
Copyright 2001 Psychonomic Society, Inc. 532

Behavior Research Methods, Instruments, & Computers
2001, 33 (4), 532-539

Object-orientedprogramming allows one to developutil-
ities that may easily be reused for developing future appli-
cations.Object-orientedutilities,such as the timingfunctions
presentedhere, can simplifycodedevelopmentand can make
the debugging process faster. This allows for a shorter pe-
riod between the idea and the experiment.Millisecondtim-
ing is a common requirement in many experiments. Accu-
rate timing is required for both stimulus control and as a
response measure.

Myors (1999) has shown that millisecond timing rou-
tines will be adversely affected when run under a multi-
tasking operating system, such as the various incarnations
of Windows. Myors recommends that experiments that re-
quire millisecond accuracy be run under a pure DOS en-
vironment. Although DOS is an antiquated operating sys-
tem, there are some advantages for its continued use on
data collection machines. Myors has pointed out the diffi-
culties of obtainingreliable millisecond timing under mul-
titaskingoperatingsystemssuch as Windows.Accurate tim-
ing underlies the reliable control of external equipment,
stimuli, and response measurement, all of which are neces-
sary for the conducting of well-controlled experiments.
Until consistent and reliable timing routines are available
underWindows and other multitaskingoperating systems,
these operating systems will not be as well suited for data
acquisition as DOS.

As an additionalbenefit, because DOS uses far fewer of
the computer’s resources than graphical/multitasking op-
erating systems, older equipmentmay be employed for data
acquisition.For example, in Wilson’s 1996 paper, the con-
trollingcomputer is an 8088 runningat 12 mHz using soft-
ware written in Turbo Pascal 3.0.

The ability to use antiquatedequipmentextends the use-
ful life of laboratory purchases and allows for equipment
stability over years of research. Additionally, multiple an-

tiquatedmachinescan usuallybe purchased for the price of
a single new machine. This reduces the costs to a laboratory
interested in setting up multiple experimental stations in
order to reducedata acquisitiontime. The new and more ex-
pensive computers may then be dedicated to modern data
analysis and visualizationsoftware packages, which often
require up-to-date computer systems.

Use of older machines is a benefit only if the older ma-
chines can actually perform the task of controlling exter-
nal equipment, stimulus presentation,and the recording of
response data, with the level of temporal control sufficient
for scientific interpretation.Although beyond the scope of
this paper, under DOS the parallel port can be used to con-
trol and monitor externaldevices (Wilson, 1996), responses
may be collected from the mouse, keyboard, or, with the
least temporal variation, through the game port (Segalowitz
& Graves, 1990), and a sound card may be used to detect/
record vocal responses and to present auditory stimuli
(Kello & Kawamoto, 1998).Visual stimuli can be presented
on the CRT, though the timing of responses to these stim-
uli must consider the vertical position of the stimulus on
the screen. This will be covered in more detail later.

Because the ability to monitor inputs and control exter-
nal devices is not limited by use of DOS as the experimen-
tal operating system, the improved reliability of event tim-
ing under DOS over Windows (Myors, 1999) continues to
make DOS the preferable operating system for experimen-
tal control. This paper will explain how to obtain millisec-
ond timing accuracy under DOS and presents source code
in the Appendix1 that implements the method described.

With DOS, there are various methods of obtaining reli-
able millisecond accuracy on the XT/AT family of com-
puters available. Smith and Puckett (1984; see Graves &
Bradley, 1991) suggested an algorithm that was presented
in assembler form by Graves and Bradley (1987, 1991).The
basic idea is as follows. Read the time of day (TOD)
counter and the corresponding residual counter (Ticks),
and on the basis of the difference between two subsequent
readings, millisecond accuracy may be achieved. Mil-
lisecond, and better, accuracy is possible because the TOD
updates occur every 55 msec. Reading the TOD updates
alone is sufficient only for 55-msec time resolution. How-

I thank V. K. Lim at the University of Melbourne, Australia, for her
assistance in testing the routines provided. Additionally, I thank editor
Jonathan Vaughn and four anonymous reviewers for their helpful com-
ments. Correspondence shouldbe addressed to J. Hamm, Department of
Pschology, Private Bag 92019,University of Auckland, Auckland, New
Zealand (e-mail: j.hamm@auckland.ac.nz).

