Behavior Research Methods, Instruments, & Computers
2002,34 (1), 55-68

Using Matlab to generate families of similar
Attneave shapes

CHARLES A. COLLIN and PATRICIA A. MCMULLEN
Dalhousie University, Halifax, Nova Scotia, Canada

We present a program for Matlab that quickly generates Attneave-stylerandom polygons and families
of similar polygons. The function allows a great deal of user control over various aspects of the shape
generation process. It also has the ability to detect and eliminate shapes that do not match a variety of
user-entered parameters regarding the lengths of the shapes’ sides, vertex angles, and topological form.
The function eliminates the time-consuming task of generating such shapes by hand and should allow
their broader use in behavioral research. The Matlab script function can be downloaded at www.dal.ca/

~mcmullen/downloads.html.

A number of domains in behavior research present par-
ticipants with meaningless two-dimensional (2-D) visual
shape stimuli. These include studies on shape recognition,
mental rotation, and the nature of mental representation. In
many cases, the selection or creation of stimuli in these stud-
ies has been quite arbitrary, making assertions about the
generalizability of the results difficult. Attneave (1957; Att-
neave & Arnoult, 1956) long ago proposed several meth-
ods for designing novel 2-D shapes in an algorithmic and
well-defined manner. These methods have the advantage
that they create shape stimuli in prescribed ways, allowing
for more precise characterization of the populationof shapes
from which they are drawn. Attneave also suggested ways
to create well-defined shape families, which are groups of
2-D shapes having varying degrees of similarity to one an-
other. More informal methods, such as arbitrarily drawing
figures by hand, make it hard to quantify the objective vi-
sual characteristics of the stimuli and thus make it difficult
to create groups of similar shapes in a controlled manner.

The most basic and widely used of Attneave’s (1957; Att-
neave & Arnoult, 1956) methods for generating shapes
consisted of the following steps.

1. Randomly place a set of N scattered points (Where N
is the number of sides of the shape) in a coordinate space,
using a table of random numbers and a 100 X 100 sheet of
graph paper.

2. Join the outer points in a convex hull (although Att-
neave did not use this term himself). The convex hullis a
mathematical concept defined as the smallest subset of a

This work was supported by grants from the Fonds pour la Formation
de Chercheurs et I’Aide a la Recherche to C.A.C. and from the Human
Frontiers Science Program (RG 0161/1999-B, P. McMullen PI) to PA.M.
We thank Erin M. Harley, Ira H. Bernstein, and Jonathan Vaughan for
useful comments on an earlier version of the manuscript. We also thank
Nikolaus Troje for help in testing the program on IBM-compatible plat-
forms. Correspondence concerning this article should be addressed to
C. A. Collin, Psychology Department, Dalhousie University, Halifax, NS,
B3H 4J1 Canada (e-mail: ccollin@is.dal.ca).

55

set of points that, when joined, will surround all the points
and have convex angles at all vertices. To visualize what a
convex hull is, imagine the points are nails driven halfway
into a board and that elastic has been allowed to contract
around the set of nails. Some of the nails will touch the elas-
tic, forming the hull, and others will be inside it. All the angles
on the hull will be convex as viewed from outside the shape.

3. Connect the points inside the hull to randomly chosen
points on the outside in such a way that no lines cross one
another.

An example of this process is shown in Figure 1. By stan-
dardizing the number of points (and thus the number of
sides) of a group of shapes, Attneave (1957; Attneave &
Arnoult, 1956) suggested that one could create shapes of
equal complexity. There are some obvious exceptions to
this, such as a perfectly square or rectangular shape, which
benefit from greater goodness, in Garner’s (1970) sense of
the term, but aside from these accidental cases, Attneave’s
premise seems sound. Certainly, his techniques allow for
better quantification and reproduction of shape stimuli
than do more arbitrary methods.

As was mentioned above, another advantage of Att-
neave’s (1957; Attneave & Arnoult, 1956) methods is that
they allow for the creation of shape families, which are sets
of shapes based on the same prototype. These can be use-
ful stimuli in a number of domains, including research on
the effects of similarity on mental rotation (Cooper, 1975;
Folk & Luce, 1987) and studies of how prototypes and ex-
emplars are processed (e.g., Marsolek, 1996; Posner &
Keele, 1968). Attneave suggested a number of methods for
creating such families. The most basic of these simply in-
volved creating each family member by moving the vertices
of the prototype shape in a random direction by a random
distance. Figure 2 shows several examples of Attneave
shape families, with the prototype at the top and family
members below.

Attneave’s shapes have been employed in many research
studies (e.g., Bethell-Fox & Shepard, 1988; Cooper, 1975;
Cooper & Podgorny, 1976; Cornoldi & Longoni, 1977,

Copyright 2002 Psychonomic Society, Inc.

56 COLLIN AND McMULLEN

A

.

Lo
A

Figure 1. The creation of an Attneave shape. (A) First, a set of random pointsis created. (B) These points
are surrounded by a convex hull. (C) A point inside the hull is joined to the outside. (D) An unacceptable
joining of an inside point to the outside due to line crossings. This joining will be rejected, and a new one
will be tried. (E) All the points inside the shape are connected to points on the hull in such a way that no
lines cross. (F) The final shape.

e
P

Folk & Luce, 1987; Klein, 1982; Willis & Dornbush, Mathworks, Inc., Natick, MA; www.mathworks.com) to
1968; Wu, Sun, Wu, & Xu, 1991), but their use is most rapidly generate families of Attneave-type polygons with
likely limited by the time-consumingtask of creatingthem. a good deal of user control and flexibility. Matlabis a pop-
In this paper, we present a method for using Matlab (The ular mathematics and visualization software extensively

eV W
W 4NN

NN NN N

_
9
_
b
\

Figure 2. Several examples of shape families output by ShapeFamily.m. Prototypes for each family appear at
the top. See the text for details.

