in the RANDOM statement. The SUBJECT variable in
the statement indicates that the random effects are tied to
the input variable (sbj). The third cutpoint and the cor-
relation are computed in the ESTIMATE statements.

Table 3 compares the results of f itting the mixed-
effects probit-normal model to the repeated ordinal IMPS
scores, using SAS NLMIXED and the output from
MIXOR (Hedeker & Gibbons, 1996). Numerically, the
log-likelihood and the parameter estimates from the two
programs are in close agreement. Similarly, the conclu-
sions based on the approximate z or t statistics of the
model parameters are the same. This is to be expected,
because both programs implemented the same statistical
procedure, using the same quadrature-based computa-
tional technique.Therefore, the conclusionsbased on the
approximate t or z statistics of the model parameters are
the same. First, the regression coefficient b2 for the treat-
ment /placebo group indicator variable is not signifi-
cantly different from zero. Thus, the treatment group and

the placebo group were not different at the baseline. Sec-
ond, the regression coefficient b3 for the treatment 3
week interaction is negative (and significantly different
from zero). Therefore, the subjects in the treatment group
showed greater improvement over time, relative to their
counterparts in the placebo group. Third, the mean of the
random slope parameter mb1

for the time (week) variable
is negative (and significantlydifferent from zero). Hence,
the subjects in the placebo group also improved over
time. Fourth, a significant correlation of 2.3902 is ob-
served between the random intercept and the slope pa-
rameters for the time variable. This correlation means
that those subjects with a higher level of severity at the
baseline tended to show greater improvement across time.

CONCLUSIONS

Many response variables in psychological research are
ordinal, with three or more ordered categories. Many
psychological studies use repeated measures or longitu-
dinal designs. The generalized mixed-effects models ac-
count for the between-subjects variation by the subject-
specific random effects. Until recently, the applications

Listing 4
SAS Code to Fit the Mixed-Effects Cumulative Probit-Normal Model

for NIMH Schizophrenic Collaborative Study Data

PROC NLMIXED DATA=imps QPOINTS=20;
PARMS c=2 d=1 mu_b0=3 mu_b1=2.4 beta2=.2 beta3=2.6 s_b01=0, s_b0=1 s_b1=1;
BOUNDS c > 0, d > 0;
eta = b0+b1*sqwk+beta2*trt+beta3*trt*sqwk;
IF (resp=1) THEN z = PROBNORM(2eta);
ELSE IF (resp=2) THEN z = PROBNORM(c2eta)2PROBNORM(2eta);
ELSE IF (resp=3) THEN z = PROBNORM(c+d2eta)2PROBNORM(c2eta);
ELSE z = 12PROBNORM(c+d2eta);
IF ( z > 1E28) THEN llkhd = log(z);
ELSE llkhd = 21E100;
MODEL resp ~ GENERAL (llkhd);
RANDOM b0 b1 ~ NORMAL([mu_b0, mu_b1],[s_b0*s_b0, s_b01, s_b1*s_b1])

SUBJECT=sbj;
ESTIMATE ’thresh2’ c+d;
ESTIMATE ’corr’ s_b01/(s_b0*s_b1);

RUN;

Table 3
Parameter Estimates of the Mixed-Effects Probit-Normal

Model for IMPS Scores (With Standard Errors)

NLMIXED MIXOR

Parameter Estimate SE Estimate SE

mu_b0 24.1012 0.2543 24.1096 0.2520
mu_b1 20.5059 0.1214 20.5051 0.1305
beta2 20.0324 0.2189 20.0388 0.2248
beta3 20.9426 0.1400 20.9506 0.1489
s_b0 21.4738 0.1368 21.4862 0.1413
s_b1 20.7870 0.0819 20.7303 0.0695
s_b01 20.4526 0.1645 20.4680 –
corr 20.3902 0.0876 20.3969 –
c 22.1791 0.1118 22.1842 0.1099
c+d 23.6434 0.1523 23.6538 0.1443
Log-likelihood 21,663.524 21,663.326
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of the generalized mixed-effects models have been hin-
dered by the lack of general purpose software.

This paper has illustrated the use of a new SAS pro-
cedure, NLMIXED, to fit mixed-effects regression mod-
els for analyzing repeated ordinal responses. Two appli-
cations of the models were illustrated through examples
of behavioral research. It is hoped that this paper will be
a contribution toward helping psychologists understand
the formulation and interpretation of mixed-effects mod-
els for categorical response data.
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