Object-oriented millisecond timers for the PC

JEFF P. HAMM
University of Auckland, Auckland, New Zealand

Object-orientedprogramming provides a useful structure for designing reusable code. Accurate mil-
lisecond timing is essential for many areas of research. With this in mind, this paper provides a Turbo
Pascal unit containing an object-oriented millisecond timer. This approach allows for multiple timers
to be running independently. The timers may also be set at different levels of temporal precision, such
as 10 3 (milliseconds) or 10 5 sec. The object also is able to store the time of a flagged event for later
examination without interrupting the ongoing timing operation.

OBJECT-ORIENTED TIMERS 533

ever, the TOD update occurs when a second countdown
variable, the Ticks, has reached 0. At the point the Ticks
reaches0, the TOD count incrementsby 1, interrupt1C fires,
and the Ticks is set back to 65535, where it begins the
countdown cycle again. As such, 55-msec bins of time are
coded for by the TOD count, and 55/65356 (~0.0008392)
msec are coded for each Tick.

The TOD update cycle is independentof computer pro-
cessing speed, making this timing method highly portable
and accurate. Timers based on these routines will work on
all machines running under DOS since the XT. One cau-
tion with this technique is that if the TOD updates while
reading the Ticks value, there is a potential for a 655-msec
error (Bovens & Brysbaert, 1990) dependingon the order
in which the TOD and Ticks are read. A solution to thiserror
was provided by Graves and Bradley (1991) and is em-
ployed in the current timing unit.

Although the TOD and Ticks update rates are indepen-
dent of processing speed, the rate at which one may sam-
ple the TOD and Ticks values will improve with faster
processors. In theory, it is possible to obtain a temporal
resolutionof 55/65536msec, or ~0.0008392msec, provided
one may read both the TOD and Ticks value at least as fast
as the tick countdown. This becomes important when at-
tempting to set the resolution of the timers. Using the cur-
rent routines on a 486 processor running at 66 mHz, the
TOD and Ticks may be sampled every 1.8 3 10 5 seconds,
whereas on a Pentium 200-mHz machine, the TOD and
Ticks may be sampled at 0.6 3 10 5 sec. Both of these
machines, therefore, are easily capable of reading the
TOD and Ticks values fast enough for millisecond accu-
racy. The 486, however, is not quite capable of sampling
these values fast enoughto providea resolutionof 10 5 sec,
whereas the Pentium is capable. However, the 486 sam-
pling rate is sufficient for synchronizing millisecond re-
sponse timing with stimulus presentation on a CRT. A
demonstration of how to use multiple timers to perform
this synchronization is presented later.

In addition, because the TOD count is reset to 0 at mid-
night, these timing routines will produce errors if they are
started before and stopped after midnight. Adjustments
may be made to account for the situation when the start
TOD counts is greater than the stop TOD counts; however,
this has not been includedbecause the additionaloverhead
of the conditional statement will decrease the timer sam-
pling rate. For those who wish to include this adjustment, if
the Stop TOD counts are less than the Start TOD counts,
then subtract 1,573,040 from the Start TOD counts value.
This is one more than the value of the TOD counter just
prior to midnight;one more because the counter is reset to
0 so there is onemore TOD update than the maximumvalue.

To obtain the TOD and Ticks value, the timing chip is
set to Mode 2 (Bovens & Brysbaert, 1990). The TOD
count is then read directly from its locations in Bios mem-
ory. The Bios segment is always $40 ($ indicates hexa-
decimal value) if programs are run in “real” mode, but the
Bios segment may not be $40 if programs are run in “pro-
tected” mode. Borland Pascal 7.0, which was used to write

the unit presented here, allows for access to the Bios seg-
ment location in either real or protectedmode throughuse
of Seg0040. If this option is unavailable, add the line

Seg0040 = $40;

to the constant declaration segment of the unit, and use
these timers only in real mode. Note, the version of Turbo
Pascal (5.5) available for free download from the internet2
compiles only in real mode.