USING MATLAB TO GENERATE ATTNEAVE SHAPES 57

used by psychophysicists and other behavior researchers
to prepare and present stimuli.

ShapeFamily.m is a Matlab function that creates a set of
Attneave-type polygons according to a variety of user
specifications that will be described in detail below. It is
designed for use with Matlab 5.2 on Macintosh or Matlab
6.0 on IBM-compatible computers. The function will likely
work with other versions of Matlab and on other operat-
ing systems but has not been tested on them. The code for
the functionis given in the Appendix. It may also be down-
loaded from our Web page at www.dal.ca/~mcmullen/
downloads.html. The downloadable version contains a
help file, which may be accessed by calling

»help ShapeFamily

at the Matlab prompt. The only Matlab toolbox required
to run this function is Image Processing. In general terms,
ShapeFamily.moperates by generating a set of random co-
ordinates for a prototype shape and then applying random
offsets to these in order to create family members of vary-
ing similarity to the prototype. Similarity is controlled by
varying the average distance a vertex is moved when fam-
ily members are created. This factor is controlled by the
user, as is the number of sides of the prototype and family
members and the number of family members generated.
Perhaps the most important aspect of the function is that
each generated shape can be checked to make sure it sat-
isfies a number of criteria regarding lengths of sides, angles
atvertices, and topologicalintegrity. Below, we describe how
to use the function in detail and then explain the algorithm
in general terms.

Using ShapeFamily.m
To use ShapeFamily.m, place the functionin the Matlab

folder (or a folder in Matlab’s path). Then, at the Matlab
prompt, type a command in the form

» [XTf, Yf, Xp, Yp] = ShapeFamily(‘paramter1’,
valuel, ‘parameter?’, value2, . . .);

The return values (Xf, Yf, Xp, and Yp) are optional, as
are the input parameters. There are 16 possible input pa-
rameters, each of which is discussed in detail below. If no
input values are provided at the command line, a dialog box
will appear where these values may be entered. The return
values Xf and Yf are matrices containing the coordinates
of the generated shape family. All return values are in the
range of 0 to 1. Each row contains the coordinates defin-
ing one member of the shape family. For example, one can
view member n of a family by calling

» fill(Xf(n), Yf(n));

where 7 is an integer from 1 to the number of family mem-
bers generated (see the parameter description for NMem-
bers, below). Xp and Yp are the coordinates of the proto-
type from which the family is derived. These are in the same
format as the family members.

There are 16 input parameters that may be modified to
control how a shape family is generated. Any number of

these values may be entered in a single command line, and
they may be entered in any order, although the value must
always follow its associated parameter immediately. The
values control such things as the number of sides the gen-
erated shapes will have, the number of shapes created, and
so on. The use of each parameter is detailed below.

NMembers. This is the number of family members to be
generated. Any number may be requested. A value of 0 or
lower will result in only a prototype being generated. The
default value is 4.

NSides. This is the number of sides the prototype and
each family member will have. Attneave (1957) referred
to this as the complexity of the shape. Any number of sides
3 or greater may be requested, but as the number rises the
function may take a long time to run, especially if Topol-
Method (see below) is set to “fast” or “complete.” A maxi-
mum of 24 is recommended. The default value is 6.

NPts2Shift. This is the number of vertices (points) to shift
when making new family members. Generally, this should
be equal to NSides, but some authors have used stimuli
they refer to as mutants, where the original prototype shape
has only one vertex moved. To make such mutants, set this
parameter to 1. The default value is 6.

PtsMethod. This is the method of choosing which ver-
tices to shift. It is only relevant if NPts2Shift is less than
NSides. Three possible values may be entered: “r” for ran-
dom, “c” for constant, or “s” for sequential. The random
method arbitrarily chooses a new set of points to shift each
time. The constant method shifts the same points each
time. The sequential method incrementally moves through
all the points in the shape, shifting around the shape by one
vertex for each new family member. The default valueis “r.”

ShiftLims. This is a vector containing two values, a min-
imum and maximum amount by which vertices are shifted
when family members are made. Both values must be in
the range of O to 1. Note that the shift value may be con-
strained to a single distance by making these equal. The
default value for this parameter is [0 1].

LengthLims. This is a vector containing two values, the
minimum and maximum length of sides for the prototype
and family members. Both values must be in the range of
0to 1. Because ShapeFamily.m works by simply rejecting
shapes that do not fit within these limits, the function may
take a great deal of time to run if these two values are too
close to one another. It is not recommended that the lower
limit be greater than .2, nor the higher limit less than .8. If
the lower limit is set too small, some sides may be too
short to see, resulting in fewer visible sides than expected.
If it is too large, it may be impossible for the function to
generate a shape within the allowed space (all the shapes
are generated within an absolute coordinate space, so all
points must have coordinates in the range of 0 to 1). The
upper limit should generally be left at 1; however, it may
be useful to lower it as far as .5 if many-sided polygons are
being generated, since the shorter sides will tend to allow
the shape to fit into the allowed space more readily. The
default value for this parameter is [.05 1].