With the continued need for millisecond accuracy ob-
tainableunder the DOS environment (Myors, 1999), a unit
is providedin the Appendixthat defines an object“ATimer”
that may be incorporated into an experiment. The basics
of the timing routine itself, described previously, are the
same as those tested extensivelyunder different operating
systems by Myors (1999). As indicated in Myors’s report,
these should be used only under true DOS, and not in a
DOS box running under any of the forms of Windows.
Declaration of multiplevariables of type “ATimer” allows
for multiple timers of different temporal resolutions to be
running simultaneously during an experiment.

The benefit of multiple timers with different temporal
resolutions can be demonstrated in relation to the follow-
ing example. Experiments that employ the CRT of a stan-
dard computer for the presentation of visual stimuli have
to consider when in the refresh cycle of the CRT the stim-
ulus actuallyappears. The CRT is updated from left to right
and from top to bottom at a frequency of 60 Hz, or once
approximatelyevery 16.7 msec. Stimuli that are presented
high on the CRT will appear slightlyearlier than those that
appear low on the CRT. In order to synchronize response
timing with actual stimulus onset, it is necessary to first
synchronizewith the screen refresh cycle (Heathcote,1988;
routines that do this are supplied in the unit as the proce-
dure WaitForTopOfScreen). Because of the constant re-
fresh rate, it is possible to calculate the amount of time re-
quired for the raster to scan from the beginning of the
refresh cycle to the horizontal row of the stimulus. A small
delay may then be introduced to complete synchronization
between stimulus onset and initiation of response timing.

For example, using a graphics mode with a screen res-
olution of 640 3 480, each horizontal line of the screen
requires approximately 0.035 msec (16.7/480) to refresh.
Because the left–right scan time is well below 1 msec, hor-
izontal offsets are generally not of concern. However,
stimuli that are vertically separated will have an apprecia-
ble onset asynchrony. Stimuli that are vertically separated
by only 145 pixels will be presented just over 5 msec
apart, with the higher stimuli presented sooner. The mea-
suring of response time should begin at stimulus onset
rather than at the beginningof the refresh cycle. This may
be accomplished by using one timer object set at a resolu-
tion of 1/100000 sec to enforce a small delay after the de-
tectionof a new refresh cycle; these tiny delays may be in-
corporated in Listing 1.

Note that the screen refresh rate of 16.7 msec has been
multiplied by 100 because of the higher temporal resolu-
tion of the delay timer. Furthermore, the topmost line of

534 HAMM

the screen is assumed to have a y-coordinateof 0. A higher
resolution timer is useful in this situation in order to re-
duce the synchronization error between stimulus onset
and the starting of the response timer to be less than the res-
olution of the response time measurement. As noted ear-
lier, this second high-resolution timer can be obtained
with sufficient resolution for this purposeon a 486 machine
running at 66 mHz. The response time will be measured
in the default units of millisecondsbecause setting the res-
olutionof the delay timer object does not affect the second
response timer object.Even thoughboth timers operate on
the same internal clock, because of the object-orientedap-
proach employed, the timers function independently.

Finally, for the experimental researcher the main bene-
fit of the object-orientedapproach of programming is pri-
marily one of pragmatics. When reliable routines have
been developed,encapsulating them in an object structure,
such as the msTimer object presented in the Appendix,de-
velopment time of new experimental programs can be
greatly reducedas the functionof the objectmay be referred
to through logically informative method calls. Provided
one is careful to address only internal variables of the ob-
ject throughmethod calls, bug-free code may be used with
confidence from one program to the next. The use of well-
named methods that indicate the function of the routine,
such as Timer.Start, improve the readability of the code,
easingmodificationfor follow-up experiments.With a well-
tested library of only few objects—for example, one that
monitors the game port for input responses, one that con-
trols the parallel port for devicecontrol and monitoring,one
that monitors the sound card for microphone and sound
generation, and one that provides millisecond timing
routines—programming in a high-level language such as
Pascal need be no more complicated than implementation
of the script languageprovidedwith many commercial ex-
perimental software packages. An additional benefit be-
yond that of commercial packages is that experimenters
can always modify and recompile their source code to ac-

count for the latest developments or to produce code that
suits their specific and novel experimental needs while
gaining an appreciable knowledge as to the workings of
one of their most common research tools.

REFERENCES

Bovens, N., & Brysbaert, M. (1990). IBM PC/XT/AT and PS/2 Turbo
Pascal timing with extended resolution. Behavior Research Methods,
Instruments, & Computers, 22, 332-334.

Graves, R. E., & Bradley, R. (1987). Millisecond interval timer and
auditory reaction time programs for the IBM PC. Behavior Research
Methods, Instruments, & Computers, 19, 30-35.

Graves, R. E., & Bradley, R. (1991). Millisecond timing on the IBM
PC/XT/AT and PS/2: A review of the options and corrections for the
Graves and Bradley algorithm. Behavior Research Methods, Instru-
ments, & Computers, 23, 377-379.

Heathcote, A. (1988). Screen control and timing routines for the IBM
microcomputer family using a high-level language. Behavior Re-
search Methods, Instruments, & Computers, 20, 289-297.

Kello, C. T., & Kawamoto, A. H. (1998). Runword: An IBM-PC soft-
ware package for the collection and acoustic analysis of speeded nam-
ing responses. Behavior Research Methods, Instruments, & Comput-
ers, 30, 371-383.

Myors, B. (1999).Timing accuracy of PC programs runningunder DOS
and Windows. Behavior Research Methods, Instruments, & Comput-
ers, 31, 322-328.

Segalowitz,S. J., & Graves,R. E. (1990).Suitabilityof the IBM XT, AT,
and PS/2 keyboard, mouse, and game port as response devices in reac-
tion time paradigms. Behavior Research Methods, Instruments, & Com-
puters, 22, 283-289.

Smith, B., & Puckett, T. (1984, April). Life in the fast lane. PC Tech-
nical Journal, pp. 63-74.

Wilson, W. J. (1996). The f-maze: A versatile automated T-maze for
learning and memory experiments in the rat. Behavior Research
Methods, Instruments, & Computers, 28, 360-364.

NOTES

1. The source code, in text file format, is also available for free down-
load on the World-Wide Web at http://www.psych.auckland.ac.nz/
psych/research/jeff

2. Turbo Pascal 5.5, which supports object-oriented programming, is,
at the timeofwriting,available for free from Borlandwebsite: www.borland.
com by following the Community/Museum link to find Turbo Pascal 5.5.

Listing 1

DelayTimer.Init ; { Initialize to the default 10 3 seconds }
DelayTimer.SetResolution (100000) ; { change to 10 5 seconds }
RT_Timer.Init ; { default 10 3 seconds }
{ Now calculate, in 10 5 seconds, the delay to get to the }
{ stimulus }
DelayTime : = StimYCoor * 1670/ScreenYResolution;
WaitForTopOfScreen; {wait for beginningof screen refresh }
DelayTimer.Start ; { Start timing the delay }
REPEAT UNTIL DelayTimer.GetTime >= DelayTime ; { Wait }
RT_Timer.Start ; { Now start the response timer }
REPEAT UNTIL ResponseMade ; { Wait for a response }
RT_Timer.Stop ; { Stop the timer }
RemoveStimlus ; { Clear the CRT }
ResponseTime := RT_Timer.GetLastTime ; { Save response time }
DelayTimer.Done ; { Shut down the timers }
RT_Timer.Done ;

OBJECT-ORIENTED TIMERS 535

APPENDIX

UNIT msTime ;
{$q-,r-}
INTERFACE
TYPE ATimer = OBJECT

xPerSecond,
NumCaught,
StoredTODCalls,
StoredTicks,
StartTODCalls,
StopTODCalls,
StartTicks,
StopTicks : LONGINT;
TimeResolution : DOUBLE;
NoneStored : BOOLEAN;
CONSTRUCTOR Init ;
DESTRUCTOR Done ;
PROCEDURE Start ;
PROCEDURE Stop ;
PROCEDURE TakeReading (VAR TODCalls,Ticks: LONGINT) ;
PROCEDURE SetResolution (ixPerSec : LONGINT) ;
PROCEDURE Store (OnFirstTrue : BOOLEAN) ;
FUNCTION GetTime : LONGINT ;
FUNCTION GetLastTime : LONGINT ;
FUNCTION GetStoredTime: LONGINT ;
FUNCTION NumRepeats : LONGINT ;
END;