AngleLims. This is a vector containing two values, the
minimum and maximum acute angles, in degrees, at any

58 COLLIN AND McMULLEN

vertex of the prototype or family members. If the angle at
a vertex is too wide, the sides may not be visibly differen-
tiable, resulting in fewer visible sides than expected. If the
angle is too acute, this may result in a spike that contains
no volume and is not properly part of the shape. As with
LengthLims, itis notrecommended that the minimum and
maximum values be too similar, or the function will take
along time to run. Recommended values are 5 and 175 or
10 and 170, respectively. The default value of this param-
eteris [5 175].

FamilyName. This is simply a label for the shape family.
If images of the shapes are being generated (see MakePix,
below), this acts as the first part of the image file names.
Any string is allowed, so “Smith,” “One,” or “S& V22" are
all acceptable. The default value is “shape.”

FamilyRes. This determines the degree of family re-
semblance among the shapes generated. ShapeFamily.m
creates family members by shifting the locations of the
prototype’ vertices in random directions by a random dis-
tance. The distance is drawn from a flat probability distri-
bution with a range of 0 to 1 and then multiplied by 1 —
FamilyRes. Thus, the higher this parameter, the lower the
average distance a vertex is shifted when a family mem-
ber is created. For shapes having some degree of subjec-
tive similarity, recommended values are from .80 to .99.
The default value is .9.

TopolMethod. ShapeFamily.m can check the generated
shapes to see if they have good topologicalintegrity—that
is, that they are single shapes with no easily differentiable
parts or holes. To accomplish this, ShapeFamily.m applies
anumber of pixel-wise erosions to the shapes it generates
and then checks to see whether this divides them into sep-
arate pieces. There are three possible values for this para-
meter: “n” for “none,” “f” for “fast,” and “c” for “complete.”
The fast method is much quicker but may miss some un-
acceptable cases, especially where many-sided polygons
are being generated. The complete method is recom-
mended but can take a great deal of time, especially where
many-sided polygons are being generated. More on the
specific algorithm used by this feature is given in a later
section. The default value is “n.”

NErosions. This is the number of pixel-wise erosions ap-
plied to a shape when checking its integrity. As more ero-
sions are applied, thicker bridges between parts will be
severed, resulting in only highly integral shapes being ac-
cepted for output. The default value for this parameter is 3.

CrossCheck. If CrossCheck is set to *y,” ShapeFamily
checks to make sure that no lines cross in the shape being
generated. This is in accordance with Attneave and
Arnoult’s (1956) Method 1. CrossCheck may also be set to
“n,” in which case line crossings are allowed in the output
shapes and new emergent vertices may be created (see Fig-
ure 1D). Setting CrossCheck to “n” will approximate Att-
neave and Arnoult’s Method 2, although certain con-
straints on point joining are not implemented. The default
value is “y.”

MakePix. If MakePix is set to “y,” ShapeFamily.m will
save the generated family of shapes as a set of TIFF files.

These are created in the folder where ShapeFamily.m is
executed. The file names follow the naming convention
<Family Name><Member Number>.tiff, where <Family
Name> is a string passed via the FamilyName parameter
(see above) and <Member Number> is a sequential two-
digit number from 1 to NMembers. The prototype image
is saved to a file called <Family Name>Proto.tiff. The de-
fault value of this parameter is “y.” One can view these
images in Matlab. For instance, to view the second mem-
ber of a family of shapes whose FamilyName (see above)
is “MyShapes,” use the following commands:

»x=imread(‘MyShapes02.tiff’);
»imshow(x);

ImageSize. The size (in pixels) of the images generated
when MakePix is “y.” The images are always square. The
defaultis 256.

PrototypeX and PrototypeY. Normally, ShapeFamily.m
generates its own prototype shape and then derives the
family members from it. However, it is possible to pass the
function a set of x and y-coordinates for a prototype, in
which case it will use these as the starting point for a fam-
ily. The passed values in this case are vectors of coordi-
nates in the O to 1 range, with one coordinate per vertex.
There are no default values for these parameters; they are
randomly generated if none is passed to the function.

Examples
The following gives some examples of parameter sets
that might be passed to ShapeFamily.m, and the results.
The resulting shapes are shown in Figure 2, with the pro-
totype shape at the top and the family members below.

» [Xf, YT, Xp, Yp]=ShapeFamily;

Simply entering the command without any passed pa-
rameters will cause a dialog window to be activated. The
user may enter values for all the different parameters here.
Simply hitting the “okay” button without modifying any
parameters will cause a family of shapes to be generated
in accordance with the default values. This means that
four family members will be generated, with six sides each;
the sides of these shapes will be a minimum of .05 ab-
solute units long, the acute angles at all vertices will be be-
tween 5° and 175° and so on. The coordinates for the
shapes will be stored in Xf and Yf, with one shape per row.
The prototype will be stored in Xp and Yp. See Figure 2,
column A for an example of shapes generated with the de-
fault parameter values.

» [Xf, Yf, Xp, Yp]=ShapeFamily(‘NSides’, 12,
‘NPts2Shift’, 12, ‘NMembers’, 3);

This will generate a prototype and a family of three
shapes, all having 12 sides. Each family member will be
created by shifting all the vertices in random directions by
arandom distance (see Figure 2, column B).

» [XT, Yf, Xp, Yp]=ShapeFamily(‘FamilyRes’, 0.7,
‘NSides’, 12, ‘NPts2Shift’, 12, ‘NMembers’, 3);

USING MATLAB TO GENERATE ATTNEAVE SHAPES 59

This is the same as the previous example, except that the
family resemblance has been set to .7, meaning the shapes
in the family will not be very similar to one another. The
shapes in the family will be created by moving the vertices
of the prototype an average of .1 absolute units, up to twice
the length of a side, so the similarity in shape will tend to
be low (see Figure 2, column C).