FUNCTION NumberOfTimers : INTEGER;
PROCEDURE Calibrate (AtRes: LONGINT) ;
PROCEDURE WaitForTopOfScreen ;
IMPLEMENTATION
CONST TimerCt1 = $43;{$xx indicates xx is a hexidecimal value}

Timer0 = $40;
TimerSet = $34;
TimerReset = $36;
TimerLatch = $00;
TODOffset = $6c;
CountsPerSec = 1193182;
CountsPerTODCall = 65536;

VAR NumTimersActive : LONGINT;
ExitSave: POINTER;

{ Procedures and Functions -- }
PROCEDURE WaitForTopOfScreen ;
{ This proceduredetects the beginningof a refresh cycle of the CRT }
{ It should be used to synchronize response timing with presentations }
{ in conjunction with a high-resolutiontimer }
BEGIN

REPEAT UNTIL PORT[MEMW[Seg0040:$63]+6] AND 8 = 8;
END;
{ -------------SetTimerMode2 --- }
PROCEDURE SetTimerMode2 ;
{ Sets the timer chip into Mode 2, which allows the accessing of the }
{ TOD countdown values. }
VAR TempTOD : LONGINT;
BEGIN

TempTOD := MEML[Seg0040:TODOffset];
REPEAT UNTIL TempTOD <> MEML[Seg0040:TODOffset];{Wait for update }
PORT [TimerCt1] := TimerSet; {Set Mode 2 }
PORT [Timer0] := 0;
PORT [Timer0]:= 0;

END;
{ -------------SetTimerMode3code --- }

536 HAMM

PROCEDURE SetTimerMode3 ;
{ Returns the timer chip to Mode 3, its normal setting }
VAR TempTOD : LONGINT;
BEGIN

TempTOD := MEML[Seg0040:TODOffset];
REPEAT UNTIL TempTOD <> MEML[Seg0040:TODOffset];{Wait for update }
PORT[TimerCT1] := TimerReset ; { Set Mode 3 }
PORT[Timer0] := 0;
PORT[Timer0] := 0;

END;
{ -----------------EmergencyShutDown --- }
PROCEDURE EmergencyShutDown ; FAR;
{ Ensures that the timer chip is returned to Mode3 upon exiting the }
{ program }
BEGIN

ExitProc := ExitSave;
SetTimerMode3;

END;
{ --------------------GetTicks --- }
PROCEDURE GetTicks (VAR NTicks: WORD);
var Temp : RECORD { This data structure is used to }

CASE Byte OF { as a simple quick way to combine }
0 : (b1,b2: BYTE); { two 1-byte values into }
1 : (w: WORD); { a 2-byte unsigned value }

END;
BEGIN

PORT [TimerCt1] := TimerLatch; { Store the tickes }
Temp.b1:= PORT[Timer0]; { Read the low byte }
Temp.b2:= PORT[Timer0]; { Read the high byte }
NTicks:= Temp.W; { Return unsighted2-byte value }

END;
{ -----------------Calibrate -- }
PROCEDURE Calibrate (AtRes: LONGINT);
{ This procedureprovides a simple test to determine if a given }
{ temporal resolution may be achieved. The output provides two }
{ values of major interest. The first is the Reading time, which }
{ is the number of units of time that pass between subsequent calls to }
{ sampling the timer. (AtRes = 1,000 makes the units milliseconds) }
{ The sampling rate is a more conservativevalue because it also }
{ includes processing time for the various FOR Loops and other }
{ operationsnot associated with the reading of the Timer object }
{ Sampling and/or Reading rates less than 1 indicate that these values }
{ may be read fast enough to provide timing information at the given }
{ temporal resolution }
VAR Sam,Tods,

Time,
Ticks : LONGINT;
T1,T2 : WORD;
L1,L2 : WORD;
Ave : DOUBLE;
t: ATimer;

BEGIN
Ave := 0.0; { Initialize variable }
t.Init ; { Resolution will be milliseconds }
t.SetResolution (AtRes) ; { Return time at the given resolution }
t.Start ; { Start the timer }
FOR L1 := 1 TO 1000 DO { Do 1,000 repetitions }

BEGIN
IF L1 MOD 100 = 1 THEN { To indicate how far along we are }
WRITE (‘.’);
Sam := 0; { Starting a new repetition }
FOR L2 := 1 TO 1000 DO { 1,000 readings }