» [Xf1, Yf1, Xp, Yp]=ShapeFamily(‘Family
Name’, ‘One’);

and

» [Xf2, Yf2]=ShapeFamily(‘FamilyName’,
‘Two’, ‘PrototypeX’, Xp, ‘PrototypeY’, Yp);

Executing these two commands in sequence will create
two families based on the same prototype (see Figure 2,
columns D and E).

» [Xf, Yf]=ShapeFamily(‘PrototypeX’, [.2 .2 .8 .8],
‘PrototypeY’, [.2 .8 .8 .2]);

This will generate a family of shapes with a square as
the prototype (see Figure 2, column F).

» [Xf, Yf, Xp, Yp]=ShapeFamily(‘NSides’, 4,
‘NMembers’, 4, ‘NPts2Shift’, 1, ‘PtsMethod’, ‘s’);

This command will generate a family of 4 four-sided
shapes, each of which will be a mutant, as used by Cooper
and Podgorny (1976). That is, each will have only a single
vertex moved. In addition, because the point selection
method is sequential, each family member will have a dif-
ferent point moved (see Figure 2, column G).

The Algorithm

The algorithm used by ShapeFamily.m is quite similar
to the first one suggested by Attneave and Arnoult (1956).
The main difference is that this program does not use discrete
units for coordinate values. Also, the program has the abil-
ity to automatically filter out shapes that do not match cer-
tain criteria regarding lengths of sides, angles at vertices,
and topological integrity.

The first part of the function generates the prototype shape
by randomly scattering a set of points in a 2-D space. The
coordinate values of these points are drawn from a flat dis-
tribution in the range of 0 to 1. Alternatively, the user may
pass in a set of prototype coordinates via the PrototypeX
and PrototypeY parameters. A convex hull is then gener-
ated around the set of points. Each point that is not on the
hull is then connected to two points that are. This is done
by inserting the inside point’s coordinates into the list of
convex hull coordinates at arandom place and then check-
ing to see whether the shape thus defined has any lines
that cross. If crossing lines are created, a new insertion place
in the listis attempted. This is continued until all possiblein-
sertion places are tried. There will always be at least one
insertion placement that does not result in line crossings.
Once a good insertion point is found, the inside coordinate
is added to the list of outer hull coordinates. Then the next

inside pointis placed randomly in the list, and the process
is started again. This continues until all the points have
been connected in a single shape with no crossing lines.
The prototype shape thus generated is then checked to see
if it fits criteria for length of sides, acute angles at vertices,
and topological integrity. If it does not, new vertices are
generated, and the process starts again.

The length of the sides is determined in a straightforward
manner: It is the linear distance between each pair of ad-
jacentpointsin the list of vertex coordinates. If any length
is outside the values given in LengthLims, the prototype
shape is rejected. The angle check relies on the law of
cosines, which, for any set of three points—x1, y1,x2,y2,
and x3, y3—gives the acute angle at x2, y2 as the arc-
cosine of the dot product of the vectors (i.e., x1, y1 to X2,
y2 and x3, y3 to x2, y2) over the dot product of their norms.
These two checks are incorporated mainly in order to
eliminate situations in which two or more nearly collinear
sides appear to form a single side or in which the length
of a side is so small as to be invisible. They ensure that all
n-sided figures will visually appear n-sided.

The purpose of the topological check is to ensure that
the output figures will each consist of a single unitary
shape and not a set of differentiable parts joined at single
points or narrow bridges. The function accomplishes this by
first creating binary images of the shapes. These images
consist of “on” pixelsinside the shape and “off ” pixels out-
side it (see Figure 3A). The image is then eroded a num-
ber of times (equal to NErosions), and its Euler number is
checked (see Figure 3B). Erosion is a morphological op-
eration that removes the outer layer of pixels from a shape.
Doing this several times has the effect of severing narrow
bridges and junctions that may join one or more distin-
guishableparts in a shape. The Euler number is checked fol-
lowing this procedure to see whether the shape still consists
of a single contiguous area. The Euler number is a topo-
logical quantity equal to the number of shapes in an image
(i.e., the number of contiguous patches of “on” pixels) minus
the number of holes in those shapes (i.e., the number of
patches of “off” pixels inside the patches of “on” pixels).

When the TopolMethodparameter is set to “fast,” the func-
tion simply checks that the Euler number equals 1 following

Figure 3. Pixel-wise erosion serves to sever two distinguishable
parts of a shape. (A) The shape before erosion is topologically
unitary, in that it consists of a single contiguous patch of “on”
pixels, but it has two obvious parts. (B) The parts have been sep-
arated by implementing three consecutive erosion operations.

60 COLLIN AND McMULLEN

the erosions. This is generally a reliable method of ensur-
ing that a single integral shape is generated, but it may
miss some unacceptable cases, such as when a shape con-
sists of two distinguishable parts, one of which has a hole
init(2 — 1 =1, so the Euler number will be 1 even though
the shape is not acceptable). When TopolMethod is set to
“thorough,” this problem is eliminated by checking the
Euler number before and after a flood fill has been per-
formed on the image. The flood fill starts at the image ori-
gin and has the effect of linking any separate shapes in the
image into a single solid background, leaving only the
holes. The absolute Euler number at this point will always
equal one more than the number of holes. The thorough
method eliminates any generated figure that contains any
holes, as well as any figure containing more than one part
(where parts are defined as those areas that become sepa-
rate following the erosions).