APPENDIX (Continued)

OBJECT-ORIENTED TIMERS 537

BEGIN
GetTicks (T1); { Use the ticks to calculate time }
Time := t.GetTime; { Now read the timer }
GetTicks (T2); { To determine how many tics passed }
IF T2 < T1 THEN { If it’s not wrapped around }

BEGIN
Sam := Sam + (T1 T2); { Sum the number of tics }

END
ELSE
BEGIN

Sam := Sam + (T1 + NOT WORD(T2)) + 1; { Number of tics for wrap }
{ around }

END;
END;
Ave := Ave + Sam/1000; { Sum average number of ticks for reading }
END;
t.Stop ;
Ave := Ave / 1000; { Mean of 1,000 average ticks }

{ Now write the information to the screen }
WRITELN (‘Readings take ‘,Ave*AtRes/CountsPerSec:0:6,’units’);
WRITELN (t.NumRepeats,’ double readings were necessary in 1,000,000 samples’);
WRITELN (‘Sampling rate: ‘,t.GetLastTime/(1000*1000):0:6,’ units’);
t.Done; { Shut down the timer }
END;
{ -----------------NumberOfTimers --- }
FUNCTION NumberOfTimers : INTEGER;
{ Primarily for diagnosticpurposes. Every timer that is initialized }
{ is counted, and every timer that is shut down is removed from the }
{ count. At the end of a program, this should return 0 }
BEGIN

NumberOfTimers := msTime.NumTimersActive;
END;
{ -- }
{ ------------ Methods for ATimer -- }
{ -- }
{ -------------------ATimer.Init -- }
CONSTRUCTOR ATimer.Init;
{ This call must be made prior to use of subsequentmethods }
{ It is used to initialize internal variables and should be }
{ called only once. However, if a call is made to the }
{ Destructor Done, then Init must be called again prior to }
{ reuse. }
BEGIN

NumCaught : = 0; { Initialize internal variable }
SetResolution (1000); { Default is milliseconds }
INC (NumTimersActive); { Count the timer as active }
NoneStored : = TRUE; { Initialize internal variable }

END;
{ -----------------ATimer.Done --- }
DESTRUCTOR ATimer.Done;
{ The destructor cleans up the timer and decrements the global timer }
{ count. The global timer count, NumTimersActive, can be used during }
{ program development to ensure that the timer objects are properly }
{ initialized and shut down. When all timers have been deactivated, }
{ NumTimersActive equals 0. }
BEGIN

DEC (NumTimersActive); { Produces faster code than x := x 1; }
END;
{ -------------------ATimer.SetResolution -- }

APPENDIX (Continued)

538 HAMM

PROCEDURE ATimer.SetResolution (ixPerSec: LONGINT);
{ This sets the timer’s GetTime (and related functions) to return at }
{ the specified resolution.The units are 1 sec divided by the }
{ passed value. For example SetResolution (1,000) returns milliseconds }
{ and SetResolution (10,000) returns tenths of a millisecond.This only }
{ needs to be called directly if units other than milliseconds are }
{ desired. }
BEGIN

xPerSecond := ixPerSec;
TimeResolution := xPerSecond/CountsPerSec;

END;
{ ----------------ATimer.NumRepeats ----------------------------- --}
FUNCTION ATimer.NumRepeats : LONGINT;
{ Returns the number of double samples in Taking readings to }
{ avoid the 6 55-msec error. }
{ This function is primarily for diagnosticpurposes. }
BEGIN

NumRepeats : = NumCaught;
END;
{ -----------------ATimer.TakeReading ---------------------------- --}
PROCEDURE ATimer.TakeReading (VAR TODCalls,Ticks: LONGINT);
{ This reads the current TOD value, and the countdown value }
{ The TOD is read twice, and if the value has changed, then }
{ The values are resampled, otherwise there is the potential }
{ of a 6 55 ms error; see Bovens and Brysbaert, 1990 }
VAR Loop : INTEGER;

t1,t2: LONGINT;
Temp: record

case byte of { This structure is to convert }
0: (b1,b2: byte); { Two single byte values }
1: (w : WORD); { to 1 unsigned 2-byte value }