If the prototype shape fails to fulfill any of the criteria
above, it is rejected, and a new one is created (unless the
prototype is passed by the user, in which case the program
exits with an error). Once an acceptable prototype is gen-
erated, it is used to derive a family of similar shapes. Each
member of the shape family is generated by moving the
vertices of the prototype by random amounts in random
directions. The distances are chosen from a flat distribu-
tion in the range of 0 to 1 and then are multiplied by 1 —
FamilyRes. Any shift distances falling outside the values
in ShiftLims are changed to equal the minimum or the
maximum value. The shift directions are chosen from a flat
distributioncovering 360°. If Pts2Shiftis less than NSides,
a subset of vertices is selected for shifting for each family
member. Depending on PtsMethod’s value, these points
may be selected randomly, held constant, or incremented
sequentially. Each of the shapes thus generated is checked
to see whether any of its lines cross. If not, they are put
through the same checks for lengths of sides, angles at
vertices, and topological integrity as the prototype shape.
Family members that fail any of these checks are rejected,
and replacements are created for them.

Conclusions

Attneave’s (1957; Attneave & Arnoult, 1956) methods for
generating shapes fill a need in behavioral research for quan-
tifiable shape stimuli. Shape Family.m provides a rapid and
well-controlled method for generating shapes, using his al-
gorithm, and allows automatic checking of a number of cri-
teria regarding the qualities of the shapes generated. It is our
hope that this will prove useful to other behavior researchers
and will allow a wider use of Attneave’s techniques.

REFERENCES

ATTNEAVE, F. (1957). Physical determinants of the judged complexity of
shapes. Journal of Experimental Psychology, 53, 221-227.

ATTNEAVE, F., & ArRNoOULT, M. D. (1956). The quantitative study of
shape and pattern perception. Psychological Bulletin, 53, 452-471.

BETHELL-FoX,C. E., & SHEPARD, R. N. (1988). Mental rotation: Effects
of stimulus complexity and familiarity. Journal of Experimental Psy-
chology: Human Perception & Performance, 14, 12-23.

CoOPER, L. A. (1975). Mental rotation of random two-dimensional
shapes. Cognitive Psychology, 7, 20-43.

COOPER, L. A., & PoDGORNY, P. (1976). Mental transformations and vi-
sual comparison processes: Effects of complexity and similarity. Jour-
nal of Experimental Psychology: Human Perception & Performance,
2,503-514.

CornoLDI, C., & LoNGONI, A. (1977). The MP-DP effect and the in-
fluence of distinct repetitions on recognition. Italian Journal of Psy-
chology, 4, 65-76.

Fork, M. D., & Lucg, R D. (1987). Effects of stimulus complexity on
mental rotation rate of polygons. Journal of Experimental Psychol-
ogy: Human Perception & Performance, 13, 395-404.

GARNER, W. R. (1970). Good patterns have few alternatives. American
Scientist, 58, 34-42.

KLEIN, R (1982). Patterns of perceived similarity cannot be generalized
from long to short exposure durations and vice versa. Perception &
Psychophysics, 32, 15-18.

MaRsOLEK, C. J. (1996). Dissociable neural subsystems underlie ab-
stract and specific object recognition. Psychological Science, 10, 111-
118.

PosNER, M. L, & KEELE, S. W. (1968). On the genesis of abstract ideas.
Journal of Experimental Psychology, 77, 353-363.

WiLLs, E., & DorNBUSH, R. L. (1968). Preference for visual complex-
ity. Child Development, 39, 639-646.

Wu, Z.,Sun, C., Wu, Z, & Xu,S. (1991). Age differences in the imag-
ination of figures. Psychological Science [China], 2, 1-6.

APPENDIX

function varargout=ShapeFamily (varargin) ;

o help is included in this version.

% N Help text is included in the
% downloadable version available at www.dal.ca/~mcmullen/downloads.html

% First, create table of parameter names, values and prompts

Parameters = {

'NMembers ', 4, 'Number of family members to generate (0-50): ';
'NSides', 6", 'Number of sides per shape (3-24+): '; Ce
'NPts28hift!', 6", 'Number of vertices to shift (0 to # of sides) : ';...
'"PtsMethod’, 'r', 'Shifted point selection method (r, ¢, or s) ';
'ShiftLims', o1, 'Min&Max vertex shifts (0-1): ';

'LengthLims', '.05 1', 'Min&Max side lengths (0-1): ';

'AnglelLims’', '5 175', 'Min&Max vertex angles (0-180): ';

'FamilyName', ‘'shape', 'Family name:

'FamilyRes', .9, 'Family resemblance coefficient (0-1): ';

USING MATLAB TO GENERATE ATTNEAVE SHAPES

APPENDIX (Continued)

'TopolMethod', 'n', 'Topology checking method (£, ¢, or n)?';
'NErosions', 37, 'Number of erosions to seperate parts (0-5+): ';
'CrossCheck', 'y', 'Check for line crossings? ("y" or "n"): ';
'MakePix', 'v', 'Make pictures? ("y" or "n"): ';

'ImageSize’', 256", 'Size of output images in pixels: ';
'PrototypeX"', LI 'X coordinates of prototype shape: ';
'PrototypeY"', e, 'Y coordinates of prototype shape: ';

};

% If no parameters were input at the command lines, pop up windows

% to get their values.

if nargin ==
ParamInputs = inputdlg (Parameters(:,3), 'Enter Shape Parameters', 1,
Parameters(:,2));

[Parameters{:,2}] = deal (ParamInputs{:});
end

% Now assign each parameter in the table to its value
for par = l:size(Parameters,1)
if isempty (str2num(Parameters{par,2})) % for string entries

eval ([Parameters{par,1} '=''' Parameters{par,2} ''';']l);
else % for number entries

eval ([Parameters{par,1} '=[' Parameters{par,2} ']l;'l);
end

end

% If there were inputs at the command line, use those
for x=1:2:nargin

if ~exist (varargin{x}) % check for non-parameter entries
error(['''' varargin{x} ''' is not a recognized parameter.']);
elseif ischar(varargin{x+l}) % if a string entry
eval ([varargin{x} '=''' varargin{x+l} ''';']);
elseif ~ischar (varargin{x+1l}) % if a numerical entry
eval ([varargin{x} '=[' num2str(varargin{x+1}) ']1;'l);
end
end
rand('state', fix(le6*sum(clock))); % Seed the random number generator

% IF NO PROTOTYPE HAS BEEN HANDED TO THE FUNCTION, IT GENERATES ONE
if isempty (PrototypeX)

ProtoTypeOkay=0;

while ~ProtoTypeOkay
ProtoX = rand(1,NSides); % make random points
ProtoY = rand(1,NSides) ;

ConvexDex = convhull (ProtoX,ProtoY); % Get the convex hull indexes.

% Get the coordinates of points on the convex hull
ProtoXConv = ProtoX (ConvexDex (l:end-1)) ;
ProtoYConv = ProtoY (ConvexDex (l:end-1)) ;

% Get the indexes of points inside the hull
InDex = inpolygon(ProtoX, ProtoY, ProtoXConv, ProtoYConv) ;

% Get the coordinates of points inside the hull
ProtoXIn = ProtoX (InDex==1) ;
ProtoYIn = ProtoY (InDex==1) ;

61

62 COLLIN AND McMULLEN

APPENDIX (Continued)

% Shuffle the order of the inside points

% They will be attached to the outer hull in the shuffled order
[null, sdex] = sort(rand(size (ProtoXIn)));

ProtoXIn = ProtoXIn (sdex) ;

ProtoYIn = ProtoYIn (sdex) ;

% TestX and TestY are the coordinates to be tried out. To begin
% they are assigned to be equal to the points on the Convex Hull.
TestX = ProtoXConv; TestY = ProtoYConv;

% For each point inside the hull, try inserting its coordinates into the
% list of coordinates for points that are on the hull. The place of

% insertion into the list is random. Generate the polygon thus defined
% and check if it has any crossing lines. If it does, try the next list
% insertion placement, otherwise move on to insert the next point that

g

% inside is the polygon.
ProtoTypeOkay = 1;
ProtoTypeFailed = 0;

for InsertDex = 1l:length(ProtoXIn)

% Create random order in which to try insertion points.
InsertOrder = shuffle(l:length(TestX)) ;

for p = 1l:1length(InsertOrder)

Insert the new coordinate in the list of coordinates already
on the polygon
TestX (InsertOrder (p) +1:end+1)

[
°
[

°

TestX (InsertOrder (p) :end) ;

TestY (InsertOrder (p) +1:end+1l) = TestY (InsertOrder (p) :end) ;
TestX (InsertOrder (p)) = ProtoXIn (InsertDex) ;
TestY (InsertOrder (p)) = ProtoYIn (InsertDex) ;

% Check to see if the new shape has line crossings in it
CrossOkay = CheckCross([TestX, TestX(1l)], [TestY, TestY(1l)],
CrossCheck) ;

% If there is a crossing, undo the insertion

if ~CrossOkay
TestX (InsertOrder (p) :end-1) = TestX(InsertOrder (p)+1l:end) ;
TestY (InsertOrder (p) :end-1) = TestY (InsertOrder (p)+1l:end) ;
TestX = TestX(l:end-1) ;
TestY = TestY(l:end-1);

else
% 1f the point is okay with the currently attempted insertion
% break out and move on to place the next inside point.
break;

end

end

end

If the prototype has been successfully created by the above,
check it for other criteria, rejecting and starting anew if
any are not met.

if ProtoTypeOkay

d° o° o°

LengthOkay = 1; AngleOkay = 1; TopolOkay = 1;

LengthOkay = CheckLength(TestX,TestY, LengthLims (1), LengthLims (2));
if LengthOkay
AngleOkay = CheckAngle (TestX, TestY, AngleLims(l), AngleLims(2));
if AngleOkay
TopolOkay = CheckTopol (TestX, TestY, NErosions, TopolMethod) ;
end
end

USING MATLAB TO GENERATE ATTNEAVE SHAPES

APPENDIX (Continued)

if any([~LengthOkay, ~AngleOkay, ~TopolOkay]) ;
ProtoTypeOkay = 0;
end
end

end

If the set of coordinates passes all criteria, they become the
prototype coordinates.

Xp = TestX;

Yp = TestY;

o
)
[

)

IF A PROTOTYPE HAS BEEN HANDED TO THE FUNCTION, IT CHECKS IF IT PASSES
THE SHAPE CRITERIA AND USES IT
else

% Assign input coordinates to prototype coordinates
Xp = PrototypeX; Yp = PrototypeY;

NSides = length(Xp); % Derive # of sides from length of passed prototype

% Check if the prototype meets criteria
LengthOkay = 1; AngleOkay = 1; TopolOkay = 1; CrossOkay = 1;

LengthOkay = CheckLength (Xp,Yp, LengthLims (1), LengthLims (2)) ;
if LengthOkay
AngleOkay = CheckAngle (Xp,Yp, AngleLims (1), AngleLims(2));
if AngleOkay
TopolOkay = CheckTopol (Xp,Yp, NErosions, TopolMethod) ;
if TopolOkay
CrossOkay = CheckCross ([Xp, Xp(1)], [Yp, Yp(1l)], CrossCheck) ;
end
end
end