END;
BEGIN

Loop:= -1; { First time through this increments to 0 }
REPEAT { and if it must repeat, gets incremented to 1 }

t1 := MEML[Seg0040:TODOffset]; { Get TOD updates }
PORT [TimerCt1] : = TimerLatch; { Store the current ticks }
Temp.b1 : = PORT[Timer0]; { Read the low byte of ticks }
Temp.b2 : = PORT[Timer0]; { Read the high byte of ticks }
t2 : = MEML[Seg0040:TODOffset]; { Resample TOD }
INC (Loop);

UNTIL (t2 = t1); { Loop if a TOD has occured }
Ticks := Temp.w; { This combines t.b1 and t.b2 into a WORD }
TODCalls := t1;
INC (NumCaught,Loop); { For diagnositicpurposes }
END;
{ ------------------ATimer.Start -- }
PROCEDURE ATimer.Start ;
{ Takes the initial readings of the TOD and Ticks and clears the }
{ storage flag. }
BEGIN

TakeReading (StartTODCalls,StartTicks);
NoneStored := TRUE;

END;
{ -----------------ATimer.Stop --}
PROCEDURE ATimer.Stop;
{ This doesn’t actually stop the timer per se, but the time between }
{ Start and Stop calls may be retrieved from a call to }
{ Timer.GetLastTime. Note, Stop is called from the GetTime routine, so }
{ GetLastTime will reflect the time between Start and Stop or }
{ GetTime, which ever of the latter occurred most recently. }
BEGIN

TakeReading (StopTODCalls,StopTicks);
END;

APPENDIX (Continued)

OBJECT-ORIENTED TIMERS 539

{ -----------------ATimer.Store -- }
PROCEDURE ATimer.Store (OnFirstTrue: BOOLEAN);
{ The time at which OnFirstTrue initially becomes True is stored. To }
{ use reuse store, it must be flushed by a call to GetStoredTime or }
{ by a new call to Start. }
BEGIN
IF (OnFirstTrue) AND (NoneStored) THEN
BEGIN

TakeReading (StoredTODCalls,StoredTicks);
NoneStored:= FALSE; { Prevents overwrites of Stored value }
END;

END;
{ --------------------ATimer.GetStoredTime --}
FUNCTION ATimer.GetStoredTime : LONGINT;
{ Returns the time stored via Store. If no time was stored returns 1 }
{ and clears the storage flag to allow for a new time to be stored }
VAR NumTicks: LONGINT;
BEGIN

IF NOT (NoneStored) THEN
BEGIN

NumTicks := StartTicks StoredTicks;
GetStoredTime := TRUNC ((((StoredTODCalls-

StartTODCalls) * CountsPerTodCall)+
NumTicks) * TimeResolution);

NoneStored := TRUE; { Allows for a new value to be stored }
END
ELSE
BEGIN

GetStoredTime := 1; { no value stored }
END;

END;
{ -------------- ATimer.GetTime --- }
FUNCTION ATimer.GetTime: LONGINT;
{ This returns the amount of time since the timer was started }
VAR NumTicks : LONGINT;
BEGIN

Stop; { Loads values into StopTODCalls and StopTicks }
NumTicks := StartTicks StopTicks;
GetTime := TRUNC ((((StopTODCalls

StartTODCalls) * CountsPerTodCall)+
NumTicks) * TimeResolution);

END;
{ -----------------ATimer.GetLastTime --- }
FUNCTION ATimer.GetLastTime : LONGINT;
{ This returns the time at the last GetTime or Stop call }
{ If neither have been called, then the result is meaningless }
VAR NumTicks : LONGINT;
BEGIN

NumTicks := StartTicks StopTicks;
GetLastTime := TRUNC ((((StopTODCalls-

StartTODCalls)*CountsPerTodCall)+
NumTicks) * TimeResolution);

END;
{ -------------- Unit InitializationCode --- }
BEGIN

msTime.ExitSave : = ExitProc; { Ensures the return to Mode 3 }
ExitProc := @EmergencyShutDown; { Links in the Exit procedure }
msTime.NumTimersActive := 0; { Initialize global variable }
SetTimerMode2 ; { Ensures the timer chip is in Mode 2 }

END.

(Manuscript received July 16, 2000;
revision accepted for publication July 3, 2001.)

APPENDIX (Continued)