% Display error if prototype is not acceptable

if length (Xp) ~= length (Yp)
error ('Length of ProtoTypeX and ProtoTypeY must be the same');
elseif (Xp>1 | Xp<0) | (Yp>1 | Yp<0)

error ('All entered prototype coordinates must be in range 0 to 1');
elseif ~LengthOkay
error ('Line(s) in prototype are not within length limits');
elseif ~AngleOkay
error ('Angle(s) in prototype are not within angle limits');
elseif ~TopolOkay
error ('Prototype has failed topological check') ;
elseif ~CrossOkay
error ('Lines in prototype cross one another');
end

end

% Print the prototype image out to a TIFF file
if MakePix == 'y'
img = flipud (~roipoly (repmat (0, ImageSize, ImageSize),
Xp * ImageSize, Yp * ImageSize)) ;
imwrite (img, [FamilyName, 'Proto.tiff'], 'tiff', 'compression', 'ccitt');

63

64

COLLIN AND McMULLEN

APPENDIX (Continued)

XEf =1''; YE = ''; % Assign empty matrices for shape coordinates

LengthOkay = 0; AngleOkay = 0; TopolOkay = 0;

For the 'constant' or 'sequential' shifted point selection methods,
generate a random set of points to be shifted.

o
)
o

)

if (PtsMethod == 'c¢') | (PtsMethod == 's')
PointIndexes = 1:NSides;
[null, sdex] = sort(rand(size(PointIndexes))) ;

PointIndexes = PointIndexes (sdex) ;

StaticPtIndexes = PointIndexes (1l: (NSides-NPts2Shift));
end

MembersMade = 0;
while MembersMade < NMembers

while 1
% For each family member, generate a new set of coordinate
% offsets (shifts).
xyShiftLengths = rand(1,NSides) * (1-FamilyRes) ;

% Check to make sure the shifts are within the desired limits
xyShiftLengths (find (xyShiftLengths > ShiftLims(2))) = ShiftLims(2);
xyShiftLengths (find (xyShiftLengths < ShiftLims(1l))) = ShiftLims(1);

If a random set of points are being shifted on each family
member, generate a new set of points each time.

[
i)
o

)

if PtsMethod == 'r'
PointIndexes = 1:NSides;
[null, sdex] = sort(rand(size (PointIndexes))) ;

PointIndexes = PointIndexes (sdex);
StaticPtIndexes = PointIndexes (1: (NSides-NPts2Shift)) ;
end

xyShiftLengths (StaticPtIndexes) = 0;

% Create shift angles (0 to 360) and then derive x & y shifts
xyShiftAngles = rand(1l,NSides) * pi * 2;

xshifts = cos (xyShiftAngles) .* xyShiftLengths;
yshifts = sin(xyShiftAngles) .* xyShiftLengths;

% Apply the shifts to the prototype's coordinates
to generate a new family member.

XMem = Xp + xshifts;

YMem = Yp + yshifts;

o°

% Check that coordinates are all still in 0 to 1 range.
if all ([XMem>0, XMem<l, YMem>0, YMem<l]);
break;
end
end

% Check that the family member fits the various shape criteria.
LengthOkay = 1; AngleOkay = 1; TopolOkay = 1; CrossOkay = 1;

LengthOkay = CheckLength (XMem, YMem, LengthLims (1), LengthLims(2)) ;
if LengthOkay
AngleOkay = CheckAngle (XMem, YMem, AngleLims(1l), AngleLims(2));
if AngleOkay
TopolOkay = CheckTopol (XMem, YMem, NErosions, TopolMethod) ;
if TopolOkay
CrossOkay = CheckCross ([XMem,XMem(1)], [YMem,YMem(1)], CrossCheck) ;
end
end
end

USING MATLAB TO GENERATE ATTNEAVE SHAPES

APPENDIX (Continued)

if all ([LengthOkay, AngleOkay, TopolOkay, CrossOkayl])
MembersMade = MembersMade + 1;

Xf = [Xf; XMem]; % Save coordinates of generated
Yf = [Yf; YMem]; % family members.

If points to be shifted are being sequentially moved around
for each family member
if PtsMethod == 's'
StaticPtIndexes = StaticPtIndexes+l;
StaticPtIndexes (find (StaticPtIndexes > NSides)) = 1;
end

[
°
[

°

% Print the image out to a TIFF file

if MakePix == 'y!'
img = flipud(~roipoly (repmat (0, ImageSize, ImageSize),
XMem* ImageSize, YMem*ImageSize)) ;

imwrite (img, [FamilyName, sprintf ('%.2d',MembersMade) '.tiff'],
'tiff', 'compression', 'ccitt');
end

end
end

% Finish up and provide output arguments
close('all');
if nargout >= 2
varargout{l} = Xf;
varargout{2} = Yf;
end
if nargout ==
varargout{3} = Xp;
varargout{4} = Yp;
end

% FUNCTION CheckAngle

function okay = CheckAngle (X, Y, MinAngle, MaxAngle);

% CheckAngle takes a set of points contained in the vectors X and Y,

% and checks them to make sure the angles between all sets of 3 adjacent
% points are within MinAngle and MaxAngle.

okay = 1;

if (MinAngle == 0) & (MaxAngle == 180)
return;

end

Add the first two coords on the end in order to

X = [X, X(1:2)];
] check the wrap-around of the polygon.

Y = [Y, Y(1:2)

o
)
. o
)

7

for a = 1:size(X,2) —2
warning off; % to get rid of divide by zero warnings
if getangle(X(a),Y(a), X(a+l),Y(a+tl), X(a+2),Y(at+2)) <MinAngle |
getangle(X(a),Y(a), X(a+l),Y(a+l), X(a+2),Y(a+2)) >MaxAngle
okay = 0;
return;
end
warning on;
end

65

66 COLLIN AND McMULLEN

APPENDIX (Continued)

% FUNCTION CheckLength

function okay = CheckLength(X,Y, MinLength, MaxLength) ;

% CheckLength takes a set of coordinates contained in the vectors X and
Y, and checks them to make sure the distance between any two adjacent
points is greater than MinLength and less than MaxLength.

o° o°

okay = 1;
if (MinLength == 0) & (MaxLength == 1)
return;
end
X = [X, X(1)]; % Add the first point onto the end in order to
Y = [Y, Y(1)]I; % check the wrap-around of the polygon.

for a = 1l:size(X,2) -1
if (getdist(X(a), Y(a), X(a+tl), Y(a+l)) < MinLength) |
(getdist (X(a), Y(a), X(a+l), Y(a+l)) > MaxLength)
okay = 0;
return;
end
end

% FUNCTION CheckCross

function okay = CheckCross(X,Y, CrossCheck) ;

% Checks to see if any of the lines in the polygon defined by X,Y
cross one another. The poly must be closed, so the last coordinate
in the set much match the first.

o° o°

okay = 1;

if CrossCheck == 'n'
return;
end

tol = 0.000001; % Tolerance value for vertex position
% Check each pair of lines in the polygon to see if they cross
for g = 1:1length(X) -1

for h = 1:1length(Y)-1

First, calculate the equations of the two lines
(warnings are suppressed due to possibility of vertical lines)
warning off;
bl = (Y(g+l) -Y(g)) /(X (g+l) -X(g));
b2 = (Y(h+1)-Y(h))/(X(h+1l)-X(h));
warning on;
% If either line is vertical set slope to "very high" instead of Inf
if bl == Inf
bl 1000000;
end
if b2 == Inf
b2 = 1000000;
end
% If lines are parallel, offset one slightly to avoid intersection
% at infinity

[
°
[

°

if bl == b2
bl = bl + 0.000001;
end

% Calculate intercepts of both lines
al = Y(g) - bl*X(qg);
a2 = Y(h) - b2*X(h);

USING MATLAB TO GENERATE ATTNEAVE SHAPES

APPENDIX (Continued)

% Calculate point where lines will intersect
xi = -(al-a2) / (bl-b2);
i =al + bl * xi;

o

If the intersection point is within the limits of both lines

and the point is not a vertex of the polygon, then there is a
crossing of lines.

if all([((X(g)-xi)*(xi-X(g+l)) >= 0), ((X(h)-xi)*(xi-X(h+l)) >= 0),
((Y(g) -yi) * (yi-Y(g+l)) >= 0), ((Y(h)-yi) * (yi-Y(h+1)) >= 0),

d° o° o°

(abs (xi-X(g)) > tol & abs(yi-Y(g)) > tol),
(abs (xi-X(g+1l)) > tol & abs(yi-Y(g+1l)) > tol),
(abs (xi-X(h)) > tol & abs(yi-Y(h)) > tol),
(abs (xi-X(h+1)) > tol & abs(yi-Y(h+1)) > tol)]);
okay = 0;
break;
end
end
if okay ==
break;
end

end

% FUNCTION CheckTopol

function okay = CheckTopol (X,Y,NErode, TopolMethod) ;

% CheckTopol takes a set of coordinates passed in the vectors X and Y,
generates the polygon they represent and checks to make sure it is a

single integrated shape with no holes in it.

o° o°

okay = 1;
% If TopolMethod is 'none' return immediately
if TopolMethod == 'n'
return;
end

% Generate image of the polygon
img = roipoly (repmat (0,256,256), X*256,Y*256) ;

% First do the fast check, checking if Euler number is initially 1.
% If not, shape is not okay.

if (bweuler (img) ~= 1)
okay = 0; return;
end
% If shape passed first test, erode it a few times, checking after each
% erosion. If at any point, Euler ~= 1, shape is not okay.

for E = 1:NErode
if bweuler (bwmorph (img, 'erode', E)) ~= 1
okay = 0; return;
end
end

% Then the full check if requested. Flood fill from image origin and check
% the number of holes in the image. If not 0, shape is not okay.
if TopolMethod == 'f' % full
if ((bweuler(bwfill (img, 1,1,4))-1) * -1) ~= 0
okay = 0; return;
end
end

% FUNCTION getdist
function dist = getdist(xl,yl,x2,vy2);
dist = ((x1-x2)A2 + (yl-y2)A2)A.5;

67

68 COLLIN AND McMULLEN

APPENDIX (Continued)

% FUNCTION getangle

function angle = getangle(x1l,v1,x2,v2,x3,v3);

% Given three points in cartesian space, x1 yl, x2 y2, and x3 y3,
% returns the acute angle at x2 y2 in degrees.

pl [x1 y1]; p2 = [x2 y2]; p3 = [x3 y3];
vl = pl - p2;
v2 = p3 - p2;

angle = acos (v1*v2' / (norm(vl)*norm(v2))) * 180/pi;

% FUNCTION shuffle

function [out,dex] = Shuffle(in)

% Randomly shuffles positions of elements of in
[dummy, dex] = sort(rand(size(in)));

out = in(dex) ;

(Manuscript received March 12, 2001;
revision accepted for publication October 14, 2001.)

